Радиатор для транзистора обозначение. Простой расчет площади теплоотвода для мощных транзисторов и тиристоров. G– коэффициент учета типа установленных окон

Устройство и принципы функционирования радиатора для светодиодов. Правила выбора материала и площади детали. Делаем радиатор своими руками легко и быстро.

Распространенное мнение, что светодиоды не нагреваются – заблуждение. Возникло оно потому, что маломощные светодиоды на ощупь не горячие. Все дело в то, что они оснащены отводчиками тепла – радиаторами.

Принцип действия теплоотвода

Главным потребителем тепла, выделяемого светодиодом, является окружающий воздух. Его холодные частицы подходят к нагретой поверхности теплообменника (радиатора), нагреваются и устремляются вверх, освобождая место новым холодным массам.

При столкновении с другими молекулами происходит распределение (рассеивание) тепла. Чем больше площадь поверхности радиатора, тем интенсивнее он передаст тепло от светодиода воздуху.

Подробнее о принципах работы светодиодов читайте .

Количество поглощенного воздушной массой тепла с единицы площади не зависит от материала радиатора: эффективность естественного «теплового насоса» ограничено его физическими свойствами.

Материалы для изготовления

Радиаторы для охлаждения светодиодов различаются по конструкции и материалу.

Окружающий воздух может принять не более 5-10 Вт с единичной поверхности. При выборе материала для изготовления радиатора следует принять во внимание выполнение следующего условия: теплопроводность его должна быть не менее 5-10 Вт. Материалы с меньшим параметром не смогут обеспечить передачу всего тепла, которое может принять воздух.

Теплопроводность выше 10 Вт будет технически избыточной, что повлечет за собой неоправданные финансовые затраты без увеличения эффективности радиатора.

Для изготовления радиаторов традиционно используют алюминий, медь или керамику. В последнее время появились изделия, выполненные из теплорассеивающих пластмасс.

Алюминиевые

Основным недостатком алюминиевого радиатора является многослойность конструкции. Это неизбежно приводит к возникновению переходных тепловых сопротивлений, преодолевать которые приходится с помощью применения дополнительных теплопроводящих материалов:

  • клейких веществ;
  • изолирующих пластин;
  • материалов, заполняющих воздушные промежутки и пр.

Алюминиевые радиаторы встречаются чаще всего: они хорошо прессуются и вполне сносно справляется с отводом тепла.

Алюминиевые радиаторы для светодиодов 1 вт

Медные

Медь обладает большей теплопроводностью, чем алюминий, поэтому в некоторых случаях ее использование для изготовления радиаторов оправдано. В целом же данный материал уступает алюминию в плане легкости конструкции и технологичности (медь – менее податливый металл).

Изготовление медного радиатора методом прессования – наиболее экономичным – невозможно. А обработка резанием дает большой процент отходов дорогостоящего материала.

Медные радиаторы

Керамические

Одним из наиболее удачных вариантов теплоотводчика является керамическая подложка, на которую предварительно наносятся токоведущие трассы. Непосредственно к ним и подпаиваются светодиоды. Такая конструкция позволяет отвести в два раза больше тепла по сравнению с металлическими радиаторами.

Лампочка с керамическим радиатором

Пластмассы теплорассеивающие

Все чаще появляется информация о перспективах замены металла и керамики на терморассеивающую пластмассу. Интерес к этому материалу понятен: стоит пластмасса намного дешевле алюминия, а ее технологичность намного выше. Однако теплопроводность обычной пластмассы не превышает 0,1-0,2 Вт/м.К. Добиться приемлемой теплопроводности пластмассы удается за счет применения различных наполнителей.

При замене алюминиевого радиатора на пластмассовый (равной величины) температура в зоне подвода температур возрастает всего на 4-5%. Учитывая, что теплопроводность теплорассеивающей пластмассы намного меньше алюминия (8 Вт/м.К против 220-180 Вт/м.К), можно сделать вывод: пластический материал вполне конкурентоспособен.

Лампочка с радиатором из термопластика

Конструктивные особенности

Конструктивные радиаторы делятся на две группы:

  • игольчатые;
  • ребристые.

Первый тип, в основном, применяется для естественного охлаждения светодиодов, второй – для принудительного. При равных габаритных размерах пассивный игольчатый радиатор на 70 процентов эффективнее ребристого.

Радиаторы игольчатого типа для мощных и смд светодиодов

Но это не значит, что пластинчатые (ребристые) радиаторы годятся только для работы в паре с вентилятором. В зависимости от геометрических размеров, они могут применяться и для пассивного охлаждения.

LED-лампа с ребристым радиатором

Обратите внимание на расстояние между пластинами (или иглами): если оно составляет 4 мм – изделие предназначено для естественного отвода тепла, если зазор между элементами радиатора всего 2 мм – его необходимо комплектовать вентилятором.

Оба типа радиаторов в поперечном сечении могут быть квадратными, прямоугольными или круглыми.

Расчет площади радиатора

Методики точного расчета параметров радиатора предполагают учет множество факторов:

  • параметры окружающего воздуха;
  • площадь рассеивания;
  • конфигурацию радиатора;
  • свойства материала, из которого изготовлен теплообменник.

Но все эти тонкости нужны для проектировщика, разрабатывающего теплоотвод. Радиолюбители чаще всего используют старые радиаторы, взятые из отслужившей свой срок радиоаппаратуры. Все, что им надо знать – какова максимальная рассеиваемая мощность теплообменника.

Ф = а х Sх (Т1 – Т2), где

  • Ф – тепловой поток (Вт);
  • S – площадь поверхности радиатора (сумма площадей всех ребер или иголок и подложки в кв. м). Подсчитывая площадь, следует иметь в виду, что ребро или пластина имеет две поверхности отвода тепла. То есть площадь теплоотвода прямоугольника площадью 1 см2 составит 2 см2. Поверхность иглы рассчитывается как длина окружности (π х D), умноженная на ее высоту;
  • Т1 – температура теплоотводящей среды (граничной), К;
  • Т2 – температура нагретой поверхности, К;
  • а – коэффициент теплоотдачи. Для неполированных поверхностей принимается равным 6-8 Вт/(м2К).

Есть еще одна упрощенная формула, полученная экспериментальным путем, по которой можно рассчитать необходимую площадь радиатора:

S = x W, где

  • S – площадь теплообменника;
  • W – подведенная мощность (Вт);
  • M – незадействованная мощность светодиода.

Для ребристых радиаторов, изготовленных из алюминия, можно воспользоваться примерными данными, представленными тайваньскими специалистами:

  • 1 Вт – от 10 до 15 см2;
  • 3 Вт – от 30 до 50 см2;
  • 10 Вт – около 1000 см2;
  • 60 Вт – от 7000 до 73000 см2.

Однако следует учесть, что вышеприведенные данные неточные, так как они указываются в диапазонах с достаточно большим разбегом. К тому же определены данные величины для климата Тайваня. Их можно использовать только для проведения предварительных расчетов.

Получить наиболее достоверный ответ об оптимальном способе расчета площади радиатора можно на следующем видео:

Сделать своими руками

Радиолюбители редко берутся за изготовление радиаторов, поскольку этот элемент – вещь ответственная, напрямую влияющая на долговечность светодиода. Но в жизни бывают разные ситуации, когда приходится мастерить теплоотводчик из подручных средств.

Вариант 1

Самая простая конструкция самодельного радиатора – круг, вырезанный из листа алюминия с выполненными на нем надрезами. Полученные сектора немного отгибаются (получается нечто, похожее на крыльчатку вентилятора).

По осям радиатора отгибаются 4 усика для крепления конструкции к корпусу лампы. Светодиод можно закрепить через термопасту саморезами.

Вариант 1 – самодельный радиатор из алюминия

Вариант 2

Радиатор для светодиода можно изготовить своими руками из куска трубы прямоугольного сечения и алюминиевого профиля.

Необходимые материалы:

  • труба 30х15х1,5;
  • пресс-шайба диаметром 16 мм;
  • термоклей;
  • термопаста КТП 8;
  • профиль 265 (Ш-образный);
  • саморезы.

В трубе для улучшения конвекции сверлятся три отверстия диаметром 8 мм, а в профиле – отверстия диаметром 3,8 мм – для его крепления саморезами.

Светодиоды приклеиваются к трубе – основанию радиатора – при помощи термоклея.

В местах соединения деталей радиатора наносится слой термопасты КТП 8. Затем производится сборка конструкции с помощью саморезов с пресс шайбой.

Способы крепления светодиодов к радиатору

Светодиоды прикрепляют к радиаторам двумя способами:

  • механическим;
  • приклеиванием.

Приклеить светодиод можно на термоклей. Для этого на металлическую поверхность наносится капелька клеящей массы, затем на нее садится светодиод.

Для получения прочного соединения светодиод необходимо на несколько часов придавить небольшим грузом – до полого высыхания клея.

Однако большинство радиолюбителей предпочитают механическое крепление светодиодов. Сейчас выпускаются специальные панели, с помощью которых можно быстро и надежно смонтировать светодиод.

В некоторых моделях предусмотрены зажимы для вторичной оптики. Монтаж выполняется просто: на радиатор устанавливается светодиод, на него – панелька, которая крепится к основанию саморезами.

Но не только радиаторы для светодиода можно изготовить самостоятельно. Любителям заниматься растениями рекомендуем ознакомиться со светодиодной .

Качественное охлаждение светодиода является залогом долговечности светодиода. Поэтому к подбору радиатора следует подходить со всей серьезностью. Лучше всего использовать готовые теплообменники: они продаются в магазинах радиотоваров. Стоят радиаторы недешево, зато легко монтируются и светодиод защищает от избытка тепла надежнее.

Сначала простой случай, расчет радиатора по данным тепловыделения при постоянном токе.

Для примера рассмотрим расчет радиатора для MOSFET-а IRLR024N

В этом примере предполагается, что MOSFET включается и долгое время находится в полностью открытом состоянии. Например, переключение производится не чаще чем с частотой 1 Гц.

В даташите нас интересуют параметры теплового сопротивления Junction-to-Case (сопротивление переход-корпус), Junctione-to-Ambient (PCB mount) (переход-окружающая среда при монтаже на 1кв.дюйм медной заливки на плате), Junction-to-Ambient (корпус-окружающая среда).

RθJC = 3.3 К/Вт
RθJApcb= 50 К/Вт
RθJA = 110 К/Вт

(Кельвины и Цельсии не играет роли, так как речь о разницах).

Цифра 110 К/Вт означает, то при выделяемой мощности 1Вт разница температур между внешней средой и переходом будет 110 градусов. Например, если границе корпус-воздух будет 40 градусов, то это значит, что переход внутри транзистора имеет температуру 40+110=150 градусов. Если выделяется 2Вт, то внутри будет 40+110*2=260 градусов.

Предположим, что напряжение на затворе будет 3.3В. А ток будет 3А. Из графика «Typical Transfer Characteristics» находим, что при напряжении 3.5В ток составляет 8А. Т.е. сопротивление составляет 0,4375 Ом. При этом смотрим на график «Normalized On-Resistance Vs. Temperature» и видим, что при 90 градусах сопротивление растет в 1.5 раза.

Допускаем по дизайну нагрев до 90 градусов, а сопротивление считаем 0.4375*1.5= 0,6563 Ом.

Получаем, что рассеиваться на транзисторе будет P=I^2*R=3*3*0,6563=5,9067 = 6 Вт.

Предполагается, что транзистор будет работать в окружении, где температура воздуха будет до 30 градусов (что очень оптимистично, так как он греет воздух вокруг себя).

Итак, запас по температуре составляет 90-30=60 градусов. Получается что максимальное общее теплового сопротивления равно (90-30)/6Вт=10 К/Вт

При этом сопротивление переход-корпус уже съело 3.3 К/Вт. У нас остается 8.3 К/Вт.

Монтаж радиатора будет производится на силиконовый клей. Предположим, что наш клей - HC910. Проводимость его 1.7 Вт/м*К.

У нас площадь приклеивания будет 0.25д*0.24д=0.01м*0.009м=0,0000054 кв.м.

Толщина слоя нанесения 0.0001м (0.1 мм). Эта оценка подтверждена документацией на подобные клеи.

Тепловое сопротивление слоя клея равно = толщина/(площадь*проводимость)=0,53 К/Вт

Остается 7.77 К/Вт на сам радиатор. Выбираем в магазине каком-нибудь.

И это будет довольно крупный радиатор. Примерно 10х10х5 см за нормальные деньги.

Теперь решим вопрос, а какой допустимый ток, при котором можно обойтись без радиатора вообще.

Возьмем вариант, когда транзистор припаян к площадке на плате площадью 1кв. дюйм. RθJApcb= 50 К/Вт. Предположим, что все устройство работает в коробочке и воздух в ней, за счет других компонентов и этого MOSFET-а, может нагреваться до 50 градусов. Предел нагрева для выбранного транзистора 175 градусов. Но мы возьмем максимум 125. Тогда максимальная допустимая мощность будет (125К-50К) / 50К/Вт= 1,5 Вт.

Если же он не припаян к площадке, то RθJA = 110 К/Вт, и получаем максимальную мощность (125К-50К) / 110К/Вт= 0,6 Вт.

Расчет по корпусу приведенный здесь более реалистичный, чем с радиатором. Однако, если устройство должно работать в различных условиях, то требуется внесение понижающего коэффициента для высот. Например, для высоты 2000м коэффициент 0.8 (т.е. не 0.6Вт, а 0,5Вт) для высоты 3500м – 0.75.

При 125 градусах Rds(on) будет составлять 1.75 * Rds(on) при 20 градусах, т.е. 0,4375 * 1,75=0,765625 Ом. P=I^2*R => I=SQRT(P/R)

Получаем, что при припайке на площадку на плате максимальный ток будет Imax=корень(1.5/0.765625)=1.4A Без площадки Imax=корень(0,6/0,765625)=0,9A

Часть 2: Расчет тепловыделения MOSFET при ШИМ

Теперь рассчитаем рассеиваемую мощность в случае использования ШИМ. Пусть сигнал ШИМ на затвор поступаем напрямую с микроконтроллера. Максимальный ток 25мА. Во время ШИМ есть 4 фазы: открытие затвора, высокий уровень, закрытие затвора, низкий уровень. Выделение тепла идет во всех фазах, кроме низкого уровня. Во время высокого уровня мощность равна U*I, как обычно. Мощность в фазе открытия затвора зависит от времени открытия, которое зависит от емкости затвора и тока драйвера. Пусть в нашем примере частота пусть будет 240Гц. Коэф. заполнения: 0.5. Ток 3А. Пусть это будет управление светодиодами, транзистор включен со стороны общего провода. Напряжение питания 5В.

Рассчитать теоретически точно потери по всех фазах довольно сложная задача, так как параметры и результаты расчет зависят друг от друга и есть процессы происходящие в подложке. Но на практике такая точность и верность теории не требуется. Есть приблизительные оценки потерь в фазах открытия и закрытия, которые дают практические цифры, которые можно использоваться при вычислении тепловыделения. Для расчета эффективности (КПД) этот метод не годится.

Потери в фазе высокого уровня (фазе полного открытия) мы считали в первой части и там нет ничего сложного. Для закрытия и открытия оказывается важным вид нагрузки: резистивная или индуктивная.

Потери при переключении возникают из-за того, что в процессе переключения через транзистор проходит большой ток при большом напряжении. Можно взять идеализированную форму этого процесса и рассчитать потери с приемлемой точностью для практического расчета тепловыделения.

Для резистивной нагрузки
Psw=1/2 * Fs *Vds*Id*tsw

Для индуктивной
Psw=1/6 * Fs *Vds*Id*tsw

Где
Fs- частота
Vds – напряжение сток-исток (в закрытом состоянии)
Id- ток проходящий через транзистор (в открытом состоянии)
tsw - время переключения

Время переключения в первом приближении можно рассчитать по графику зависимости зарядка на затворе от напряжения затвор-исток.

При напряжении 3.3В по графику заряд будет не более 4nC
tsw= ЗарядЗатвора/ТокДрайвера =4nC/0.025A=160.4ns
Считаем процессы закрытия и открытия симметричными. Тогда итоговые потери переключения, например, для резистивной нагрузки:

Psw=1/2 * Fs * Vds * Id *tsw= 1/2 * 240* 20*3*160ns=1 мВт

Время во включенном состоянии намного больше времени переключения, поэтому время переключения игнорируем (для больших частот это не так). Тогда потери в проводящей фазе равны D*I^2* Rds(on), где D – коэф. заполнения
Pcond=0.5*3*3* 0,6563 = 2,95 Вт

Видно, что потери на переключение пренебрежительно малы в сравнении с потерями в открытой фазе.

Voff – напряжение сток-исток, когда mosfet выключен
, 5В Fs – частота переключения, 240 Гц
Рассчитаем
Psw2=(130*10-12)*5^2*240=0,78 мкВт

Т.е. на 3 порядка меньше основных потерь при переключении. А потери при переключении на 3 порядка меньше потерь проводимости.

Ради интереса рассчитаем потери при частоте 2МГц, D=0,8 и тоге 20 А.
Psw=10,6Вт
Pcond=210 Вт
Psw2=0.78мкВт

Видно, что даже при таких условиях потери на переключение на порядок меньше потерь проводимости. Т.е. когда вы будете искать радиатор на 210 Вт, дополнительные 10Вт просто попадут в инженерный запас, который вы обязательно должны сделать (около 20%).

Кроме этого рассчитывать надо крайний случай, которым является D=0.99, Pcond=260 Вт при этом Psw сохраняется прежним.

Из приведенных формул можно сделать интересные выводы:

  1. Чтобы сократить потери на переключение, надо сократить время переключения. Для этого надо иметь мощный драйвер, который может отдавать большой ток в затвор.
  2. Малый ток затвора ограничивает скорость переключения. В нашем примере время включения и выключения было в районе 160 нс. Т.е. даже если только открывать и закрывать затвор минимальный период будет равен 320нс, т.е. максимальная частота, с которой можно открывать и закрывать затвор током драйвера в 25мА составит примерно 3МГц.
  3. Вклад частоты в потери линейный, а общий вклад потерь при переключении не существенный.
  4. При частотах до 1МГц и при токах до 20А вклад потерь при переключении составляет 1-2% от общих потерь и может быть смело проигнорирован. В этом случае потери на mosfet-е можно просто считать как Iout^2*Rdn(on)*D
  5. Выходное сопротивление управляющего сигнала и емкость затвора представляющий собой ФНЧ с частотой 1/Rout*Cgs,где Cgs=Ciss-Crss, но из фактических значений для любого разумного случая это сотни мегагерц минимум.

Дополнительное чтение с более сложными расчетами, дающими примерно такой же результат по тепловыделению, но правильные для расчета КПД.

Есть такой параметр, как тепловое сопротивление. Он показывает, на сколько градусов нагревается объект, если в нем выделяется мощность 1 Вт. К сожалению, в справочниках по транзисторам такой параметр приводится редко. Например, для транзистора в корпусе ТО-5 тепловое сопротивление равно 220°С на 1 Вт. Это означает, что если в транзисторе выделяется 1 Вт мощности, то он нагреется на 220°С. Если допускать нагрев не более чем до 100°С, например, на 80°С относительно комнатной температуры, то получим, что на транзисторе должно выделяться не более 80/220 = 0,36 Вт. В дальнейшем будем считать допустимым нагрев транзистора или тиристора не более, чем на 80°С.

Существует грубая формула для расчета теплового сопротивления теплоотвода Q = 50/ VS °С/Вт, (1) где S — площадь поверхности теплоотвода, выраженная в квадратных сантиметрах. Отсюда площадь поверхности можно рассчитать по формуле S = 2.
Рассмотрим в качестве примера расчет теплового сопротивления конструкции, показанной на рисунке. Конструкция теплоотвода состоит из 5 алюминиевых пластин, собранных в пакет. Предположим, W=20 см, D=10 см, а высота (на рисунке не показана) 12 см, каждый «выступ» имеет площадь 10х12 = 120 см2, а с учетом обеих сторон 240 см2. Десять «выступов» имеют площадь 2400 см2, а пластина две стороны х 20 х 12 = 480 см2. Итого получаем S=2880 см2. По формуле (1) рассчитываем Q=0,93°С/Вт. При допустимом нагреве на 80°С получаем мощность рассеяния 80/0,93 = 90 Вт.

Теперь проведем обратный расчет.
Предположим, нужен блок питания с выходным напряжением 12 В и током 10 А. После выпрямителя имеем 17 В, следовательно, падение напряжения на транзисторе составляет 5 В, а значит, мощность на нем 50 Вт. При допустимом нагреве на 80°С получим требуемое тепловое сопротивление Q=80/50=1,6°C/Вт. Тогда по формуле (2) определим S= 1000 cм2.

Литература
Конструктор № 4/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 20.09.2014

    Общие сведения об электропроводках Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями. Скрытая электропроводка имеет ряд преимуществ перед открытой: она более безопасна и долговечна, защищена от механических повреждений, гигиенична, не загромождает стен и потолков. Но она дороже, и ее труднее заменить при необходимости. …

  • 27.09.2014

    На основе К174УН7 можно собрать не сложный генератор с 3 под диапазонами: 20…200, 200…2000 и 2000…20000Гц. ПОС определяет частоту генерируемых колебаний, она построена на элементах R1-R4 и С1-С6. Цепь отрицательной ОС уменьшающая нелинейные искажения сигнала и стабилизирующая его амплитуду образована резистором R6 и лампой накаливания Н1. При указных номиналах схемы …

Приведена методика, на примере процессора Intel Pentium4 Willamette 1.9 ГГц и кулера B66-1A производства компании ADDACorporation, описывающая порядок расчета ребристых радиаторов, предназначенных для охлаждения тепловыделяющих элементов РЭА с принудительной конвекцией и плоскими поверхностями теплового контакта мощностью до 100 Вт. Методика позволяет произвести практический расчет современных высокоэффективных малогабаритных устройств для отвода тепла и применить их ко всему спектру устройств радиоэлектроники нуждающихся в охлаждении.

Параметры, задаваемые в исходных данных:

P = 67 Вт, мощность выделяемая охлаждаемым элементом;

q с = 296 °К, температура среды (воздуха) в градусах Кельвина;

q пред = 348 °К, предельная температура кристалла;

q р = nn °K , средняя температура основания радиатора (вычисляется в процессе расчета);

H = 3 10 -2 м, высота ребра радиатора в метрах;

d = 0,8 10 -3 м, толщина ребра в метрах;

b = 1,5 10 -3 м, расстояние между ребрами;

l м = 380 Вт/(м °К), коэффициент теплопроводности материала радиатора;

L =8,3 10 -2 м, размер радиатора вдоль ребра в метрах;

B = 6,9 10 -2 м, размер радиатора поперек ребер;

А = 8 10 -3 м, толщина основания радиатора;

V ³ 2 м/сек, скорость воздуха в каналах радиатора;

Z = 27, число ребер радиатора;

u р = nn K , температура перегрева основания радиатора, вычисляется в процессе расчета;

e р = 0,7, степень черноты радиатора.

Предполагается, что источник тепла расположен по центру радиатора.

Все линейные размеры измеряются в метрах, температура в градусах Кельвина, мощность в ваттах, а время в секундах.

Конструкция радиатора и необходимые для расчетов параметры показана на Рис.1.

Рисунок 1.

Порядок расчета.

1. Определяем суммарную площадь сечения каналов между ребрами по формуле:

S к = (Z - 1)·b · H

Для принятых исходных данных - S к = (Z - 1)·b ·H = (27-1) ·1,5 10 -3 ·3 10 -2 = 1,1 10 -3 м 2

Для центральной установки вентилятора, воздушный поток выходит через две торцевые поверхности и площадь сечения каналов удваивается и равняется 2,2 10 -3 м 2 .

2. Задаемся двумя значениями температуры основания радиатора и проводим расчет для каждого значения:

q р = { 353 (+80°С) и 313 (+40°С)}

Отсюда определяется температура перегрева основания радиатора u р относительно окружающей среды.

u р = q р - q с

Для первой точки u р = 57°К, для второй u р = 17°К.

3. Определяем температуру q , необходимую для расчета критериев Нуссельта (Nu ) и Рейнольдса (Re ):

q = q с + P / (2 · V · S к · r · C р)

где: q с температура окружающего воздуха, среды,

V – скорость воздуха в каналах между ребрами, в м/сек;

S к – суммарная площадь поперечного сечения каналов между ребрами,в м 2 ;

r - плотность воздуха при температуре q ср, в кг/м 3 ,

q ср = 0,5 (q р + q с) ;

C р – теплоемкость воздуха при температуре q ср, в Дж/(кг х °К);

P – мощность отводимая радиатором.

Для принятых исходных данных - q = q с + P /(2·V ·S к ·r ·C р) = 296 К+67/(2·2м/сек·1,1 10 -3 м 2 ·1,21·1005) = 302,3°К (29,3°С)

* Величина, для данного ребристого радиатора с центральной установкой вентилятора, V из расчетов 1,5 - 2,5 м/сек (См. Приложение 2), из публикаций [Л.3] около 2 м/сек. Для коротких, расширяющихся каналов, как например у кулера Golden Orb скорость охлаждающегося воздуха может достигать 5 м/сек.

4. Определяем величины критериев Рейнольдса и Нуссельта, необходимые для расчета коэффициента теплоотдачи ребер радиатора:

Re = V ·L /n

где: n - коэффициент кинематической вязкости воздуха приq с, м 2 из Приложения1, таблица 1.

Для принятых исходных данных - Re = VL/ n = 2·8,3 10 -2 / 15,8 10 -6 = 1,05 10 4

Nu = 0,032 Re 0,8

Для принятых исходных данных - Nu = 0,032 Re 0,8 = 0,032 (2,62 10 4) 0,8 = 52,8

5. Определяем коэффициент конвективного теплообмена ребер радиатора:

a к = Nu · l в / L Вт / (м 2 К)

где, l - коэффициент теплопроводности воздуха (Вт/(м град)), при q с из Приложения 1, таблица1.

Для принятых исходных данных - a к = Nu· l в / L = 52,8 · 2,72 10 -2 / 8,3 10 -2 = 17,3

6. Определяем вспомогательные коэффициенты:

m = (2 · a к / l м · d ) 1/2

определяем значение mh и тангенса гиперболического th (mh ).

Для принятых исходных данных - m = (2 · a к / l м · d ) 1/2 = (2 · 17,3 /(380 · 0,8 10 -3)) 1/2 = 10,6

Для принятых исходных данных - m·H = 10,6 · 3 10 -2 = 0,32; th (m·H ) = 0,31

7. Определяем количество тепла, отдаваемое конвекцией с ребер радиатора:

P рк = Z · l м · m · S р · u р · th(m·H)

где: Z – число ребер;

l м = коэффициент теплопроводности металла радиатора, Вт/(м · °К);

m – см. формулу 7;

S р – площадь поперечного сечения ребра радиатора, м 2 ,

S р = L · d

u р – температура перегрева основания радиатора.

S р = L · d = 8,3 10 -2 · 0,8 10 -3 = 6,6 10 -5 м 2

P рк = Z · l м · m · S р · u р · th (m ·H ) = 27 · 380 · 10,6 · 6,6 10 -5 · 57 · 0,31 = 127 Вт.

8. Определяем среднюю температуру ребра радиатора:

q ср = (q р /2) [ 1 + 1 / ch (m ·H )]

где: ch (mH ) – косинус гиперболический.

Для принятых исходных данных - q ср = (q р /2) [ 1 + 1 / ch (m ·H )] = (353/2) =344°K (71°С)

*Величина тангенса и косинуса гиперболических вычисляется на инженерном калькуляторе путем последовательного выполнения операций “hyp ” и “tg ” или ”cos ”.

9. Определяем лучистый коэффициент теплообмена:

a л = e р · f (q ср, q с) · j

f (q ср, q с) = 0,23 [ 5 10 -3 (q ср + q с)] 3

Для принятых исходных данных - f (q ср, q с) = 0,23 [ 5 10 -3 (q ср + q с)] 3 = 0,23 3 = 7,54

Коэффициент облученности:

j = b / (b + 2h )

j = b / (b + 2H ) = 1,5 10 -3 / (1,5 10 -3 + 3 10 -2) = 0,048

a л = e р f (q ср, q с) j = 0,7 х 7,54 х 0,048 = 0,25 Вт/м 2 К

10. Определяем площадь поверхности излучающей тепловой поток:

S л = 2 L [ (Z -1) · (b + d ) + d ] +2 H · L · Z (м 2)

Для принятых исходных данных - S л = 2 L [(Z -1) · (b + d ) + d ] +2 H · L · Z = 0,1445 м 2

11. Определяем количество тепла отдаваемое через излучение:

P л = a л · S л (q ср - q с)

Для принятых исходных данных - P л = a л S л (q ср - q с) = 0,25 · 0,1445 · (344 – 296) = 1,73 Вт

12. Общее количество тепла отдаваемое радиатором при заданной температуре радиатора q р = 353К:

P = P рк + P л

Для принятых исходных данных - P = P рк + P л = 127 + 1,73 = 128,7 Вт.

13. Повторяем вычисления для температуры радиатора q р = 313К, и строим по двум точкам тепловую характеристику рассчитанного радиатора. Для этой точки Р=38Вт. Здесь по вертикальной оси откладывается количество тепла отдаваемое радиатором P р , а по горизонтальной температура радиатора q р .

Рисунок 2

Из полученного графика определяем для заданной мощности 67Вт, q р = 328 °К или 55°С.

14. По тепловой характеристике радиатора определяем что при заданной мощности P р =67Вт, температура радиатора q р =328,5°С. Температуру перегрева радиатора u р можно определяем по формуле 2.

Она равна u р = q р - q с = 328 – 296 = 32°К.

15. Определяем температуру кристалла и сравниваем её с предельным значением установленным производителем

q к = q р + Р (r пк + r пр) °К = 328+67(0,003+0,1)=335 (62°С),

q р температура основания радиатора для данной расчетной точки,

Р – результат вычисления по формуле 14,

r пк - тепловое сопротивление корпус процессора - кристалл, для данного теплового источника равна 0,003 К/Вт

r пр – тепловое сопротивление корпус-радиатор, для данного теплового источника равна 0,1К/Вт (с теплопроводящей пастой).

Полученный результат ниже определенной производителем предельной температуры, и близко данным [Л.2] (порядка 57°С). При этом температура перегрева кристалла относительно окружающего воздуха в приведенных расчетах 32°С, а в [Л.2] 34°С.

В общем виде, тепловое сопротивление между двумя плоскими поверхностями при применении припоев, паст и клеев:

r = d к · l к -1 · S конт -1

где: d к – толщина зазора между радиатором и корпусом охлаждаемого узла, заполненного теплопроводящим материалом в м,

l к – коэффициент теплопроводности теплопроводящего материала в зазоре Вт/(м К),

S конт – площадь контактной поверхности в м 2 .

Приближенное значение r кр при достаточной затяжке и без прокладок и смазок равно

r кр = 2,2 / S конт

При применении паст, тепловое сопротивление падает примерно в 2 раза.

16. Сравниваем q к с q пред , мы получили радиатор обеспечивающий q к = 325°K , меньше q пред = 348°К, - заданный радиатор обеспечивает с запасом тепловой режим узла.

17. Определяем тепловое сопротивление рассчитанного радиатора:

r = u р / P (°К/Вт)

r = u р / P (°/Вт) = 32/67 = 0,47°/Вт

Выводы:

Рассчитанный теплообменник обеспечивает отвод тепловой мощности 67Вт при температуре окружающего воздуха до 23°С, при этом температура кристалла 325 °К (62°С) не превышает допустимую для данного процессора 348°К (75°С).

Применение специальной обработки поверхности для увеличения отдачи тепловой мощности через излучение на температурах до 50°С оказалось неэффективно и не может быть рекомендовано, т.к. не окупает затрат.

Хотелось бы, чтобы данный материал помог Вам не только рассчитать и изготовить современный малогабаритный высокоэффективный теплообменник, подобный тем, что широко применяются в компьютерной технике, но и грамотно принимать решения по применению подобных устройств, применительно к Вашим задачам.

Приложение 1.

Константы для расчета теплообменника.

Таблица 1

q с, К (°С) l *10 -2
Вт/(м К)
n * 10 6 м 2 /сек Ср Дж/(кг*К) r , кг/м 2
273 (0)td> 2,44 13,3 1005 1,29
293 (20) 2,59 15,1 1005 1,21
373 (100) 3,21 23,1 1009 0,95

Значения констант для промежуточных значений температур, в первом приближении, можно получить построив графики функций для указанных в первом столбце температур.

Приложение 2.
Расчет скорости движения воздуха охлаждающего радиатор.

Скорость движения теплоносителя при вынужденной конвекции в газах:

V = Gv /S к

Где: Gv – объемный расход теплоносителя, (для вентилятора 70х70, S пр = 30 см 2 , 7 лопастей, P эм = 2,3Вт, w = 3500 об/мин, Gv = 0,6-0,8 м 3 /мин. или реально 0,2-0,3 или V = 2м/сек),

S к – свободная для прохода площадь поперечного сечения канала.

Учитывая, что площадь проходного сечения вентилятора 30 см 2 , а площадь каналов радиатора 22 см 2 , скорость продувки воздуха определяется меньшим, и будет равна:

V = Gv /S = 0,3 м 3 /мин / 2,2 10 -3 м 2 =136 м/мин = 2,2 м/сек.

Для расчетов принимаем, 2 м/сек.

Литература:

    Справочник конструктора РЭА, под ред.. Р.Г.Варламова, М, Советское радио, 1972;

    Справочник конструктора РЭА, под ред.. Р.Г.Варламова, М, Советское радио, 1980;

    http://www.ixbt.com/cpu/ , Кулеры для Socket 478, сезон весна-лето 2002, Виталий Криницин , Опубликовано - 29 июля 2002 г;

    http://www.ixbt.com/cpu/ , Измерение скоростей воздуха за охлаждающими вентиляторами и кулерами, Александр Цикулин, Алексей Рамейкин, Опубликовано - 30 августа 2002 г.

Подготовил в 2003 году по материалам Л.1 и 2

Микросхема УМЗЧ обязательно должна быть установлена на радиаторе – ведь даже в состоянии покоя на ней рассеивается мощность, равная P0=UпI0=(2 25) 0,07=3,5 Вт. Чтобы рассчитать необходимую площадь радиатора, вычислим максимальную рассеиваемую мощность для случая работы в идеальном классе В:
где Uп – полное напряжение источника питания, Rн – сопротивление нагрузки, Р0 – мощность, рассеиваемая в режиме покоя.
При полном напряжении источника питания Uп =50 В, Rн =8 Ом на корпусе микросхемы должна рассеиваться мощность около 19,3 Вт. Ясно, что температура кристалла при работе всегда должна быть ниже 150ºС. Примем температуру окружающего воздуха 53 ºС, тогда тепловое сопротивление переход – окружающая среда должно быть меньше, чем: (150-53)/19,3=5,0 ºС/Вт.

Обычно сумма тепловых сопротивлений корпус – радиатор и радиатор – окружающая среда оказываются меньше, чем 2,0 ºС/Вт. Тепловое сопротивление корпус – радиатор зависит от способа установки микросхемы. Если использовано непосредственное соединение металл – металл, тепловое сопротивление будет примерно 1,0 ºС/Вт при использовании теплопроводной пасты и 1,2 ºС/Вт при ее отсутствии.

При наличии слюдяной прокладки между корпусом и радиатором тепловое сопротивление можно считать равным 1,6 ºС/Вт и 3,4 ºС/Вт соответственно при применении теплопроводной пасты и без нее. Рассмотрим для примера крепление микросхемы к радиатору через слюдяную прокладку с применением теплопроводной пасты. Тепловое сопротивление радиатора должно быть меньше чем 5,0 – 2,0 - 1,6 = 1,4 ºС/Вт. Это рекомендуемое тепловое сопротивление радиатора для данной конструкции.

Полезно оценить результаты расчетов радиатора с помощью какой-нибудь программы, например, . Самый прикидочный расчет площади охлаждающей поверхности радиатора: 20 квадратных сантиметров на каждый ватт рассеиваемой микросхемой мощности.
Для радиаторов, выполненных из алюминиевых сплавов с ребрами не тоньше 3 мм при шаге ребер не менее 10 мм и свободном потоке воздуха площадь радиатора можно оценить следующей приближенной формулой: S[кв см]≈600/Rθр-с[ºС/Вт]=600/1,4=430 кв см.
Как уже указывалось, микросхема LM1875 снабжена эффективной схемой тепловой защиты. Когда температура кристалла микросхемы достигнет 170 ºС, схема тепловой защиты срабатывает, и усилитель выключается. Включение происходит после понижения температуры кристалла до 145 ºС. Однако, если температура кристалла снова начнет повышаться, то теперь отключение произойдет уже при 150 ºС.

http://proacustic.ru/teplootvod.html

ОУ, выходная мощность которых превышает 1 Вт, обычно требуют установки теплоотвода (радиатора) для охлаждения кристалла. Напомню, что усилитель, работающий в режиме AB, имеет КПД около 50%. Это означает, что он выделяет столько же мощности в виде тепла, сколько отдает в нагрузку. Поэтому для охлаждения кристалла микросхемы (транзистора) необходимо использовать теплоотвод.

Максимальная температура, при которой кристалл близок к разрушению, но еще сохраняет работоспособность, составляет 150 °С. При этом температура корпуса ниже в связи с тепловыми потерями при переходе от кристалла к корпусу и, как правило, не превышает 100 °С. Нормальная температура кристалла составляет 75 °С, а радиатора -50-60 °С. Такая температура соответствует болевому порогу кожи человека, поэтому есть очень простое правило: если вы не обжигаетесь, коснувшись радиатора рукой, его температура находится в норме (конечно, при условии хорошего контакта между радиатором и тепловыделяющим элементом).

Стоит также отметить, что срок службы микросхемы напрямую зависит от ее температуры. Существует правило, гласящее, что при увеличении температуры кристалла на 10 °С срок его службы падает вдвое. Это значит, что при увеличении температуры кристалла с 60 до
100 °С срок его службы снизится уже в 1 б раз! Поэтому эффективное.охлаждение - залог надежной и долгой работы устройства.

Радиаторы, используемые для охлаждения радиоэлементов, классифицируются по строению на:

Ребристые (рис. 2.17, а);

Игольчатые (рис. 2.17, б).
По типу вентиляции:

С естественной вентиляцией;

С принудительной вентиляцией.

Эти типы радиаторов отличаются плотностью расположения ребер или игл. Для радиаторов с естественной вентиляцией расстояние между ребрами (иглами) должно быть не менее 4 мм. К тому же такие радиаторы рассчитаны для работы только в вертикальном положении, когда воздух под действием естественных сил движется между ребрами. Если расстояние между ребрами (иглами) составляет около 2 мм, то такой радиатор рассчитан на принудительную вентиляцию и требует установки вентилятора.

По применяемым материалам:

Цельные алюминиевые;

Цельные медные;

Алюминиевые с медным основанием.

Существуют методики точного расчета радиаторов, учитывающие рассеиваемую мощность, параметры окружающей среды, конфигурацию, материал радиатора и т.д. Однако эти методики нужны на этапе проектирования теплоотвода. Радиолюбители редко самостоятельно изготавливают радиаторы, чаще используя готовые, взятые из старой радиоаппаратуры. В конечном итоге нас интересует только один параметр - максимальная рассеиваемая мощность для этого радиатора. Чтобы определить его, достаточно знать всего две характеристики: тип
вентиляции и площадь рассеивающей поверхности (проще говоря, площадь радиатора).

Площадь ребристого радиатора вычисляется как сумма площадей всех его ребер и площади основания. Заметьте, что у одного ребра две излучающие поверхности. Это значит, что ребро размером 1×1 см имеет площадь 2 см2. Площадь игольчатого радиатора вычисляется как сумма площадей всех его игл и площади основания. Площадь одной иглы можно вычислить по формуле:

S= π (r 1 + r 2 ) l

(r 1 - радиус нижнего основания усеченного конуса; r 2 - радиус верхнего основания усеченного конуса; l - образующая усеченного конуса (длина боковой стороны))

После этого допустимая рассеиваемая мощность может быть оценена по формуле:

где Р - допустимая рассеваемая мощность, Вт; S - площадь радиатора, см2; к - коэффициент, учитывающий тип вентиляции. Для естественной вентиляции к = 33, для принудительной вентиляции к = 11.

Тепловое сопротивление радиатора может быть оценено по формулеRth=(51*k)/S , описанной здесь: http://forum.cxem.net/index.php?showtopic=32031

Размерность теплового сопротивления - градус/Ватт. То есть насколько температура кристалла будет выше температуры корпуса при выделении 1 Вт тепла.
Тепловое сопротивление перехода корпус - окружающая среда можно посчитать по приблизительной формуле:
Rth=(51*k)/S , где Rth – тепловое сопротивление радиатора в C/W, S – площадь радиатора (в данном случае - площадь детали) в см2, k – коэффициент, учитывающий тип вентиляции (Для естественной вентиляции k = 33, для принудительной вентиляции k = 11).
Тепловые сопротивления детали и радиатора нужно сложить, задать температуру окружающей среды и выделяемую мощность, чтобы получить температуру кристалла.
Чтобы не ломать сильно голову по поводу теплопроводности материалов, скажу что тепловое сопротивление перехода кристалл - корпус обычно находится в пределах от 1 C/W для мощных ИС, и до 3 C/W для маломощных.

В последние годы в радиолюбительской практике все чаще применяются системы охлаждения для процессоров персональных компьютеров (cooler - кулеры). Кулеры современных процессоров рассчитаны на рассеивание мощности около 100 Вт даже при небольшой вентиляции.

Для крепления микросхемы к основанию радиатора можно использовать шурупы с плоской шляпкой либо, при наличии метчика, нарезать резьбу в радиаторе и закрепить микросхему винтом. Между основанием радиатора и корпусом микросхемы обязательно должен быть слой термопасты для улучшения теплопроводности. Наилучшие показатели теплопроводности показывают пасты типа КПТ-81 или «Алсил-3». Их можно купить в любом компьютерном магазине или магазине радиодеталей. Теплопроводность термопаст составляет при-
мерно 0,7- с учетом того, что площадь контакта - 1 -2 см2, тепловое сопротивление термопасты - примерно 10~4 °С/Вт (несоизмеримо мало по сравнению с тепловым сопротивлением перехода кристалл-подложка либо радиатора и окружающей среды), поэтому при тепловом расчете системы охлаждения этой потерей можно пренебречь.

http://forum.cxem.net/index.php?showtopic=32031

Что бы совсем разобратся нужно на конкретном примере. К примеру есть ИМС длина 2см ширина 1см толщина 0,5 см Мощность 535 мВт Температура воздуха 22 по цельсию. Как считать?

  1. Определяем излучающую площадь микросхемы. Учтем, что она брюхом скорее всего будет прилегать к плате, так что там конвекции не будет. Возьмем эквивалентную площадь брюха как ½ от геометрической площади:
    2(2*0,5)+2(1*0,5)+1*2+1*1=2+1+2+1=6 см2 – полная излучающая площадь микросхемы
    2. Подсчитаем тепловое сопротивление перехода корпус – воздух:
    Rth=(51*k)/S=(51*33)/6=280,5 C/W
    3. Микросхема судя по всему маломощная, прими её тепловое сопротивление равным 3 C/W (или можно рассчитать точно, если знаете как)
    4. Общее тепловое сопротивление равно 280,5+3=283,5 C/W Это значит что температура кристалла будет на 283,5 градуса выше температуры окр. среды при выделении 1 Вт. тепла.
    5. Определяем температуру кристалла: 283,5*0,535+22=173 =)
    6. Определяем температуру корпуса: 280,5*0,535+22=172

    Резонный вопрос – есть ли здесь ошибка? Ошибка может быть в определении Rth корпуса микросхемы... эта формула используется для определения теплового сопротивления ребристых радиаторов, по этому в области малых значений площади может давать не верный результат. Еще недостатком методики является то, что мы не учитываем охлаждения микросхемы через саму плату.

    P.S. хотя если предположить, что микросхема обдувается (k=11). то получается вполне вменяемый результат - 93 C/W



2024 stdpro.ru. Сайт о правильном строительстве.