Диффузионная сварка металлов

ДИФФУЗИОННАЯ СВАРКА

1. Сущность метода и основные области применения

Диффузионная сварка входит в группу способов сварки давлением, при которых соединение проходит за счет пластической деформации микронеровностей на поверхности свариваемых заготовок при температуре ниже температуры плавления. Отличительной особенностью является применение повышенных температур при сравнительно небольшой остаточной деформации. Ее технологическая характеристика была предложена Н.Ф. Казаковым и принята Международным институтом сварки в следующей формулировке: «Диффузионная сварка материалов в твердом состоянии - это способ получения неразъемного соединения, образовавшегося вследствие возникновения связей на атомарном уровне, появившихся в результате сближения контактных поверхностей за счет локальной пластической деформации при повышенной температуре, обеспечивающей взаимную диффузию в поверхностных слоях соединяемых материалов».

В практике диффузионной сварки известно применение двух технологических схем процесса, различающихся характером приложения нагрузки или напряжения, действующих в течение цикла. В одной из них используют постоянную нагрузку по величине ниже предела текучести. При этом процессы, развивающиеся в свариваемых материалах, аналогичны ползучести. Такую технологию называют диффузионной сваркой по схеме свободного деформирования. На практике подобная схема осуществима наиболее просто, поэтому очень широко распространена.

По другой схеме нагрузка и пластическая деформация обеспечиваются специальным устройством, перемещающимся в процессе сварки с контролируемой скоростью (см. рис. 1, б). Эту технологию называют диффузионной сваркой по схеме принудительного деформирования (ДСПД-процесс). Этот процесс осуществляют при напряжениях, как правило, превышающих предел текучести. Таким образом, скорость деформации £ задается приложенной нагрузкой Р и условиями, в которых она действует: прежде всего температурой Т и временем действия 1.

Промышленное применение. Технологические возможности диффузионной сварки позволяют широко использовать этот процесс в приборостроительной и электронной промышленности при создании металлокерамических и катодных узлов, вакуум-плотных соединений из разнородных материалов, полупроводниковых приборов, при производстве штампов и т.п.

Рис. 1 Схема деформирования при диффузионной сварке:

1 - система погружения; 2 -система деформирования;

Н - нагреватель; Д-детали

Диффузионная сварка находит применение для изготовления крупногабаритных заготовок деталей сложной формы, получение которых механической обработкой, методами обработки давлением или литьем невозможно или неэкономично. Особенно эффективно такое применение диффузионной сварки в опытном и мелкосерийном производстве.

Перспективно получение многослойных пустотелых конструкций типа панелей из титановых или алюминиевых сплавов с наполнителем сложной формы (гофры, соты, ребра и др.) методом совмещения диффузионной сварки и формообразования в режиме сверхпластичности.

2. Основные параметры режима

При сварке по схеме свободного деформирования основными параметрами процесса являются температура нагрева заготовок Т, 0 С; сжимающее давление р, МПа; время сварки t, мин; давление в вакуумной камере р к. Па; в случае проведения процесса в другой среде - характеристика этой среды с позиции протекания окислительно-восстановительных реакций (тип и химический состав среды, точка росы, парциальное давление кислорода). Кроме того, к важным параметрам процесса относятся подготовка поверхности под сварку: чистота поверхности, ее шероховатость и волнистость.

При ДСПД-процессе главными параметрами являются: температура Т, скорость роста нагрузки Р, скорость деформирования к, время деформирования t (или степень накопленной деформации), время выдержки в режиме релаксации t рсл. Сопротивление деформированию Р в этом случае - зависимый параметр. Его величина регистрируются непосредственно в течение всего цикла сварки. Оба параметра могут быть использованы для контроля и управления качеством соединения.

Диффузионная сварка может проводиться в вакууме, нейтральных и восстановительных газах, жидких средах. Вакуум создает наилучшие условия для защиты нагретого металла и очистки свариваемых поверхностей от загрязнения. Однако в отдельных случаях особенности материала могут налагать определенные ограничения на применение вакуума или делать его вовсе невозможным. В большинстве случаев процесс диффузионной сварки ведется при давлении в вакуумной камере p к = 10 -2 ... 10 -3 Па. Использование более высокого вакуума оправдано, когда необходимо обеспечить высокую размерную точность изделия (уменьшение остаточной деформации заготовок) за счет соответствующего снижения температуры, давления и времени. Тугоплавкие металлы удается таким образом сваривать при температурах ниже порога рекристаллизации и тем самым избегать охрупчивания материала.

На ход диффузионной сварки существенно влияет парциальный состав остаточных газов в камере. Попадание в рабочую зону паров вакуумного масла приводит к увеличению парциальных давлений газов-окислителей (С0 2 , Н 3 О) по сравнению с газами-восстановителями (СО, H 2). Специальные меры (азотные ловушки, использование безмасляных средств откачки) улучшают условия ведения диффузионной сварки, особенно при понижен­ных температурах.

Широко применяют в качестве защитных сред инертные (аргон, гелий) и активные газы (водород, реже углекислый газ). Состав защитного газа подбирают исходя в первую очередь из химической активности системы металл-газ в условиях сварки.

Подготовка заготовок в общем случае может складываться из механической обработки, очистки от загрязнений и нанесения подслоев. Механическая обработка обеспечивает: возможно, более плотное начальное прилегание свариваемых заготовок; удаление с поверхности загрязненного слоя; повышение размерной точности готового изделия; возможность снижения температуры, давления и времени сварки с улучшением микрогеометрии поверхности.

С повышением чистоты обработки облегчается развитие второй стадии процесса.

Очистка поверхностей от загрязнений (следов жиров, масла, полировальной пасты) может проводиться растворителями (ацетон, спирт, четыреххлористый углерод и др.), путем нагрева и выдержки в вакуумной камере. В отдельных случаях применяют отжиг заготовок в среде водорода. Положительные результаты получают при обработке в растворах кислот H 2 S0 4 , MCI с последующими промывкой и сушкой. При сварке изделий из некоторых сортов керамики после механической обработки заготовки отжигают с целью «залечивания» поверхностных дефектов. Для этого же проводят травление стекла в плавиковой кислоте.

Для выбора температуры, давления и времени нет строгих рекомендаций. Высококачественные соединения можно получать, изменяя в определенных пределах значения каждого из этих параметров с соответствующей корректировкой других. При выборе их значений необходимо учитывать особенности свариваемых материалов и требования к изделию; возможность разупрочнения из-за роста зерна, ограничения по температуре нагрева и деформации изделия и т.п.

Температуру сварки обычно назначают в пределах (0,5...0,8)Т пл, для жаропрочных сплавов - несколько выше. При соединении разнородных материалов расчет ведется по температуре плавления наиболее легкоплавкого из них. В случае появления эвтектики температуру сварки выбирают ниже температуры ее плавления.

Скорости нагрева и охлаждения зависят от источника тепла и в большинстве случаев их не регламентируют. При сварке разнородных сочетаний материалов, термический коэффициент линейного расширения которых различается более чем на 2 10 -6 град -1 , скорость охлаждения целесообразно уменьшать до 10…15 0 С/мин.

Разгерметизацию камеры при сварке деталей из черных металлов рекомендуют проводить при температуре ≤120 °С, а для цветных и активных металлов - при 60 0 С.

Время выдержки в зависимости от Т и р, допустимой остаточной деформации, чистоты обработки контактных поверхностей и деформационной способности материала может колебаться от нескольких секунд до нескольких часов (чаще 5... 10 мин).

Давление выбирают в диапазоне 0,8…0,9 предела текучести при температуре сварки. Для известных конструкционных материалов оно может изменяться в диапазоне 1 ...50 МПа. Для сварки тугоплавких и твердых материалов эти значения могут быть в несколько раз выше.

4. Технологические возможности процесса

Диффузионная сварка позволяет сваривать:

Большинство конструкционных материалов на металлической основе, ферриты, керамику, стекла, кварц, сапфир, графит, полупроводниковые материалы в однородном и разнородных сочетаниях;

Пористые, металлокерамические, композиционные материалы без нарушения их текстуры и ухудшения служебных свойств;

При использовании соответствующих барьерных покрытий и проставок - разнородные металлы и сплавы, склонные к образова­нию хрупких фаз, тугоплавкие металлы (вольфрам, ниобий, тантал и др.) при температурах ниже порога рекристаллизации.

Диффузионная сварка дает возможность также избежать охрупчивания металла. С использованием промежуточных проставок можно также соединять материалы с резко отличными значениями коэффициентов термического расширения.

Диффузионной сваркой можно выполнять все типы соединений при самом разнообразном конструктивном их оформлении: встык, вскос, соединять пересекающиеся стержневые элементы между собой и с плоскими или криволинейными поверхностями; сваривать заготовки любых сечений; при применении местного нагрева и вакуума - соединять заготовки не­ограниченной длины; сваривать пленки, фольгу толщиной в несколько микрометров и достаточно массивные детали; осуществлять сварку при практически любой разнотолщинности заготовки.

После диффузионной сварки не нужна механическая обработка сварного шва, получаемые изделия обладают высокой размерной точностью (остаточные деформации в пределах 0,1...6 %); швы имеют высокие показатели механической прочности и пластичности на уровне основного материала.

При использовании этого метода создаются хорошие гигиенические условия на производстве.

К недостаткам метода следует отнести значительную длительность процесса, сложность оборудования, определенные трудности с загрузкой заготовок и выгрузкой готовых изделий из рабочей камеры при организации непрерывного процесса изготовления сварных изделий, требования достаточно высокой точности сборки и чистоты обработки свариваемых поверхностей, необходимость контроля температуры заготовки в зоне шва. Высокие требования к качеству контактных поверхностей удорожают процесс в целом.

5. Разновидности способов сварки

Диффузионная сварка с промежуточными прокладками. Промежуточные прокладки могут быть расплавляющимися и нерасплавляюшимися. Подслои на свариваемые поверхности наносят с целью:

Увеличения прочности сцепления (сваривания);

Предотвращения появления нежелательных фаз при сварке разнородных материалов (барьерные подслои);

Интенсификации стадии объемного взаимодействия;

Облегчения установления физического контакта по всей свариваемой поверхности за счет использования подслоев из пластичных материалов;

Снижения температуры и давления при сварке и, значит, уменьшения остаточных деформаций.

В зависимости от конкретной задачи выбирают материал подслоя. Чаще всего это никель, медь, серебро, золото. Толщина подслоя порядка 2. ..7 мкм.

Для предотвращения появления нежелательных, фаз (интерметаллидов, карбидов и т.д.) или во избежание обеднения одного из свариваемых материалов каким-либо легирующим элементом наносятся более толстые покрытия, служащие барьером. Эту задачу могут выполнять и прокладки из фольги.

Материал барьерной прокладки должен выбираться так, чтобы коэффициент его диффузии в основной материал был выше, чем для элементов основного металла в прокладку.

В случае сварки материалов на основе оксидов (керамики, стекла) наносимый металлический слой подвергают термической обработке с целью его окисления или облегчения диффузии в материал заготовки. При сварке кварцевого стекла с медью на стекло наносят слой меди с последующим ее окислением при температуре 800 0 С в течение 3...5 мин до закиси. При сварке меди с оптической керамикой на основе сульфидов цинка применяют предварительное сульфидирование металла для повышения прочности сцепления.

В качестве расплавляющихся прокладок наиболее часто используют высокотемпературные припои. Их применение позволяет уменьшить давление сжатия и пластические деформации, облегчает удаление оксидных пленок, повышает эксплуатационные свойства соединений.

Диффузионная сварка с применением ударной нагрузки. Для предотвращения интерметаллидов в зоне сварного соединения помимо использования соответствующих промежуточных прокладок эффективен прием заметного сокращения времени сварки. На практике этот прием реализован так называемой «ударной сваркой в вакууме». Суть способа в том, что к локально нагретым зонам контакта детали «прикладывается» одиночный импульс силы со скоростью 1...30 м/с. В свариваемых деталях под воздействием динамической нагрузки происходят локальная пластическая деформация в зоне контакта и образование сварного соединения. Сварное соединение образуется за 1…10мс.


6. Оборудование

Наиболее широко применяют сварочные диффузионные вакуумные установки. В состав этих установок в общем случае входят рабочая вакуумная камера, механизм для создания сварочного давления, источник нагрева, вакуумная система, аппаратура управления и контроля. Конкретные установки (П-114, П-115, ДФ-101, УСДВ-630, ДСВ-901, УДС-ЗМ и др.) для диффузионной сварки могут иметь различное конструктивное оформление отдельных функциональных узлов и систем.

Рабочая вакуумная камера, в которой размещаются свариваемое изделие, нагреватели, механизм давления, выполняется обычно цилиндрической или прямоугольной формы из коррозионно-стойкой стали. Стенки водоохлаждаемые. Свариваемое изделие может располагаться на специальной опоре или в приспособлении. В большинстве случаев установка имеет одну камеру. Для увеличения производительности могут предусматриваться несколько камер с целью получения непрерывной загрузки и выгрузки заготовок и изделий (камеры шлюзования}.

Необходимая сварочная сила создается гидравлическим, пневматическим или механическим устройством. В отдельных случаях сжатие заготовок обеспечивается специальными приспособлениями, принцип действия которых основан на различии коэффициентов линейного расширения материалов свариваемых заготовок и охватывающих их элементов приспособления. Такие приспособления позволяют вести сварку в серийно выпускаемых вакуумных и водородных печах. Возможно использование «мягких» оболочек-камер. Сжатие заготовок происходит за счет перепада давлений внешней газовой среды и вакуумированного пространства. В большинстве же случаев в установках для диффузионной сварки используются гидравлические и механические системы.

Для нагрева заготовок наибольшее распространение получили индукционный, радиационный и контактный способы. Источником питания являются генераторы высокой частоты и трансформаторы. Нагрев током высокой частоты (ТВЧ) наиболее универсален и позволяет нагревать заготовки в разведенном состоянии (в отличие от контактного метода), что важно для интенсификации процесса очистки свариваемых поверхностей. Однако этот метод неприменим при сварке диэлектрических материалов: керамики, кварца, стекла. Для нагрева годятся тлеющий разряд, расфокусированный электронный луч, световое излучение.

Еще из раздела Промышленность, производство:

  • Реферат: Качество продукции и организация технического контроля

Сварка в камере с контролируемой атмосферой. Простейший способ применения вакуума состоит в том, что полость сварочной камеры скачивается до давления ~ 5. 10 -3 мм рт. ст., после чего камера заполняется аргоном под давлением 1 атм.

В атмосфере аргона производится ручная дуговая сварка узлов из титана, его сплавов и других активных металлов и сплавов. Геометрия швов при сварке изделий из титана в камере несколько отлична от геометрии швов, полученных обычной аргоно-дуговой сваркой: ширина шва увеличена, глубина проплавления на 10-15% меньше. Недостатки такого метода - большой расход аргона, а также значительные затраты времени на откачку воздуха из камеры.

Диффузионная сварка .Этим способом можно сваривать как однородные, так и разнородные металлы, сплавы и неметаллические материалы, которые трудно или невозможно сваривать другими способами. Большой экономический эффект получают при сварке стали и алюминия, титана и стали, чугуна и стали, металлокерамики и стали.

Этот способ соединения основан на использовании взаимной диффузии атомов или молекул в поверхностных слоях соединяемых веществ в условиях вакуума при нагреве их выше температуры рекристаллизации одного или нескольких компонентов свариваемых тел без расплавления поверхностей металла. При достижении заданной температуры соединяемые элементы по поверхности их соприкосновения подвергаются сжатию без пластической деформации.

Соединение в результате диффузии происходит при максимальном сближении чистых поверхностей деталей без применения припоев, флюсов и электродов. Диффузионную сварку в вакууме можно производить либо непосредственным соединением металла с металлом, либо соединением металла с металлом через промежуточную прокладку из другого материала - так называемый подслой.

Металлы можно соединять с керамическими материалами также с применением промежуточной прокладки. Диффузионная сварка - один из наиболее перспективных методов для получения соединений титана и его сплавов, равнопрочных основному материалу. Преимущества метода: вакуум, создаваемый в камере сварки, не дает возможности титану) активно реагировать с элементами, увеличивающими хрупкость шва; отпадает необходимость защиты аргоном, которая удорожает процесс! сварки; температура сварки 0,7-0,8 от температуры плавления свариваемых металлов, т. е. материалы не доводятся до расплавления при сварке, что; уменьшает возможность растворения кислорода и водорода в титане.

Сравнительно невысокая температура сварки и небольшие удельный давления в значительной степени снижают внутренние остаточные напряжения, что предотвращает образование трещин. Для сварки детали помещают в камеру, в которой создается давление - 5 1O -4 мм. рт. ст., нагревают до определенной температуры и сдавливают. При этом не возникает дополнительных источников газоотделения и испарения металла.

Диффузионное соединение можно успешно применять для герметизации металлокерамических электровакуумных приборов при бесштенгельной откачке до давлений порядка 10 -9 -10~10 мм рт. ст. Применение диффузионного соединения позволяет отпаивать приборы в горячем состоянии при 600-700° С. Это весьма важно, так как в момент отпаивания вакуум не ухудшается, а после охлаждения становится лучше на 1,5-2 порядка.

Электроннолучевая сварка. Электроннолучевая сварка при большой концентрации энергии дает возможность сваривать стали и сплавы толщиной 40-50 мм без разделки кромок и подачи дополнительного металла. При этом расход энергии снижается в 5-10 раз по сравнению с другими методами сварки. При проведении электроннолучевой сварки место сварки подвергают интенсивной бомбардировке быстролетящими электронами в высоком вакууме. Во время электронной бомбардировки большая часть энергии выделяется в виде


тепла, используемого для расплавления металла при сварке. Электронный луч образуется в вакуумной камере с помощью электронной пушки. Сварочная установка (рис. 187) включает электронную пушку с катодом и анодом; вторым анодом служит свариваемое изделие 7, к которому подводится постоянный ток. Катод нагревается с помощью трансформатора 2 до 2500° С. Фокусировка луча производится магнитным полем, создаваемым линзой 8. Линза представляет собой катушку, помещенную в массивный железный каркас. Для перемещения луча по изделию на пути луча установлена отклоняющая магнитная система. На рис. 188 показана электронная пушка. Сварочная установка фирмы Ульвак (Япония) показана на рис. 189.

Диффузионная сварка является разновидностью способов спайки металлических заготовок, которая проводиться под давлением высокой температуры методом воздействия на детали сдавливающим вакуумом. Что представляет собой данная техника, более подробно рассмотрим в этой статье.

Методы применения диффузионной сварки

Диффузионная сварка может проходить по двум технологическим режимам, что отличаются способом подачи давления на поверхность. Первым из способов является подача давления на свариваемую деталь постоянного характера, доводя процесс до предела расплавки.

Технология широко применима в связи со свободным формированием изделий. Вторым способом является задействование специального оборудования, которое имеет вращающийся вал, позволяющий создавать нагрузочное воздействие на деталь до состояния текучести.

Преимущества и недостатки

Диффузионная сварка имеет такие плюсы:

    минимальная энергозатрата по сравнению с остальными инверторами;

    для соединения диффузии не применяются электродная проволока и припои;

    высокие показатели соединения;

    возможность соединять любые геометрические элементы;

    безопасный рабочий процесс.

К недостаткам относят такие особенности:

    сварочный диффузионный процесс требует наличие вакуумного блока, отсутствие которого делает процесс невозможным;

    необходимость предварительной зачистки поверхности болгаркой;

    длительность рабочего режима.

Способы проведения сварки

Диффузионная сварка выполняется на основе прокладок, имеющих свойство плавления и неплавления. В качестве прокладок используются никель, медь, сплавы серебра и золота. На сварную зону наносится специальный подслой, который предназначен для:

    повышение качества стыка;

    препятствие на пути образования пористости в волокнах металла;

    захвата большей площади заготовок;

    контактирования с поверхностью сварного элемента;

    стабилизации температурного режима без разрушения внутреннего слоя.

Диффузионные качества могут как положительно сказаться на сварном шве, так и негативно вследствие разрушительного температурного воздействия. Чтобы поддерживалась стабильная энергофаза, барьерной основой может служить толстостенная фольга. Подбирается основной материал с учетом диффузного коэффициента, который должен быть выше показателя главной заготовки. Если спаять нужно стеклянные или керамические изделия, то подслой металла накаляют до окисляющей реакции. Это поможет дальнейшему процессу соединения, где диффузия будет протекать быстрее.

Спайку изделий из меди, которым свойственно окисление, осуществляют под влиянием температуры в 800С в течение 5 минут. Для соединения керамических и медных деталей используется сульфид цинка.

Высокотемператур ные исходники позволяют уменьшить процесс сжатия и сделать проще процесс устранения оксидного покрытия. Тем самым эксплуатационные сроки значительно увеличиваются.

Диффузионная сварка методом ударной нагрузки под вакуумом применима в случае образования металлоидных пор в сварной зоне. Данный способ дает возможность контактному участку деталей предельно нагреться, после чего происходит воздействие единичного силового импульса, скорость которого равна 1-30 м/с.

При подаче динамической нагрузки на поверхность заготовок в зоне выработки тепла происходит динамическое влияние, способствующее процессу плавления. Металл в состоянии жидкости заполняет стыковочные места и производит ровный шов. Это происходит за 1-10 мс.

Технология диффузионной сварки

Диффузная сварка на практике используется по двум технологиям: первая подразумевает постоянную подачу энергоимпульса на элемент заготовки, вторая технология состоит из комбинированного соединения, в основе которой лежит пластическая деформация и сила сжатия. Скоростной режим регулируется в процессе сварки.


Диффузионная сварка состоит из такого рода последовательнос ти: сначала происходит сбор заготовочных частей оборудования, которое позволяет подать необходимую нагрузку на зону соединения. Далее части подвергаются вакуумной обработке, чтобы они легче поддавались нагреву. После того как прекратилось воздействие на металл, изделие должно оставаться в покое до полного естественного остывания.

Образование сварочного шва производится двумя способами: физическим и стадиями формирования. Первый способ осуществляется с помощью физического давления на сварную зону. Второй способ включает в себя разогрев, силу давления, процесс сжатия.

Временной режим можно выставить в зависимости от плотности сварной детали. Он может варьироваться от пары до нескольких десятков минут. Расплавка металловолокна происходит методом индукции, а на процесс может влиять электролуч, имеющий обратное сопротивление. Соединение происходит в без окислительном режиме нагрева. Для защитной функции от окислов используют вакуум, а исходные детали перед действием тщательно проходят обработку.

Диффузия – это хорошо известный процесс. При контакте молекулы и атомы веществ перемешиваются и, таким образом, вещества как бы проникают друг в друга. Это относится к их жидким, газообразным и твёрдым состояниям. В обычных условиях такой процесс протекает довольно медленно, что делает его неприемлемым для производства. Но в 1953 году советский физик Николай Фёдорович Казаков добился повышения скорости взаимного проникновения молекул и атомов. Он поместил соединяемые материалы в вакуум, повысил температуру и воздействовал на них давлением. Так была разработана диффузионная сварка.

Распространение получили сварочные стенды, на которых детали располагают в камере, внутри которой создают технический вакуум. На место соединения оказывают давление и, при необходимости, подвергают его температурному воздействию. В зависимости от особенностей процесса, он может протекать от нескольких минут, до часов. В итоге достигаются характеристики изделия, которые не удаётся получить, используя другие технологии. Для получения качественного сварного шва требуется соблюсти следующие условия:

    Создать вакуум, используя специальную установку. Чем выше разряжение внутри камеры, тем быстрее и эффективнее протекает процесс. Однако получение физического вакуума в обычных условиях вещь исключительно затратная и практически недостижимая. Приходится довольствоваться меньшим разряжением, редко превышающим 10 в минус пятой степени миллиметров ртутного столба. Впрочем, даже оно позволяет получать хорошие результаты.

    Нагреть соединяемые детали до температуры, параметры которой зависят от соединяемых материалов. В некоторых случаях предпочтительнее, чтобы процесс протекал при комнатной температуре, но в этом случае для формирования шва потребуется значительное время. С возрастанием температуры увеличивается текучесть материалов и диффузия ускоряется. Способы нагрева могут быть различны. Среди наиболее распространённых – электроконтактный, индукционный и радиационный.

    Когда необходимая температура достигнута, в месте соединения создаётся давление. Длительное или кратковременное, локальное или одновременно распределённое по всей площади места соединения, оно необходимо для того, чтобы процесс взаимного проникновения частиц вещества ускорился.

    Для улучшения качества сварного шва, или соединяя вещества, диффузия которых даже при создании благоприятных условий носит ограниченный характер, места стыка могут быть обработаны специальными химическими составами, или проложены вспомогательными материалами. Использовав тонкую, в несколько микрон толщиной, платиновую, золотую, никелевую или медную фольгу, удаётся существенно повысить прочность сварного соединения. Но когда известно, что возможно возникновение нежелательных барьерных фаз, толщина фольги может быть увеличена.

    Для того чтобы после завершения технологического цикла в детали не возникло остаточных напряжений, процесс её остывания должен проходить в вакууме. Для этих целей установки диффузионной сварки оснащаются системами охлаждения, регулирующими скорость снижения температуры. Резкие температурные скачки недопустимы. Они приводят к возникновению трещин и снижению прочности шва.

    Готовая деталь подвергается дефектоскопии, для чего используются современные методы. Учитывая, что размер соединяемых деталей мал, придётся забыть о капиллярной дефектоскопии, отдав предпочтение радиации или ультразвуку.

Лишь соблюдение всех важных условий может гарантировать получение хорошего результата. Но не стоит полагаться на типовые методики. Следует вносить в них изменения с учётом особенностей конструкции и используемых материалов. Диффузионная сварка цветных металлов требует иных параметров давления и температуры нагрева, чем те, которые нужны для соединения стали или пластика. Это предупреждение для тех, кто будучи вдохновлён возможностями технологии, собирается использовать её безоглядно.

Достоинства технологии

Диффузная сварка обладает как достоинствами, так и недостатками. Её преимуществами принято считать:

    Отсутствие необходимости в расходных материалах, вроде сварочных электродов, флюсов или специальных газов. Это снижает себестоимость процесса и делает его «чистым», поскольку отсутствуют загрязняющие воздух продукты горения, окалина и другие вредные вещества.

    Низкая энергоёмкость. Для достижения требуемых параметров, тратиться на порядок меньше энергии, чем в случае использования других технологий. А это значит, что снижается конечная себестоимость изделия.

    За один приём можно одновременно сваривать сразу несколько различных материалов, получая слоистые конструкции с ранее недостижимыми характеристиками. Это особенно важно в случаях, когда используются композиты.

    С помощью диффузионной сварки в вакууме можно соединять как большие, в несколько метров длиной и шириной, конструкции, так и маленькие детали, размеры которых измеряются в микронах. Не имеет значения и толщина. Подобными обстоятельствами не преминули воспользоваться производители микроэлектроники. Для решаемых ими задач такая технология подходит как нельзя лучше.

    Не имеет значения размеры и форма сварного соединения. Отпадает необходимость в специальных технологических фланцах и припусках материалов, для соединения их внахлёст.

    Высокое качество шва. Оно значительно выше, чем при использовании газовой или электрической сварки. Это позволяет использовать подобный способ соединения материалов даже на видовых поверхностях, то есть там, где другие сварочные швы приходится маскировать различными способами.

    Поскольку при диффузионной сварке соединение материалов происходит в закрытой камере, то оператор не подвергается воздействиям, способным оказать влияние на его здоровье. Брызги, интенсивные излучения, вредные для вдыхания химические пары или мелкодисперсная пыль отсутствуют.

Процесс непрерывно совершенствуется. На сегодняшний день существуют установки, где детали помещают не в вакуум, а в среду инертного газа. Главной задачей, которую решают с помощью такой технологии, является сварка металлов. Но используя специальные методики, удаётся соединять и материалы, обладающие разными свойствами. Диффузия скрепляет между собой металлы и пластики, стекло и керамику, всё то, для чего ране требовались специальные клеящие составы.

Характерные недостатки

Но есть у диффузионной сварки и недостатки, о которых не стоит забывать тем, кто решит использовать такую технологию для организации процесса производства.

    Главной проблемой является сама вакуумная установка. Это сложное и дорогостоящее оборудование требует правильного обслуживания, а для его эксплуатации нужна специальная подготовка персонала. Скачки давления внутри камеры недопустимы, так как оказывают негативное воздействие на качество соединительного шва и могут привести к разрушению изделия.

    Чем больше вакуумная установка, тем сложнее получить внутри камеры необходимый вакуум. Размеры самой камеры ограничивают габариты соединяемых деталей.

    Соединяемые детали должны быть тщательно обработаны и очищены от загрязнений. Низкое качество сопрягаемых поверхностей становится непреодолимым препятствием для равномерной диффузии, а попавшие между ними посторонние вещества способны и вовсе сделать этот процесс невозможным.

Всё это следует учитывать при разработке технологического цикла.

Область применения

Диффузионная сварка в вакууме оказалась востребована в различных областях науки и техники. Но, в значительной мере, её использование ограничивается опытным и мелкосерийным производством.

    В тяжёлом, среднем и лёгком машиностроении она помогает воплотить в жизнь конструкции, создание которых требует особого качества и прочности.

    Сварка цветных металлов, для соединения которых раньше приходилось использовать различные припои и флюсы, также стала возможной благодаря этой технологии.

    Появлению новых композитов, состоящих из множества слоёв разных по своему составу материалов, мы также обязаны диффузионной сварке. Область применения таких композитов широка. Им нашлось место не только в производственных цехах, но и на строительных площадках.

    Электроника, где с каждым днём уменьшается размер компонентов и монтажных плат, одно из немногих мест, где технология востребована безоговорочно. Ведь с её помощью соединяют детали, разглядеть которые можно лишь под микроскопом.

О какой бы области производства ни шла речь, пытливый ум технолога найдёт место, где для соединения деталей лучше всего подойдёт именно такой способ.

Космическая проблема

Но диффузионная сварка не всегда благо. В открытом космосе есть всё, для того чтобы процесс начался произвольно.

    Глубокий вакуум, получить который на Земле не удаётся в самых мощных установках.

    Нагрев до высоких температур. Несмотря на холод окружающего космические корабли и искусственные спутники безвоздушного пространства, под лучами солнца их компоненты могут нагреваться до значительных величин. Ведь их не защищает земная атмосфера.

В таких условиях диффузия ускоряется даже без дополнительного давления. Вполне достаточно, чтобы соприкоснувшиеся детали длительное время находились в состоянии покоя. Ну а если к ним было приложено определённое усилие, то просто так разъединить их уже не получится.

Чтобы избежать подобных ситуаций, учёным приходится работать над способами предотвращения диффузионной сварки в космосе. И хотя определённые сдвиги в этом направлении есть, до полного решения проблемы ещё далеко. Как знать, может, именно тем, кто читает эти строки, удастся решить сложную техническую задачу?

Своеобразной в отношении своих физических особенностей разновидностью сварки давлением является диффузионная сварка. Она осуществляется посредством взаимной диффузии частиц контактирующих заготовок при несущественной пластической деформации и довольно продолжительном действии высоких температур. Роль такого взаимопроникновения в металлах при сварке не всегда однозначна.

Диффузия может как способствовать дополнительной прочности соединения, так и образовывать хрупкости в соединениях. В сварке этим способом соединение образуется благодаря совместному действию нагрева с давлением, а отличительной его особенностью является использование довольно высоких температур нагревания при небольшом удельном давлении. Обычно оно находится в пределах текучести соединяемых металлов.

Технология диффузионной сварки

Схема процесса диффузионной сварки металлов представляет собой следующую последовательность. Перед началом сварки соединяемые детали собираются с помощью особого приспособления, способствующего передаче давления в место их стыковки. Затем заготовки вакуумируют и подвергают нагреву до требуемой температуры с последующим приложением давления в течение определенного промежутка времени. Отдельные случаи требуют дополнительной выдержки изделия в температуре сварки после снятия с него давления. Это необходимо для полноты протекания процесса рекристаллизации, что способствует формированию более качественных соединений. Завершается сварочный цикл охлаждением сборной конструкции в зависимости от типа применяемого оборудования диффузионной сварки с помощью инертной среды, вакуума либо воздуха.

Образование сварного соединения этим способом сварки условно можно разделить на две стадии. В ходе первой из них создается физический контакт соединяемых элементов. При этом каждая точка свариваемого металла должна находиться от другой на расстоянии, позволяющем взаимодействие между атомами. Вторая стадия заключается в формировании структур образуемого соединения в ходе операций релаксации. К определяющим параметрам процесса диффузионной сварки в вакууме относят давление, длительность и температуру нагревания, рельеф соединяемых поверхностей и состояние среды, в которой осуществляется сварка.

Давление, подаваемое на контактирующие детали, с учетом видов свариваемых металлов и температуры, может изменяться в широком диапазоне. Осадка заготовок производится чаще всего при помощи систем пневматики. Температура обычно составляет чуть больше половины от температуры плавления, до 80% для сварки однородных металлов и в пределах 70% для разнородных и более легкоплавких материалов. Такой температурный режим способствует пластическому деформированию металлов с выравниванием поверхностей, а также ускорению взаимных диффузий частиц материалов в зоне их стыка.

Время действия температур измеряется в пределах от нескольких минут до нескольких десятков. Нагрев в установках диффузионной сварки осуществляется, как правило, индукционным током, а также возможен с помощью обычного сопротивления, электронного луча, электротока, пропускаемого через изделие, и прочих источников. Сварка производится в условиях безокислительного нагревания. С целью предупреждения возможного образования поверхностных пленок из оксидов в сварочном процессе применяют вакуумную защиту, а соединяемые поверхности перед сваркой тщательно зачищают.


Предварительная обработка заготовок под сварку также оказывает заметное влияние на ход диффузионного процесса. Это отражается в структурных изменениях их поверхностного слоя и ходе протекания физического контакта материалов. В ходе подготовки свариваемых деталей любым из способов (химическим, механическим, электролитическим и пр.) возможно формирование поверхностных пленок из оксидов. При этом не отмечается их негативного влияния на ход процесса благодаря самопроизвольному очищению заготовок от окислов, происходящему вследствие нагревания металла в вакууме с последующей выдержкой.

В случаях недостаточной интенсивности диффузионных процессов в соединяемых деталях с резко отличающимися коэффициентами линейного расширения материалов, а также при наличии возможности образования хрупкости в шве, эффективно использование между ними промежуточного слоя. Это может быть прокладка из фольги, порошковый подслой и др. Данный метод целесообразен при сварке как металлов и их сплавов, так и в отношении неметаллических материалов. Так, к примеру, сваривают кварцевые заготовки через прокладку из меди. Исходя из свойств свариваемых материалов и промежуточного слоя, определяют параметры такого процесса.

Применение диффузионной сварки

К преимуществам данного способа относят возможность диффузионной сварки разнородных материалов с получением равнопрочного шва без существенных изменений в физико-химических характеристиках, высокий уровень защиты и отсутствие необходимости в присадочном металле. Такая сварка позволяет создание прочных конструкций как из однородных металлов со сплавами, так материалов разного рода, в том числе резко отличающихся своими характеристиками. Это не растворимые друг в друге, тугоплавкие или малопластичные металлы и сплавы, соединение которых довольно затруднительно. А применение диффузионного способа позволяет получать сварные конструкции даже из таких пар металлов и сплавов, которые практически невозможно соединить с помощью других видов сварки. Примером этого может служить диффузионная сварка титана со сталью, стойкой к коррозии, молибдена с медью или ниобия с вольфрамом.


Практикой использования диффузионного процесса выработаны две его основные технологии, зависящие от способа приложения нагрузок. В первой из них применяется нагрузка постоянного характера с величиной, не превышающей предел текучести. Во второй технологии нагрузку в сочетании с пластической деформацией обеспечивает особое устройство. Скорость его перемещения в ходе сварки можно контролировать.



2025 stdpro.ru. Сайт о правильном строительстве.