Как называются два контакта в обычном герконе. Герконовое реле: принцип действия. Принцип работы герконового датчика

Любая техника может ориентироваться в окружающей среде только с помощью специальных датчиков, которые позволяют получить необходимую информацию. Они могут быть нацелены на выяснение скорости объекта, состояния, текущих целей или типа изменений в окружающей среде. Одними из самых полезных считаются герконовые датчики. Почему именно так?

Что такое герконовый датчик?

Для начала выясним, что собой представляет объект написания статьи. Геркон - это электромеханическое устройство, которое является парой ферромагнитных контактов, что запаяны в герметичную колбу из стекла. Если поднести к ней постоянный магнит или включить электромагнит, то произойдет замыкание. Вот так в общем выглядит схема герконового датчика. Благодаря таким свойствам данные приборы нашли своё применение в качестве концевых выключателей, индикаторов положения и других подобных устройств. Если добавить ещё и электромагнитную катушку, то получится герконовое реле.

Разнообразие и принцип работы

Как же осуществляется разделение на рабочие виды? Как решают, что к чему отнести? Для этого используется деление на три группы, каждая из которых работает по своему принципу. Как функционирует герконовый датчик? Принцип работы:

  1. Имеют замыкающийся контакт. В таких случаях, когда отсутствует магнитное поле, то датчик в разомкнутом состоянии. Когда оно есть, то он замыкается.
  2. Имеют размыкающийся контакт. Когда отсутствует магнитное поле, то датчик в замкнутом состоянии. Когда оно есть, он размыкается.
  3. Имеют переключающийся контакт. Конструктивно отличаются от двоих предыдущих. В первую очередь тем, что имеют три вывода. Так, если отсутствует магнитное поле, то замыкается одна пара. Когда оно есть, то другая.

Классификация может быть проведена исходя из особенностей конструкции:

  1. Используются «смоченные» контакты. Сюда относятся герконы, выводы которых соприкасаются с каплями ртути. Её присутствие уменьшает контактное электрическое сопротивление. Также данный тип отличается низкой вероятностью возникновения дребезга.
  2. Используются «сухие» контакты.

Особенности

Какие же существуют особенности герконового датчика, которые необходимо учитывать при выборе необходимого прибора? Следует сказать, что их довольно много:

  1. Значение напряженности, которое должно быть у магнитного поля, чтобы произошло замыкание контактов.
  2. Коммутируемый ток.
  3. Значение напряженности, которым должно обладать магнитное поле, чтобы происходило размыкание контактов.
  4. Максимальная мощность, что может быть коммутируемая герконом.
  5. Значение электрического сопротивления, которое имеет зазор между сердечниками (интересует только разомкнутое состояние).
  6. Напряжение, при котором возникает пробой геркона.
  7. Сопротивление в контактной области, которое возникает во время замыкания сердечников.
  8. Время, которое проходит между моментами влияния управляющего магнитного поля и замыканием электрической цепи.
  9. Электрическая емкость, которая имеется между выводами геркона, когда он в разомкнутом состоянии.
  10. Время, которое необходимо, чтобы после удаления эффекта магнитного поля произошло размыкание электрической цепи.
  11. Коммутируемое напряжение.
  12. Число срабатываний геркона, при котором основные его параметры будут оставаться в допустимых пределах.

Преимущества

Какие позитивные стороны имеют герконовые датчики? Их список таков:

  1. Отсутствует дребезг контактов (относится к герконам, у которых выводы смочены ртутью).
  2. Долговечность. Считается, что если датчик не поддаётся физическим ударам (вследствие падения или при неосторожном обращении), через него не пропускают слишком большой ток, то он может работать бесконечно. Хотя согласно технической документации, число срабатываний всё же ограничено значением в 10 3 —10 8 .
  3. Поскольку контакты геркона расположены в инертном газе или вакууме, то они слабо обгорают, даже когда происходит размыкание или размыкание с возникновением искры.
  4. Данные датчики обладают меньшим размером, чем классические реле, и при этом рассчитаны на точно такой же ток.
  5. При производстве для контактов не применяются драгоценные и тугоплавкие металлы, что позитивно сказывается на стоимости.
  6. Герконы почти не создают шум.
  7. Датчики обладают высоким быстродействием (если сравнивать их с классическими реле).

Недостатки

Как и у любого прибора, у геркона есть не только плюсы, но и минусы:

  1. Обладают значительным весом (если сравнивать с открытыми контактами).
  2. Необходимо создавать магнитное поле.
  3. Хрупкие. Не подлежат использованию в условиях ударных нагрузок и при сильных вибрациях.
  4. Попадают под влияние внешних магнитных полей, из-за чего возникает необходимость в защите.
  5. Иногда контакты геркона могут остаться в замкнутом состоянии, из которого их нельзя вывести.
  6. Ограничение скорости срабатывания.
  7. При больших токах контакты геркона могут самопроизвольно разомкнуться.

Применение

Где же нашли своё применение герконовые датчики? Но прежде чем говорить о них, стоит упомянуть, что наметилась тенденция их замены. В качестве более совершенной технологии используются твердотельные датчики Холла. Но вернёмся к теме статьи:

  1. Клавиатура клавишных синтезаторов и промышленных приборов, где необходима взрывобезопасность и долговечность, что особенно важным является в промышленности. Поскольку детали хотя и являются мелкими, необходимы для того, чтобы управлять различными механизмами. И если данная функция недоступна - страдает производительность.
  2. Герконовые датчики уровня жидкости в различных емкостях.
  3. В телерадиоаппаратуре.
  4. В датчиках, которые отображают состояние (открыто/закрыто) или позицию предмета. Сферы применения: компьютерные, охранные, строительные технологии. Они могут сообщать, в каком положении окна и двери, таким образом возможно построение автоматизированных систем со своими целями.
  5. В электронных счетчиках тока.

Заключение

Мы разобрали, чем является герконовый датчик, принцип работы этого устройства, и сейчас можно сказать, что вы обладаете необходимым теоретическим минимумом, чтобы начинать работать с ними на практике. Причем может быть реализовано что угодно. Использовать герконовый датчик уровня воды в емкости на даче или что-то другое - решать вам.

Содержание:

В системах автоматики и защиты широко применяются различные датчики. Они работают на разных физических принципах. Например, хорошо известны датчики движения, срабатывающие дистанционно. Но в некоторых случаях необходим контроль событий на малых расстояниях. Например, если на несанкционированное открывание контролируются окна и двери помещений. Для этих целей идеально подходят датчики – герконы, о которых и будет рассказано далее.

Особенности конструкции

Герметичный контакт, которым по сути является этот элемент, получил свое название от сокращения описывающего его словосочетания. По своей конструкции – это просто контакт в корпусе из стекла. Но поскольку электротехника – это наука о контактах, плохое качество которых является причиной многих неисправностей, геркон сконструирован, как супер-контакт.

Две контактные пластины из магнитомягкого материала в области соприкосновения покрыты специальным образом другими металлами для получения большого срока службы при сохранении минимального сопротивления. Их окружает инертный газ (обычно азот) под давлением. Таким образом на многие годы обеспечиваются стабильные условия, позволяющие выполнять за время службы миллион или более срабатываний.

В зависимости от назначения датчика для срабатывания геркона используются магнитные поля. Это может быть поле постоянного магнита, перемещающегося, например, вместе с дверью или окном относительно рамы, на которой закреплен геркон. Но и электромагнитное поле катушки, через которую питается обмотка электродвигателя, также приведет к срабатыванию геркона, если ток будет определенной силы.

Магнитное поле намагничивает контакты геркона, делая их разноименными магнитными полюсами. И если напряженность этого поля достигает некоторой предельной величины, полюсы-контакты слипаются между собой. В таком состоянии они будут до тех пор, пока напряженность магнитного поля не уменьшится до определенной величины. После этого контакты возвращаются в исходное положение.

Использование в охранных системах

Герконы, применяемые в охранных системах, выпускаются адаптированными для определенных материалов конструкций, на которых они устанавливаются. Это связано с тем, что материал основания, на котором крепится герконовый датчик, может оказывать влияние на магнитные поля, используемые для срабатывания геркона. Очевидно, что пластиковое окно или деревянная дверь совсем иначе взаимодействуют с магнитным полем в сравнении с металлической дверной решеткой.

Функционирование датчика схоже с магнитной защелкой. Все элементы, участвующие в процессе, расположены на двери (окне) и раме, иногда их называют герконовымы выключателями. К ним присоединены провода. Поэтому, если датчик установлен снаружи, это все видно и вовсе не украшает интерьер. К тому же, при попытке проникновения в помещение через дверь или окно с таким датчиком, злоумышленник видит его и может нейтрализовать, отключив тем самым сигнализацию в месте проникновения.

Если герконовый датчик устанавливается скрыто, магнитное поле ослабляется невозможностью приблизить магнит вплотную к нему. Поэтому такой геркон должен быть боле чувствительным, чем тот, который ставится открыто. Но скрытый датчик существенно надежнее, хотя и его при внимательном рассмотрении можно заприметить, если в целом допущены какие-либо промахи с проводами, проложенными к нему. По этой причине усиления защиты рекомендуется применять несколько датчиков для одной двери или окна.

Как усилить защиту

Стандартным вариантом является датчик, расположенный на раме, и магнит на створке окна или на двери. В закрытом состоянии магнит максимально приближен к геркону, который поэтому замкнут. При открывании магнит удаляется от датчика, цепь размыкается, и сигнализация срабатывает. Но даже в скрытом виде магнит, а соответственно и датчик, можно обнаружить. Ведь магнитное поле не скроешь. Используя обычный компас, злоумышленник может найти место расположения датчика.

Ему остается лишь закрепить в этом месте свой магнит, и после этого сигнализация не сработает. Чтобы не произошло подобного сценария, нужен либо еще один скрытый геркон, который замкнет цепь сигнализации при открывании окна или двери, либо иной принцип подмагничивания датчика. Если геркон будет замыкаться при открывании окна и злоумышленник не будет об этом знать, он также применит к нему дополнительный магнит. Усиление магнитного поля приведет к срабатыванию защиты.

Усовершенствованным вариантом защиты будет использование электромагнита. Напряжение заданной длительности, подаваемое на электромагнит, и такое же по времени электромагнитное поле приведут к периодическому срабатыванию датчика. Пока этот процесс будет идти, защита не активируется. Но при задержке импульса от геркона защита сработает. Для того чтобы подделать поле электромагнита, надо будет провести целое исследование. К тому же, повторяемость сигналов можно изменять случайным образом, а это исключает возможность их подделки.

Область применения

Охранная сигнализация – это не единственное предназначение герконов. Поскольку магнитное поле и электрический ток – взаимосвязанные явления, герконы можно использовать в системах автоматики для контроля силы тока. Постоянные магниты, перемещающиеся вместе с предметами или жидкостями, обнаруживаются герконами после срабатывания контактов. Тем самым можно определять присутствие того или иного предмета в заданном месте или контролировать уровень жидкости по магнитному поплавку.

Замыкание контактов геркона происходит от воздействия магнитного поля. И чем больше его напряженность, тем больше сила притяжения контактов. Но восстановление их исходного состояния происходит под воздействием сил упругости. Они невелики. Поэтому крайне важно не допустить перегрева контактов и их сваривания. Для этого необходимо в точности соблюдать режимы работы так, как указано в технической документации герконов. Тогда этот уникальный коммутатор прослужит много лет.

Геркон – сверхточный быстродействующий герметичный переключатель, управляемый магнитным полем . Количество его срабатываний – до пяти миллиардов раз. На его основе выпускаются датчики магнитного поля и герконовые реле для самых различных применений – от бытовой техники до авиации и космонавтики. В статье описаны особенности выбора герконов и дан табличный обзор широкой линейки этих изделий производства Littelfuse .

Слово «геркон» является сокращением слов «герметичный контакт». Первый геркон был разработан в 1936 году американской компанией Bell Telephone Laboratories. Впоследствии они стали широко применяться в качестве датчиков, и на их основе были созданы герконовые реле.

Геркон (рисунок 1) состоит из двух ферромагнитных проводников, имеющих плоские контакты, герметизированные в стеклянной капсуле. Без внешнего магнитного поля контакты разомкнуты, и между ними есть небольшой диэлектрический зазор. В магнитном поле контакты замыкаются. Контактная область обеих пластин имеет напыленное или гальваническое покрытие, выполненное из очень стойкого к эрозии металла (обычно – родий, иридий или рутений). Структура слоев покрытия контактов приведена на рисунках 2а и 2б для родия и иридия соответственно.

Иридий, рутений и родий – очень стойкие к эрозии металлы платиновой группы. Благодаря напылению из этих металлов количество срабатываний контактов достигает пяти миллиардов раз. В полость капсулы обычно закачивают азот. Некоторые типы герконов вакуумируются для увеличения максимально допустимого коммутируемого напряжения. Контакты геркона в магнитном поле намагничиваются, и между ними возникает магнитодвижущая сила, равная напряженности магнитного поля. Если напряженность магнитного поля достаточно велика, чтобы преодолеть упругие силы в контактах, возникающие при их упругой деформации, то контакты замыкаются. Когда поле ослабевает, контакты снова размыкаются.

Существует два типа герконов: SPST-NO (Single Pole, Single Throw Normally Open, то есть «один полюс, один канал») – обычный выключатель, в котором два контакта нормально разомкнуты; SPDT-CO (Single Pole, Double Through Change Over, то есть «один полюс, два канала – переключение») – переключатель, в котором один контакт всегда нормально замкнут, а второй нормально разомкнут.

Геркон, описанный выше и представленный на рисунке 3, относится к SPST-типу.

На рисунке 4 представлен геркон SPDT-типа.

Общая пластина является единственной подвижной частью такого геркона, в отсутствие магнитного поля она замкнута с нормально замкнутым контактом реле. При возникновении магнитного поля соответствующей силы общая пластина замыкается с нормально разомкнутым контактом. Обе пластины нормально разомкнутого и нормально замкнутого контактов являются неподвижными. Разомкнутые контакты имеют ферромагнитное покрытие, а нормально замкнутый контакт выполнен из немагнитного материала. При помещении в магнитное поле подвижный и нормально-разомкнутый контакт намагничиваются в одинаковом направлении, и при достаточной напряжённости магнитного поля происходит замыкание подвижного контакта с неподвижным ферромагнитным контактом. При исчезновении внешнего магнитного поля намагниченность контактов ослабевает, и они размыкаются. Для того, чтобы остаточная намагниченность была минимальной, при изготовлении герконов применяют высокотемпературную обработку контактов. В качестве источника магнитного поля для геркона чаще всего используют постоянный магнит (рисунок 5) или соленоид.

Рассмотрим несколько наиболее распространённых систем геркон-магнит.

  1. Приближение и удаление магнита перпендикулярно (рисунок 6) или под углом (рисунок 7) к главной геометрической оси геркона:

В данном случае геркон будет замыкаться при приближении и размыкаться при отдалении магнита. Рассмотрим более подробно, обратившись к рисунку 8.

Концентрация силовых линий магнита уменьшается при удалении магнита от геркона. Наиболее сконцентрированы магнитные линии на полюсах магнита. Наиболее обширная зона взаимодействия магнита с герконом находится в центре геркона. При нахождении постоянного магнита в пределах этой зоны магнитное поле является достаточным для надежного срабатывания контактной группы. Пунктиром показана зона гистерезиса – при вхождении магнита в эту зону магнитное поле еще не обладает достаточной напряженностью для срабатывания контактной группы, но ее достаточно для удержания контактной группы в сработавшем состоянии. В случае иной конфигурации контактной группы геркона, отличной от рассматриваемой SPST, под срабатыванием будет пониматься размыкание нормально-замкнутого контакта и замыкание подвижного контакта с нормально-разомкнутым контактом SPDT геркона. Замыкание контактов геркона может активироваться с помощью параллельного движения кольцевого магнита вдоль оси геркона, как показано на рисунке 9.

Конфигурация зон взаимодействия будет схожа с предыдущей системой, так как ось геркона и направление магнитных линий магнита будут совпадать с описанной выше ситуацией, как видно на рисунке 10.

  1. Геркон может активироваться при помощи плоского магнита или кольцевого магнита с двумя или 2N полюсами (рисунок 11).

Для понимания зон взаимодействия геркона обратимся к рисункам 12 и 13.

Как видно, зоны взаимодействия находятся на концах геркона. В центральной части геркона находится «мертвая зона», в которой геркон остается открытым. Таким образом, двигающийся перпендикулярно геркону магнит, чьи полюса расположены подобным образом, активировать геркон не будет (рисунок 14).

  1. Геркон можно экранировать с помощью магнитного материала (например, стального листа). На рисунке 15 изображены неподвижный геркон и неподвижный магнит между которыми движется экранирующий предмет.

Основные типы герконов, выпускаемые компанией Littelfuse, приведены в таблице 1.

Таблица 1. Серии герконов Littelfuse

Серия Длина корпуса, мм Нагрузочная способность
(Стандартная: ≤10 Вт, ≤0,5 A, ≤200 В)
Тип контактов Key Features
7 Стандартная SPST Супер-компактный (7 мм стеклянный корпус)
10 Стандартная SPST Очень компактный (10 мм стеклянный корпус)
13 Стандартная SPST Компактный (12.7 мм стеклянный корпус)
14 Стандартная SPST Дешевый, более гибкие выводы
14 Стандартная SPST Малый гистерезис
15 Стандартная SPST Низкая цена
15 ~240 В (20 Вт) SPST ~ 240 В макс. рабочее напряжение
15 20 Вт SPST Малый гистерезис
15 20 Вт SPST Длинные выводы, повышенный ресурс
19 1000 В SPST Высоковольтный
20 ~240 В, 50 Вт SPST Напряжение переключения ~240 В, высокая мощность
50 100 Вт, 3 A, 400 В SPST Большой, высокая мощность
15 Стандартная SPDT Малый корпус
40 30 Вт, 0.5 A, 500 В SPDT Высокая мощность
40 50 Вт, 1.5 A, 500 В SPDT Большой, высокая мощность

Основные параметры герконов

Время срабатывания время между моментом приложения магнитного поля и моментом замыкания контактов геркона.

На рисунке 16 представлен график зависимости величины магнитного поля от времени. Вначале геркон помещают в сильное магнитное поле до момента насыщения (при этом даже при увеличении магнитной индукции намагниченность, достигнув максимума, остается неизменной). После этого магнитное поле ослабляют до 0 и начинают постепенно увеличивать. Рабочая точка на данном графике означает такую величину магнитного поля, при которой контакты геркона замыкаются. Точка рассоединения – соответствует величине магнитного поля, при которой контакты размыкаются. Нужно заметить, что сила поля в точке рассоединения всегда ниже, чем в рабочей точке. Это связано с тем, что у контактов геркона всегда остается небольшая намагниченность.

Временем отпускания называется интервал между рабочей точкой и точкой рассоединения.

Магнитодвижущая сила (МДС) срабатывания ( pull in ) – это величина силовой характеристики магнитного поля, при которой происходит замыкание контактов геркона. В системе СИ единицами измерения магнитодвижущей силы являются Ампер*витки (AT или Amper*turns). Когда измеряют магнитодвижущую силу с помощью соленоида, рабочая точка (замыкание) обычно дается при температуре 20°С, так как из-за термического расширения медного провода в катушке магнитное поле будет меняться приблизительно на 0,4%/°С.

Отношение между размыканием и замыканием, выраженное, как правило, в процентах, называется гистерезисом. В зависимости от материалов металлических контактов, их жесткости, длины, площади соприкосновения, гистерезис будет сильно меняться (рисунок 17).

Гистерезис – это отношение магнитодвижущей силы срабатывания к магнитодвижущей силе в точке рассоединения. Обычно этот параметр выражают в процентах. Компания Littelfuse выпускает специальные серии герконов (MACD-14, MASM-14), в которых гистерезис сведен к минимуму. Обычно такие герконы применяются в датчиках уровня жидкостей, в системах позиционирования.

Контактное сопротивление ( contact resistance ) – максимальное сопротивление геркона в замкнутом состоянии.

Удельное сопротивление контактов геркона или герконового реле очень мало и обычно составляет от 7,8х10 -8 до 10х10 -8 Ом/м. Это выше удельного сопротивления меди, которое равняется 1,7х10 -8 Ом/м. Контактное сопротивление герконов обычно составляет около от 70 до 200 мОм, а сопротивление контактов в герконовом реле – около 150 мОм.

Динамическое сопротивление контактов ( Dynamic Contact Resistance ( DCR ) – это сопротивление контактов геркона в рабочем/динамическом режиме. Статичное контактное сопротивление геркона – достаточно малоинформативный параметр, который не позволяет выявить проблемы, связанные с реальным состоянием контактов. Замыкание и размыкание контактов геркона с частотой от 50 до 200 Гц дает намного больше информации. Подача на геркон напряжения 0,5 В и тока 50 мА может помочь выявить потенциальные проблемы. Эти измерения могут быть выполнены с помощью осциллографа и легко оцифрованы при автоматическом контроле качества (рисунок 18). Не стоит использовать более высокое напряжение, чтобы не изнашивать контакты геркона. Если на производстве контакты геркона не были правильно очищены перед корпусированием, то на них может находиться тончайшая диэлектрическая пленка толщиной в несколько ангстрем. Из-за нее может быть нарушена коммутация слабых сигналов. При использовании более высокого напряжения эта проблема может никак не проявиться.

Если на катушку подать сигнал с частотой 50…200 Гц, ток коммутации будет порядка 0,5 мА. Дребезг контактов после замыкания может продолжаться около 100 мс, и за ним последует динамический шум, который будет длиться около 0,5 мс. Природа этого динамического шума состоит в том, что после замыкания контактов происходят гармонические колебания, и в месте контакта изменяется сопротивление из-за меняющегося в зоне контакта давления. При этом размыкания не происходит. На рисунке 19 видно, что после завершения фазы динамического шума начинается «волновая» фаза, длящаяся 1 мс или чуть более. Вибрация контактов геркона в магнитном поле соленоида через 2…2,5 мс прекращается, и сопротивление стабилизируется.

Наблюдая за осциллограммой этого динамического теста, мы можем сделать некоторые выводы о качестве тестируемого геркона. Как только на соленоид подается напряжение, колебательный процесс должен завершиться за время, приблизительно равное 1,5 мс. Если колебания продолжаются более 2,5 мс, это может означать, что контакты плохо намагничиваются. В результате ресурс данного геркона будет небольшим, особенно если он будет работать с большой нагрузкой (рисунок 20).

Если динамический шум или дребезг контактов длятся значительно дольше 3 мс, это может быть следствием нарушения герметичности геркона, трещины в корпусе, перегрузки по току или напряжению. Также это может быть следствием загрязнения контактов при производстве или попадания влажного воздуха внутрь корпуса геркона. На рисунках 21 и 22 изображены такие случаи.

На рисунке 23 изображен случай, когда после завершения фазы динамического шума продолжаются стохастические колебания контактов, вследствие которого динамическое сопротивление контактов не стабилизируется.

Напряжение переключения/коммутации ( switching voltage ) – это обычно максимальное постоянное напряжение, которое может быть приложено к геркону в момент замыкания контактов. Если напряжение на герконе выше 5…6 В, при этом может произойти перенос микроскопического количества металла с одного контакта на другой. Несмотря на это, при работе с напряжениями до 12 В герконы и герконовые реле имеют наработку на отказ в десятки миллионов раз срабатываний. А при напряжении 5 В и меньше количество срабатываний увеличивается до миллиардов раз. Высококачественные герконовые реле Littelfuse могут работать в слабосигнальных цепях с напряжениями всего в несколько нановольт.

Ток переключения или коммутационный ток ( switching current ) – это максимальный постоянный ток или амплитудное значение переменного тока в момент замыкания контактов геркона. В случае превышения этого значения срок службы геркона значительно сократится.

Несущий ток ( carry current ) – это максимальное значение тока при замкнутых контактах геркона. Микросекундные импульсы тока могут значительно превосходить это значение без сокращения срока службы геркона. В то же время длительные импульсы тока или постоянный ток, превышающий несущий, приведут к сокращению срока службы геркона или выходу его из строя. Герконы и герконовые реле в отличие от своих электромеханических собратьев могут работать с очень малыми токами, на уровне нескольких фемтоампер (фемто = 10 -15).

Эквивалентная емкость ( contact capacitance ) – емкость геркона в замкнутом состоянии. Для герконов SPST-типа эта величина обычно составляет 0,1…0,2 пФ. Для переключающих герконов SPDT-типа эквивалентная емкость обычно составляет 1…2 пФ.

Этот параметр имеет большое значение при применении геркона в высокочастотных цепях.

Коммутируемая мощность ( switching power ) – это максимальная мощность, которая может потребляться нагрузкой, подключенной через геркон. Так как мощность рассчитывается как произведение коммутируемого напряжения и тока переключения, то для 10 Вт геркона не стоит пропускать ток более 500 мА при напряжении 200 В, для такого тока максимальное коммутационное напряжение составит всего 20 В. Превышение данного параметра также неминуемо влечет за собой сокращение срока службы геркона.

Сопротивление изоляции ( insulation resistance ) сопротивление геркона в открытом состоянии. По этому параметру герконы превосходят большинство существующих на сегодняшний день ключей, так как их сопротивление изоляции измеряется в тераомах. Величина токов утечки геркона в открытом состоянии составляет единицы пикоампер.

Диэлектрическая абсорбция ( dielectric absorbtion ) – это эффект, связанный с поляризацией диэлектриков в герконе при разряде емкостного заряда контактов. Данный эффект проявляется в виде задержки или уменьшения протекания через замкнутый геркон очень малых токов на уровне наноампер.

Резонансная частота ( resonance frequency ) – это частота собственных колебаний геркона, при которой начинаются собственные вибрации контактов, которые, в свою очередь, влияют на такие параметры геркона как напряжение пробоя и напряжение коммутации. Герконы с капсулами 20 мм обычно имеют резонансную частоту в диапазоне 1500…2000 Гц. Более компактные 10 мм герконы имеют более высокую резонансную частоту: 7000…8000 Гц. Для того, чтобы избежать проблем в работе геркона, нужно учесть вибрации среды эксплуатации и резонансную частоту геркона.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рисунок 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рисунок 26) или параллельно нагрузке (рисунок 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах, особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома:

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Формовка и обрезка выводов герконов

Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.

Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.

Рассмотрим основные способы формовки и обрезки выводов геркона.

  1. Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рисунок 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.

Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.

  1. Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).

Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.

  1. Формовка выводов геркона без фиксации вывода запрещена (рисунок 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.

Формовка выводов геркона при фиксации вывода в двух точках, как показано на рисунке 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.

Формовка при полной фиксации вывода геркона, как показано на рисунках 35 и 36, также допустима.

После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рисунке 37.

Выбор магнитов

Для общего применения в основном используются четыре группы магнитов: ферросплавы, альнико AlNiCo, неодимовые NdFeB и самариевые SmCo (таблица 2). Для того чтобы подобрать подходящий магнит, следует учитывать такие факторы как температура среды, размагничивание близкорасположенными источниками магнитных полей, свободное пространство для движения, химический состав окружающей среды.

Неодимовые магниты обладают наибольшей энергией, наибольшей остаточной намагниченностью и коэрцитивной силой. Они имеют сравнительно невысокую цену и более высокую механическую прочность, чем самариевые SmCo. Могут использоваться при температурах среды до 200°C. Не рекомендуется использовать эти магниты в средах с повышенным содержанием кислорода.

Самариевые SmCo имеют высокую энергию и подходят для применений, где требуется высокая стойкость к размагничиванию. Имеют великолепную термическую стабильность и могут использоваться в средах до 300°C, обладают высокой коррозийной стойкостью. При этом их цена – самая высокая среди всех типов магнитов. Их недостатком является очень высокая хрупкость.

Альнико AlNiCo намного дешевле, чем магниты из редкоземельных элементов и подходят для большинства применений. Имея низкую коэрцитивную силу, отличаются великолепной термической стабильностью вплоть до 550°C.

Ферритовые магниты являются самыми дешевыми, но при этом хрупкими. Имеют неплохую термическую стабильность и могут использоваться при температурах до 300 °C. Очень стойки к коррозии. Требуют механической обработки для соответствия жестким габаритным допускам.

Таблица 2. Выбор магнитов для управления герконами

Показатели Увеличение показателей →
Цена Феррит AlNiCo NdFeB SmCo
Энергия Феррит AlNiCo SmCo NdFeB
Диапазон рабочих температур NdFeB Феррит SmCo AlNiCo
Коррозионная стойкость NdFeB SmCo AlNiCo Феррит
Коэрцитивная сила AlNiCo Феррит NdFeB SmCo
Механическая прочность Феррит SmCo NdFeB AlNiCo
Температурный коэффициент AlNiCo SmCo NdFeB Феррит

Заключение

В современном мире с каждым днем становится все больше «умных вещей», которые значительно упрощают наши повседневные задачи. Немалую роль в этом сыграли датчики на основе герконов. Фантастическая надежность, четкость срабатывания, отсутствие потребности в питании, простота применения и великолепные коммутационные свойства для слабосигнальных цепей сделали герконы одними их самых распространенных электронных компонентов, применяющихся всюду, от холодильников до самолетов.

Поговорим мы в этой статье про герконы, слово геркон расшифровывается как: герметичный магнитоуправляемый контакт. Геркон представляет собой небольшую вытянутую колбу с откачанным воздухом, внутри которого содержится пара гибких металлических ферромагнитных контактов. Контакты по длине перекрываются, но находятся на небольшом расстоянии друг от друга, этих контактов может быть несколько, на разные включения (замыкание или размыкание). При поднесении магнита к геркону контакты замыкаются (или размыкаются).

Герконы могут использоваться в датчиках (например датчик скорости на велосипеде), выключателях и пр… Раньше герконы использовались в реле, поверх геркона наматывалась катушка в несколько сотен витков (сопротивление обмотки может достигать 500-1500 Ом) и при подаче напряжения контакты геркона замыкались, сейчас реле с герконами редко где используются.

Достоинства герконовых реле :
Полная герметизация контакта позволяет их использовать герконовые реле в различных условиях влажности, запыленности и т. д.
Высокое быстродействие, что позволяет использовать герконовые реле при высокой частоте коммутаций.
Гальваническая развязка коммутируемых цепей и цепей управления герконовых реле.6. Расширенные функциональные области применения герконовых реле.
Надежная работа в широком диапазоне температур

Недостатки герконовых реле:
Восприимчивость к внешним магнитным полям, что требует специальных мер по защите от внешних воздействий.
Хрупкий корпус герконов, чувствительный к ударам.
Малая мощность коммутируемых цепей у герконов.
Возможность самопроизвольного размыкания контактов герконовых реле при больших токах.

Герконы на схемах обозначаются следующим образом:

Особенности и преимущества герконов:
Как уже говорил, контакты геркона находятся в вакууме или в инертном газе и как следствие при работе они слабо обгорают, даже если при замыкании или размыкании между контактами возникает искра.
Герконы достаточно долговечные, если не бить геркон и не пропускать очень большие токи, то срок службы геркона бесконечен.
Герконы в работе почти бесшумны, слышно только цоканье контактов.
Относительно высокое быстродействие.

Недостатки герконов:
Герконы очень хрупкие, корпус герконов как правило изготовлен из хрупкого стекла, следовательно их нельзя использовать в условиях сильных вибраций и ударов.
Для их срабатывания нужно создать или приложить магнитное поле.
Иногда контакты герконов залипают, такое происходит после прохождения больших токов и проскакивания искры при срабатывании контактов, такой геркон необходимо заменить, герконы в основном служат для коммутации небольших токов. Ниже на рисунке Вы можете увидеть фотографию геркона с обгоревшими контактами.

Применение герконов

Как уже говорилось, чаще всего герконы применяются в системах охранной сигнализации, ставят их на дверь, окна… при открывании двери мимо геркона проходит магнит (который расположен на двери) и замыкает геркон. Можно сделать включение какого либо устройства при поднесении магнита к геркону, например включение компьютера, или сделать так чтобы двигатель скутера заводился только после того как поднесут к датчику магнит, ставить в качестве датчиков контроля положения, сделать так чтобы при поднятии какого либо предмета сработала сирена, или прикрепить геркон на колесо велосипеда для контроля скорости, давайте рассмотрим такую схему ниже!

Краткая история создания герконов

Коммутационные устройства или просто контакты очень широко применяются в различной электрической и радиотехнической аппаратуре. С целью улучшения эксплуатационных свойств, прежде всего срока службы и надежности соединения и были разработаны магнитоуправляемые герметизированные контакты получившие название герконы .

Первые образцы таких контактов появились еще в 30 - е годы прошлого столетия, а первый магнитоуправляемый контакт был изобретен еще в 1922 году в Петербурге профессором В. Коваленковым, за что ему было выдано авторское свидетельство СССР №466. Конструкция такого контакта показано на рисунке 1.

Устроен такой контакт следующим образом. К сердечнику 3 из магнитомягкого материала через изолирующие прокладки 5 прикреплены контакты 1 и 2, выполненные также из магнитомягкого материала. При пропускании тока через катушку 4 в сердечнике 3 возникает магнитное поле и намагничивает контакты 1 и 2, которые замыкаются. Размыкание контактов происходит при прекращении тока через катушку.

Рисунок 1. Магнитоуправляемый контакт профессора В. Коваленкова

По сути это был самый первый магнитоуправляемый контакт, только без герметизирующей оболочки. В герметизирующую оболочку подобный контакт был впервые помещен американским инженером W.B. Ellwood лишь в 1936 году. В семидесятых годах прошлого столетия герконы достигли своего максимального развития, и нашли широкое применение в различных устройствах электронной техники.

В настоящее время герконы используются менее интенсивно, поскольку их «вытеснили» . Но в некоторых случаях герконы остались вне конкуренции, что обусловлено простотой применения, гальванической развязкой от источника питания, свойствами «сухого контакта», поэтому герконы до сих пор применяются в различных схемах и устройствах.

В тех случаях, когда требуется высокая надежность и долговечность коммутирующего элемента герконы просто незаменимы. Как составная часть герконы входят в конструкции различных датчиков, электромагнитных реле, особенно слаботочных, а также позиционных переключателей и некоторых других устройств.

Разновидности герконов

Так же, как и обычные контакты, герконы могут быть замыкающие (1 нормально - разомкнутый контакт), переключающие (1 переключающий контакт) и работающие на размыкание (1 нормально - замкнутый контакт). Это деление по функциональным признакам.

По признакам конструктивно - технологическим герконы делятся на две большие группы: с сухими контактами и с контактами ртутными. Первая разновидность так и называется сухими герконами, а вторая ртутными герконами. Собственно, в работе сухих герконов, по сравнению с обычными контактами, ничего особенного нет.

В ртутных герконах внутри герметичного стеклянного корпуса кроме контактов находится еще капелька ртути. Назначение этой ртутной капельки - смачивание контактов во время срабатывания для улучшения качества контакта за счет уменьшения переходного сопротивления, а кроме того для избавления от дребезга контактов.

Дребезгом называется вибрация контактов при замыкании и размыкании, что при однократном срабатывании приводит к многократной коммутации передаваемого сигнала, а кроме того к значительному увеличению времени срабатывания.

Представьте себе, что такой дребезг будет присутствовать во время переключения входного сигнала! В случае, когда такой дребезжащий контакт работает совместно с цифровыми микросхемами, приходится принимать меры по подавлению дребезга в виде RC - цепочек или .

Различные контакты, в том числе и герконовые, применяются и в , но в них дребезг контактов подавляется программным способом. Это также снижает быстродействие системы в целом.

Конструкция герконов

Конструкция различных типов герконов представлена на рисунке 2.

Рисунок 2 . Конструкция герконов

Все герконы представляют собой герметичный стеклянный баллон , внутри которого находится контактная группа . Контакты представляют собой магнитные сердечники, вваренные в торцы баллона. Наружные концы сердечников предназначены для подключения к внешней электрической цепи.

Наибольшее распространение получил геркон с контактной группой, работающей на замыкание или, как показано на рисунке «разомкнутый». Каждый контакт - сердечник выполнен из ферромагнитной упругой проволоки, которая расплющена до прямоугольной формы. Для изготовления сердечников применяется пермаллоевая проволока диаметром 0,5 - 1,3 мм в зависимости от мощности геркона и, соответственно, его габаритов.

Непосредственно контактирующие поверхности покрыты благородным металлом, золотом, палладием, родием, серебром и сплавами на их основе. Такое покрытие не только уменьшает , но и способствует повышению коррозионной стойкости контактной поверхности.

Внутренне пространство баллона заполнено инертным газом (водородом, аргоном, азотом или их смесью) или просто вакуумировано, также способствует уменьшению коррозии контактов и повышению их надежности. При изготовлении сердечники располагают таким образом, чтобы между ними оставался зазор, кстати, определенного размера.

Рис. 3. Геркон

Принцип работы геркона

Для того, чтобы вызвать срабатывание контактной группы, необходимо вокруг геркона создать магнитное поле достаточной напряженности. При этом абсолютно не важно, как это поле будет создано, либо просто постоянным магнитом, либо электромагнитом. Силовые линии внешнего магнитного поля намагничивают внутренние контакты - сердечники геркона, в результате чего они преодолевают силы упругости, притягиваются и замыкают электрическую цепь.

В таком состоянии контакты будут находиться до тех пор, пока вокруг них есть магнитное поле достаточной напряженности: достаточно выключить электромагнит или убрать подальше обычный постоянный магнит, как контакты сразу разомкнутся. Следующее срабатывание контактов произойдет, когда магнитное поле появится вновь. Из всего сказанного можно сделать вывод, что контакты выполняют сразу три функции: упругих элементов (пружин), магнитопровода, и собственно проводящих контактов.

Несколько по-иному действует геркон, работающий на размыкание. Его магнитная система устроена так, что при воздействии магнитного поля контакты - сердечники намагничиваются одноименно, поэтому отталкиваются друг от друга, размыкая электрическую цепь.

У переключающего геркона один из трех контактов, как правило, нормально - замкнутый выполняется из металла немагнитного, а оба нормально - разомкнутых контакта из ферромагнитного, как было сказано чуть выше. Поэтому при воздействии на геркон магнитного поля нормально разомкнутые контакты просто замыкаются, а немагнитный нормально - замкнутый, оставаясь на своем первоначальном месте, размыкается.

Примечание. Нормально - разомкнутый контакт , это который разомкнут при отсутствии управляющего воздействия, в данном случае магнитного поля. Соответственно нормально - замкнутый контакт замкнут при отсутствии магнитного поля.

Конечно, магнитное поле присутствует всегда, например магнитное поле Земли. И нельзя, вроде бы, сказать про отсутствие магнитного поля совсем. Но магнитное поле Земли для срабатывания геркона недостаточно, поэтому им можно пренебречь и сказать об отсутствии магнитного поля, в данном случае внешнего.

Продолжение читайте в следующей статье.

Продолжение статьи:

Борис Аладышкин



2024 stdpro.ru. Сайт о правильном строительстве.