Конструкция пролетных строений со сквозными фермами. Балочные мосты со сквозными фермами. Строительство промежуточной опоры моста

Лекция №9.

Балочные пролетные строения с решетчатыми фермами.

Различают фермы по роду езды – поверху и понизу. Фермы в основном применяются при строительстве железнодорожных мостов, гораздо реже – при строительстве автодорожных.

Границы рационального применения ферм установить сложно, т.к. это зависит от многих факторов (строительная высота, архитектурные требования, способ монтажа и т.п.). Однако в малых пролетах (до 30…40 м) решетчатые фермы нецелесообразны, т.к. трудоемкость и стоимость их изготовления существенно выше, чем балок со сплошной стенкой.

Для балочных ж.д. мостов от 44 до 132 м существуют типовые проекты пролетных строений в виде ферм с ездой понизу.

Для балочных автодорожных мостов фермы целесообразны при пролетах более 150…200 м, т.к. до этих длин решетчатые пролетные строения почти полностью вытеснены сплошностенчатыми балками.

В решетчатых пролетных строениях вместо листа стенки устроена дискретная решетка, элементы которой вместе с поясами должны образовывать геометрически-неизменяемую конструкцию

Конструктивные элементы фермы представлены на рисунке.

В фермах при узловой передаче нагрузки все элементы работают преимущественно на осевые силы, что позволяет полнее использовать прочностные свойства материала. В этом их основное достоинство.

В мостах всех назначений балочные решетчатые пролетные строения могут быть разрезными, неразрезными и балочно-консольными.

Основными параметрами решетчатого пролетного строения являются:

Расчетный пролет lр (расстояние между точками опирания);

Высота фермы h1 (расстояние между геометрическими осями поясов);

Панель фермы d (расстояние между центрами смежных узлов ездового пояса);

Угол наклона раскосов к вертикали α (tg α=d/h1);

Расстояние между осями главных ферм В.

В нашей стране длину расчетного пролета фермы lр назначают, как правило, кратной длине панели d. При этом d=11 м в железнодорожных мостах и d=21 (10,5) м – в автодорожных мостах.

Длина панели d может быть выбрана произвольной, желательно иметь только регулярную решетку. Необходимо учитывать, что компоновочные параметры фермы (d и h1) взаимосвязаны и при заданной высоте фермы длина панели должна быть такой, чтобы обеспечить угол α в пределах 30⁰…50⁰.

Высота фермы при езде поверху определяется требованиями обеспечения вертикальной жесткости и экономичности. Наименьшая металлоемкость фермы в ж.д. мостах достигается при высоте ферм h1=(1/5…1/7)lр, однако при езде поверху фермы обычно делают более низкими – h1=(1/7…1/9)lр.

В автодорожных мостах принимают высоту ферм h1=(1/8…1/12)lp для разрезных пролетных строений. Для неразрезных ферм h1=(1/10…1/14)lp.

В городских условиях высота и конфигурация ферм подчиняются архитектурным требованиям. Назначение высоты ферм также должно учитывать унификацию, стандартизацию при заводском изготовлении, а также условия транспортировки и монтажа конструкций.

Расстояние В между осями главных ферм поперек моста, подобно сплошностенчатым конструкциям, определяется конструкцией мостового полотна, поперечной устойчивостью пролетного строения, его горизонтальной жесткостью и экономическими соображениями.

Поперечная устойчивость может быть увеличена снижением высоты фермы над опорами, или устройством опорных частей, воспринимающих отрицательные опорные реакции.

По требованиям горизонтальной жесткости рекомендуется назначать расстояние между фермами с ездой поверху не менее (1/16…1/20)lp. Как правило, для однопутных пролетных строений с ездой поверху назначается расстояние между фермами 2…2,2 м. При безбалластном мостовом полотне устраивают балочную клетку проезжей части. В этом случае нагрузка от подвижного состава передается через мостовое полотно на продольные балки, которые передают нагрузку через поперечные балки на узлы ездового пояса.


Пролетное строение с ездой поверху без балочной клетки проще и легче, чем с клеткой, но его верхние ездовые пояса работают на осевое сжатие с местным изгибом при внеузловом приложении нагрузки, что требует увеличить сечения верхних поясов и массу главных ферм, либо снизить длину панели.

При езде поверху существенно снижается объем кладки опор, но большая строительная высота при перекрытии судоходных пролетов является существенным недостатком. Поэтому в судоходных пролетах чаще всего используют пролетные строения с ездой понизу.

В пролетных строениях с ездой понизу обычно исключают концевые стойки и примыкающие к ним элементы верхних поясов, т.к. они не работают на вертикальную нагрузку. Очертание контура фермы с ездой понизу по фасаду имеет форму трапеции.


Расстояние между осями ферм с ездой понизу приходится увеличивать. Для однопутных мостов оно составляет 5,6…5,8 м, чтобы фермы располагались вне габарита приближения строений. При больших пролетах это расстояние также определяется поперечной устойчивостью и горизонтальной жесткостью, которые в большинстве случаев удовлетворяются при расстоянии между фермами (1/20…1/25)lр.

Экономически выгодная высота ферм данного типа (1/5…1/7)lр в железнодорожных мостах и (1/6…1/10)lр в автодорожных.

По условиям расположения поперечных связей и верхних продольных связей за пределами габарита приближения строений минимальная высота ферм составляет 8…8,5 м.

Высота может быть увеличена, исходя из условий обеспечения вертикальной жесткости, унификации размеров серии пролетных строений и эстетических соображений.

В случае, когда экономически выгодная высота главных ферм оказывается недостаточной для установки верхних продольных связей, применяют пролетные строения открытого типа, подобные сплошностенчатым пролетным строениям с ездой понизу (ТП 563). В них отсутствующие продольные связи заменяются жесткими полурамами, формируемыми из поперечных балок, стоек и подвесок главных ферм.

Верхние пояса открытых пролетных строений работают в неблагоприятных условиях – как сжатые стержни, закрепленные от поперечных смещений упруго-податливыми связями в местах установки полурам.

При недостаточной жесткости полурам случались обрушения пролетных строений в результате потери устойчивости сжатыми поясами ферм.

В пролетных строениях с ездой понизу увеличиваются длины элементов продольных связей, т.к. больше расстояние между фермами, и усложняется устройство поперечных связей, выполняемых в виде рам со сквозными или сплошностенчатыми ригелями. Горизонтальную нагрузку ферма верхних продольных связей передает через опорные поперечные связи (портальные рамы) на опорные части. Поэтому портальные рамы несут значительно большую нагрузку, чем промежуточные поперечные связи и выполняются достаточно жесткими. Портальные рамы размещаются в плоскости опорных раскосов.

Поперечная нагрузка с нижних продольных связей передается непосредственно на опорные части.

При езде понизу также устраивается проезжая часть в виде балочной клетки, в которой продольные балки объединяют в пространственную конструкцию собственной системой связей. Поперечные балки прикрепляют в узлах нижних поясов ферм.

Расположение балок проезжей части возможно выполнить как в одном уровне, так и в разном уровне, так называемое этажное расположение.

Хотя Москва не Санкт-Петербург и не Венеция, но ее мосты также заслуживают внимания.
Вообще мост (а это также и путепроводы, эстакады, виадуки) - одно из древнейших инженерных изобретений человечества. Мосты играли важную роль в развитии торговли и градостроения. Иногда от них зависели даже отношения между странами. Рекорды на самый длинный, широкий, высокий или оживленный мост уже неоднократно побиты. А началось все с обычного бревна, перекинутого через реку…


По большому счету, не имеет значения, из какого материала построен мост, если с инженерной точки зрения он точно спланирован. Однако очень долго в мостостроении использовался камень как долговечный и прочный материал. Затем на смену ему пришел кирпич. При этом в любой части света можно найти легкие и экономичные деревянные мосты, а в теплых краях - мосты из растительных материалов. Но нужно отметить, что эти материалы плохо справляются с большими нагрузками и со временем разрушаются.
Промышленная революция принесла в мостостроение чугун и сталь, которые начали использоваться практически везде. Эти материалы были не только прочными, но и позволяли в процессе литья получить сложные формы и изысканные декоративные элементы. Это стало их визитной карточкой. А вторая половина XIX и XX век стали временем активного использования железобетона. Кстати, сам материал был изобретен в 1849 году французским садоводом Жозефом Монье. Подготавливая горшки для растений он, эксперимента ради, опустил в бетон металлическую сетку. Это и стало рождением железобетона. Сейчас это материал номер один в строительной индустрии, хотя другие материалы, даже такие экстравагантные, как стекло, также используются в мостостроении для создания необычных художественных эффектов.

С инженерной точки зрения можно выделить шесть типов мостов.
Балочный мост - самый древний тип мостов. Его прообразом было бревно, перекинутое через водный поток. По своей конструкции балочный мост - это горизонтальное строение (балка), покоящееся на опорах с двух сторон. Если мост достаточно длинный, то для создания прочной конструкции балка может опираться на несколько опор. Промежуточные опоры называются быками, береговые - устоями. Также могут использоваться «свободно опертые балки»: несколько продолжающих друг друга балок, которые обеими концами лежат на опорах.


Арочный мост имеет в своей основе арку. При этом мостовое полотно может идти сверху арки, под аркой или пересекать арку насквозь. Нужно отметить, что это очень прочная конструкция, выдерживающая большие нагрузки. Обеспечивается это за счет того, что вертикальная нагрузка передается по кривой с каждой стороны арки на ее опору (пяту) и далее в почву. Мост из нескольких небольших арочных пролетов, проходящих над землей, называется виадук (не нужно путать с акведуком – мостом для подачи воды).




Балочные мосты со сквозными фермами имеют решетчатый вид и используют прочность треугольной конструкции. Здесь балки размещаются также и над пролетом моста.


Консольный мост часто путают с арочным, ведь нередко его консольная рука имеет форму арки. Но в консольной конструкции пролет свешивается за пределами опор. Он состоит из двух типов балок: анкерной, находящейся между опорами, и подвесной, свешивающейся от опоры до конца консоли. Поэтому по центру пролета или рядом с ним можно увидеть соединение двух консолей (тогда как две арки соединяются друг с другом рядом с пилоном).


Висячий (подвесной) мост известен с глубокой древности, и сейчас переживает второй рождение. В висячих мостах полотно подвешивается на тросах - поддерживается вертикальными тросами (подвесками), прикрепленными к основным несущим тросам. Поэтому с инженерной точки зрения Крымский мост - висячий, а не вантовый.


Вантовый мост объединяет в себе особенности висячего и консольного моста. Каждая ванта (многожильный трос) крепится на пилон или мачту (столб), возвышающийся над мостовым полотном. При этом ванты могут расходиться веером от мачты или имитировать «арфу» - располагаться параллельными ярусами, восходящими к мачте.


Передвижные мосты могут в своей основе иметь любую конструкцию. Главная из особенностей – подвижные элементы, освобождающие акваторию для прохода судов. Они могут быть подъемными, затопляемыми, поворотными, наклонными, складывающимися и даже скручивающимися. Пока в Москве передвижных мостов нет.

Очень часто сходу сложно определить, к какому типу относится тот или иной мост. И это неудивительно, ведь нередко они соединяют в себе черты нескольких типов (это так называемые гибридные мосты). А если мост со временем перестраивался, укреплялся или реставрировался, то, скорее всего, использование конструкций другого типа стало результатом инженерных расчетов.

В металлических мостах средних и больших пролетов, как правило, применяют пролетные строения со сквозными фермами и массивные опоры. Конструктивно сквозная ферма имеет главные фермы, продоль­ные и поперечные связи. Проезжая часть может располагаться понизу или поверху пролетного строения. Главные фермы из линейных элемен­тов имеют различные очертания. Они изготавливаются из высокопроч­ных низколегированных сталей с болтосварными соединениями.

Главные фермы стальных пролетных строений представляют собой плоские геометрически неизменяемые стержневые конструкции, состо­ящие из элементов нижнего и верхнего поясов и элементов решетки: рас-166


косов, стоек, подвесок. Пояса и раскосы являются основными конструк­тивными элементами фермы; стойки, подвески, шпренгели, работаю­щие только на местную нагрузку, называются дополнительными. Пере­сечения раскосов, стоек, и подвесок с поясами ферм называются узлами ферм, а горизонтальное расстояние между центрами смежных узлов на­зывается панелью (рис. 7.21).

По очертанию поясов фермы могут быть с параллельными поясами или с полигональным верхним поясом. В мостах наибольшее распрост­ранение получили фермы с параллельными поясами и простой тре­угольной решеткой. Применяются также фермы с полигональным верх­ним поясом и треугольной решеткой. Для уменьшения длины панели в фермах больших пролетов используются шпренгели (понизу). Для больших пролетов используются двухрешетчатые (ромбические) фер­мы.

Фермы с параллельными поясами имеют большую на 2-5 % массу стали, чем фермы с полигональными поясами, но меньшую трудоем­кость и стоимость изготовления и монтажа. Решетка ферм состоит из наклонных элементов - раскосов, работающих на растяжение и сжа­тие, вертикальных элементов - стоек, работающих на сжатие, и подве­сок, работающих на растяжение; для уменьшения длины элементов при­меняются стяжки и распорки.

Рис. 7.21. Основные конструктивные элементы фермы: 1 - нижний пояс; 2 - верхний пояс; 3 - сжатый (восходящий) раскос; 4 - растянутый (нисходящий) раскос; 5 - стойка; 6 - подвеска; 7 - панель ниж­него пояса; 8 - панель верхнего пояса; А - узел верхнего пояса фермы; Б - узел нижнего пояса фермы; а - длина панели; п - количество панелей; l - длина пролетного строения; h - высота фермы


Главные фермы имеют раскосную, ромбическую, треугольную, шпренгельную и другие решетки (рис. 7.22, 7.23). Раскосные решетки состоят из нисходящих, растянутых раскосов и сжатых стоек или вос­ходящих преимущественно сжатых раскосов и растянутых подвесок, для больших пролетов применяется полураскосная и многораскосная решетки. Ромбическая решетка состоит из перекрещивающихся раско­сов и одного горизонтального или вертикального элемента, обеспечи­вающего геометрическую неизменяемость фермы. Треугольная решетка представляет собой восходящие и нисходящие раскосы со стойками или со стойками и подвесками. Шпренгельная решетка состоит из основной раскосной или треугольной решетки и шпренгелей, расположенных у верхнего или нижнего пояса. Могут применяться фермы безраскосные, имеющие между поясами только вертикальные элементы - стойки. Выбор вида решетки фермы производиться путем сравнения расхода стали, количества элементов и узлов, трудоемкости, стоимости и других технико-экономических показателей.



В старых мостах применялись многорешетчатые и многораскосные фермы, фермы с крестовой решеткой, полураскосные с параболическим верхним поясом, раскосные фермы со шпренгелями поверху.

Под воздействием вертикальной нагрузки в балочных разрезных сквозных фермах верхние пояса работают на сжатие, а нижние на растя­жение. Величина этих усилий возрастает с увеличением расчетного про­лета и уменьшается с увеличением высоты фермы. Раскосы, восходя­щие от опор к середине пролета, испытывают сжатие, а нисходящие - растяжение. Величина усилий в раскосе зависит от угла наклона раскоса к вертикали (чем меньше угол, тем меньше усилия в раскосе) и от очер-

Рис. 7.22. Решетка ферм в старых мостах: а - четырехрешетчатая; б - двухраскосная; в - крестовая; г - полураско­сная; д - с полигональным верхним поясом и верхними шпренгелями


Рис. 7.23. Схемы решеток ферм: а , б - фермы с раскосными решетками; в - полураскосная решетка; г - мно­гораскосная решетка; д , е , ж - фермы с ромбической решеткой; з - ферма с полигональным верхним поясом и шпренгельной решеткой; и - треугольная решетка; к - треугольная решетка со стойками; л - треугольная решетка со стойками и подвеской; м - многорешетчатая ферма; н - двухрешетчатая фер­ма; о - крестовая решетка; п - двойная треугольная с полуподвесками и полу­стойками; р - ферма с параллельными поясами и шпренгельной решеткой


тания поясов. В фермах с полигональным очертанием усилия в раскосах меньше, чем в ферме с параллельными поясам.

Подвески и стойки служат для уменьшения свободной длины пане­ли. Стойками называются элементы, работающие на сжатие, подвеска­ми - элементы, работающие на растяжение.

Для главных ферм малых пролетов наилучшей является простая тре­угольная решетка.

Для средних пролетов, до 110 м включительно, - треугольная ре­шетка с подвесками и стойками. Для больших пролетов, более 120 м, применяется треугольная решетка с подвесками и шпренгелями у ниж­него пояса, позволяющими сохранить оптимальную длину панели и угол наклона раскосов при большой высоте ферм. Для уменьшения сво­бодной длины сжатых панелей верхнего пояса подвески шпренгеля продолжаются до верхнего пояса, а для уменьшения свободной длины стоек и подвесок ставятся горизонтальные стяжки.

Основными расчетными размерами главных ферм являются: расчет­ный пролет, высота ферм, длина панели.

Расчетным пролетом ферм называется расстояние между центрами опорных узлов по горизонтали. Для пролетных строений железнодо­рожных мостов он принимается от 33 до 110 м, кратным 11 м, а также 127,4; 144,8; 158,4 см. Для возможности установки пролетных строений на существующие опоры необходимый расчетный пролет получается путем изменения длины крайних панелей ферм.

Высота главных ферм - это расстояние между осями горизонталь­ных узлов в сечении нижнего и верхнего пояса по вертикали. Высота главной фермы назначается из условия минимального расхода стали, требуемой жесткости фермы и габарита приближения строений. Высота фермы обычно составляет 1/5-1/7 расчетного пролета. В железнодо­рожных мостах с ездой понизу высота главных ферм принимается не менее 8,5 м для беспрепятственного прохождения подвижного состава.

Длина панели фермы - это расстояние между центрами соседних узлов поясов. Длина панели влияет на расход стали для главных ферм, балок проезжей части и связей между главными фермами. Увеличение длины панели уменьшает количество элементов и узлов фермы, но уве­личивает пролеты продольных балок, массу стали проезжей части. Дли­на панелей принимается 5,5-11 м.

Угол наклона раскосов влияет на конструкцию узлов фермы. Наивы­годнейшим углом наклона раскосов к горизонтали является 40-50°. При


значительном отклонении угла наклона от 45° увеличиваются размеры узловых фасонных листов и расход стали.

Высота ферм, длина панели, угол наклона раскосов взаимно связа­ны. Расстояние между осями ферм диктуется требованиями горизон­тальной жесткости и устойчивости против опрокидывания пролетного строения, а при езде понизу и габаритом приближения строений. По ус­ловию горизонтальной жесткости расстояние между осями ферм долж­но быть не менее 1/20-1/25 пролета при езде понизу и не менее 1/16- 1/20 при езде поверху, при этом горизонтальные колебания пролетных строений под проходящими поездами не опасны. По условию габарита, для однопутных железнодорожных пролетных строений с ездой понизу расстояние между осями ферм должно быть не менее 5,5 м, а для двух­путных - не менее 9,6 м. Для повышения уровня унификации, улуч­шения технологии изготовления и монтажа, снижения трудоемкости и стоимости главные фермы близких пролетов принимаются одинаковых систем, высоты ферм и длины панели.

Так, например, типовые главные фермы пролетами 88 и 110 м имеют параллельные пояса, треугольную решетку с подвесками и стойками, одинаковую высоту 15 м, длину панели 11 м и расстояние между фер­мами 5,8 м.

Элементы ферм представляют собой прямолинейные стержни, вос­принимающие большие продольные усилия и поэтому имеющие значи­тельные площади поперечных сечений. В современных пролетных стро­ениях наиболее применимыми являются сечения коробчатой и Н-образ-ной формы (рис. 7.24, 7.25).

Коробчатые сечения состоят из двух вертикальных и двух горизон­тальных листов, жестко соединенных сварными швами, вертикальные листы являются основными и более толстыми, чем горизонтальные. Ко­робчатые сечения имеют рациональное распределение металла, боль­шую жесткость при изгибе и кручении. Они экономичны по расходу стали, менее подвержены коррозии, но сложны в изготовлении. Короб­чатые сечения применяются как для поясов ферм, так и для сжатых рас­косов.

Коробчатые элементы из сплошных листов герметизируются уста­новкой по их концам сплошных поперечных диафрагм, препятствую­щих проникновению внутрь коробок влаги, снега и грязи. Применение герметичных элементов сокращает площадь окраски и замедляет корро­зию, что снижает эксплуатационные расходы и увеличивает срок служ­бы фермы.



Рис. 7.24. Сечение поясов сквозных ферм: а - швеллерное; б - коробчатое; в - П-образное и швеллерное; г - дву­тавровое Н-образное; д - одностенчатое; е - коробчатое


Н-образные сечения состоят из двух вертикальных и одного го­ризонтального листа, соединенных сваркой. Преимуществом их являет­ся простая открытая конструкция, удобная для изготовления: трудоем­кость их изготовления примерно в 1,5 раза меньше, чем коробчатых.

Недостатки Н-образных сечений состоят в: возможности загрязне­ния и необходимости частой очистки и окраски горизонтальных эле­ментов; опасности быстрой коррозии стали из-за скапливающихся в них

Размеры сечения элемен­тов назначаются в соответ­ствии с действующими усили­ями, маркой стали, требовани-


ями технологии изготовления, монтажа и эксплуатации. Высота сечения элементов принимается не более 1/15 их длин. Все элементы должны иметь одинаковую ширину для простоты соединения их в узлах.

Внутренние размеры коробчатых сечений должны быть не менее 440×460 мм для возможности прохода двухдугового сварочного аппа­рата. Толщина вертикальных листов из углеродистой стали должна быть не более 50 мм, а из низколегированной - не более 40 мм. Гори­зонтальные листы должны иметь толщину не менее 10 мм.

Узлы главных ферм представляют собой соединения концов эле­ментов, оси которых сходятся в одной точке - центре узла (рис. 7.26). К узлам ферм прикрепляются поперечные балки и элементы связей. Концы элементов ферм соединяются при помощи фасонных листов: фа-сонок-накладок, фасонок-вставок, фасонок-приставок. Фасонки должны быть простой формы, минимальных размеров и толщиной не менее 12 мм. Для снижения трудоемкости и повышения качества работ форма

Рис. 7.26. Конструкция узла ферм на высокопрочных болтах: 1 - нижний пояс фермы П-образного сечения; 2 - стойка двутаврового сече­ния; 3 - раскос коробчатого сечения; 4 - раскос двутаврового сечения;

5 - фасонка


и размеры узловых фасонных листов и стыковых накладок, а также рас­положение отверстий для монтажных болтов унифицируются, что дает возможность обеспечивать высокую точность сборки и взаимозаменяе­мость деталей.

Конструкция узлов ферм должна быть простой и удобной для монта­жа, предотвращать возможность скапливания воды и грязи.

Связи между фермами. Главные фермы стальных пролетных строе­ний соединяются в плоскостях верхних и нижних поясов продольными связями, а в плоскостях раскосов, подвесок или стоек - поперечными связями. Продольные связи представляют собой фермы, поясами кото­рых являются пояса главных ферм. Решетка связей может быть тре­угольной, ромбической, крестовой, полураскосной и других систем. Элементы связей устраиваются из прокатных или сварных уголков, тав­ров, двутавров, или швеллеров. Форма и размеры сечений элементов связей принимаются в зависимости от усилий и свободной длины эле­ментов. При небольших усилиях и длине сечения принимают уголковые или тавровые, при больших усилиях и длине сечения двутавровые.

Тормозные рамы, устраиваемые в железнодорожных пролетных строениях, передают продольные тормозные усилия от балок проезжей части на пояса ферм и далее на неподвижные опорные части. Тормоз­ные рамы располагаются посередине пролета. Рамы образуются из диа­гональных связей и распорок между продольными балками или из диа­гональных продольных связей и дополнительных раскосов.

Поперечные связи между главными фермами располагаются в верти­кальных плоскостях стоек и подвесок ферм или в наклонных плоско­стях промежуточных раскосов через 11-12 м.

Портальные рамы передают ветровую и другие поперечные нагрузки с верхних продольных связей на опоры. Они располагаются по концам пролетных строений в плоскостях опорных раскосов или стоек или пер­вых подвесок главных ферм.

Балочные пролетные строения со сквозными фермами находят применение в больших и внеклассных мостах. В фермах при узловой передаче нагрузки все элементы работают преимущественно на осевые силы, что позволяет полнее использовать прочностные свойства материала. Балочные пролетные строения со сквозными фермами подразделяют на разрезные, неразрезные и консольные, с ездой понизу и поверху.

Балочно-разрезное пролетное строение с ездой понизу однопутного железнодорожного моста состоит из двух главных ферм, объединенных в пространственную конструкцию системой продольных и поперечных связей (рис. 6.18, 6.19) .

Главные фермы металлических пролетных строений состоят из элементов верхнего и нижнего поясов и решетки: раскосов, стоек и подвесок (рис. 6.18).

Сквозные фермы имеют различные очертания поясов и системы решеток (рис. 6.19) . Фермы с полигональными поясами при езде понизу имеют верхний полигональный пояс (рис. 6.19, а ), а при езде поверху – нижний (рис. 6.19, б ). Фермы с параллельными поясами (рис. 6.19, в, г ) более рациональны, имеют меньшую трудоемкость и стоимость изготовления и монтажа, но на 2–5 % большую массу стали, чем предыдущие фермы.

Рис. 6.18. Пролетное строение с ездой понизу: 1 – портальная рама; 2 – верхние продольные связи; 3 – поперечные связи; 4 – верхний пояс фермы; 5 – распорка верхних продольных связей; 6 – подвеска; 7 – нижний пояс фермы; 8 – раскос;
9 – стойка; 10 – продольная балка проезжей части; 11 – поперечная балка; 12 – продольные связи проезжей части; 13 – нижние продольные связи фермы

Рис. 6.19. Схемы главных ферм: а, б – с полигональными поясами; в, г – с параллельными поясами

Решетка ферм состоит из раскосов, стоек и подвесок (рис. 6.18). Главные фермы имеют раскосную, ромбическую, треугольную, шпренгельную решетки (рис. 6.20) .

Рис. 6.20. Схемы решеток ферм: а, б – раскосная с нисходящими и восходящими раскосами; в – полураскосная; г – многораскосная; д – ромбическая; е, ж – ромбическая с полуподвескамии полустойками; и, т – шпренгельная;
к – треугольная с восходящими раскосами; л, м – треугольная со стойками и подвесками; н – многорешетчатая; п – двухрешетчатая; р – крестовая; с – двойная треугольная с полуподвесками и полустойками

Основные параметры фермы указаны на рис. 6.21 .

В современных конструкциях пролетных строений железнодорожных мостов расчетная длина пролета составляет от 33 до 110 м, кратная 11 м, а также 127,4; 144,8 и 158,4 м. Высота главной фермы составляет
= (1/5¸1/7) l р , но не менее 8,5 м, которую устанавливают из условий минимального расхода стали, требуемой жесткости фермы и габарита приближения строений. Длину панели принимают = 5,5¸11 м. Расстояние между осями главных ферм принимают с = (1/20¸1/25) l р из условий обеспечения горизонтальной жесткости и устойчивости против опрокидывания пролетного строения. По условиям габаритности для однопутных железнодорожных пролетных строений с 5,7 м.

Рис. 6.21. Основные параметры фермы: а – вид вдоль оси моста; б – план;
в – вид поперек оси моста; – расчетный пролет; – длина панели; – высота фермы; – расстояние между осями главных ферм; – расстояние между осями продольных балок проезжей части

Элементы ферм. В современных конструкциях пролетных строений находят применение два типа сечений: коробчатое и Н-образной формы (рис. 6.22) .

Рис. 6.22. Сечения элементов главной фермы: а–ж – коробчатой формы;
и – Н-образной формы

Размеры сечений элементов назначают в соответствии с действующими усилиями, маркой стали, требованиями технологии изготовления, монтажа и эксплуатации. Высоту сечений элементов принимают не более 1/15 их длины, а ширину – из условия примерно равной гибкости в плоскости и из плоскости фермы.

Проезжая часть состоит из продольных и поперечных балок, связей между продольными балками и мостового полотна. Расположение балок проезжей части бывает в одном и разных уровнях. Продольные балки применяют в современных фермах сварные двутаврового сечения высотой (1/5¸1/7) их пролета (рис. 6.23) .

Рис. 6.23. Конструкция продольной балки проезжей части фермы: а – вид вдоль оси пролета; б – план балки; в – план горизонтальных связей; 1 – поперечное сечение балки; 2 – уголок крепления связей; 3 – фасонка поперечных связей; 4 – ребро жесткости; 5 – уголок прикрепления продольной балки к поперечной; 6 , 10 – «рыбка»; 7 – отверстия для болтов; 8 – распорка; 9 – отверстия; 11 – диагональ

Поперечные балки прикрепляют к элементам главных ферм высокопрочными болтами при помощи вертикальных уголков и треугольных фасонок (рис. 6.24) .

Мостовое полотно железнодорожных пролетных строений с фермами применяют на деревянных или металлических поперечинах, железобетонных безбалластных плитах (рис. 6.25) . Нагрузки от мостового полотна передаются на продольные балки, а затем на поперечные балки и главные фермы. Балки работают на изгиб. Деформация поясов главных ферм вызывает в продольных балках растяжение при езде понизу и сжатие при езде поверху, а в поперечных балках – изгиб в горизонтальной плоскости.

Рис. 6.24. Конструкция прикрепления поперечной балки к элементам главной фермы: 1 – отверстия для крепления продольной балки; 2 – вертикальный уголок прикрепления; 3 – фасонка («топорик») прикрепления уголка к поперечной балке; ГЛ – горизонтальный лист; ВЛ – вертикальный лист; Ф – фасонка; ВН – вертикальная накладка; – толщина элемента

Рис. 6.25. Мостовое полотно с безбалластной железобетонной плитой:
1 – перила; 2 – убежище; 3 – тротуар; 4 – рельс; 5 – контруголок; 6 железобетонная плита; 7 – консоль

Узлы главных ферм с болтовыми стыками устраивают различным способом (рис. 6.26) . В железнодорожных мостах применяют, как правило, узлы на фасонных накладках. Парные фасонки охватывают снаружи все элементы фермы и центрируют оси сходящихся в узле элементов (рис. 6.26).

Рис. 6.26. Виды узлов главной фермы: а – нижние (Н), верхние (В) и средние (С);
б – с фасонками-накладками; в – с фасонками-вставками; 1 – узловой фасонный лист; 2 – стыковая накладка

Типовые пролетные строения с ездой понизу имеют расчетные пролеты 33,0; 44,0; 55,0; 66,0; 77,0 88,0; 110,0 м и разбиты на три серии (ГТМ, 1989 г.). Типовые пролетные строения с ездой поверху имеют расчетные пролеты 44,0; 55,0 и 66,0 м.

6.6. Балочно-неразрезные пролетные
строения с фермами

Неразрезные балочные пролетные строения отличаются от разрезных меньшими положительными изгибающими моментами и прогибами. В неразрезных пролетных строениях применяют те же типы решеток, что и в простых разрезных фермах. Используют обычно двухпролетные и трехпролетные конструкции.

К достоинствам балочно-неразрезных пролетных строений по сравнению с разрезными относят: экономию металла при больших пролетах; большую вертикальную и горизонтальную жесткость; возможность обеспечения высоких скоростей движения; уменьшение объема кладки опор; применение навесной сборки. К основным их недостаткам можно отнести значительные перемещения конца пролетного строения при изменении температурного режима и увеличение тормозной силы.

Типовые пролетные строения с неразрезными фермами под один железнодорожный путь с ездой понизу имеют пролеты: 2´110; 2´132; 2´159 (рис. 6.27) , 110+132+110 и 132+154+132 м, а с ездой поверху – 2´55 и 2´65 м. Они запроектированы из термически упрочненной стали марки 10ХСНД и могут применяться в обычных и северных условиях.

Рис. 6.27. Схемы неразрезных пролетных строений со сквозными главными фермами и ездой понизу: а – двухпролетные; б – трехпролетные; в – со шпренгельной решеткой

Преимущество типовых неразрезных пролетных строений состоит в том, что элементы главных ферм и связей, а также балки проезжей части изготовляют на заводе с максимальным использованием имеющегося оборудования и кондукторов типовых разрезных пролетных строений. При этом заводские соединения выполняют электросваркой, а монтажные – высокопрочными болтами .

Пролетные строения со сквозными фермами применяются главным образом для перекрытия средних и больших пролетов, где балки со сплошными стенками получаются тяжелыми и сложными.

Стержневая ферма является как бы скелетом балки - вместо сплошного вертикального листа стенки здесь поставлена стержневая решетка, элементы которой вместе с поясами образуют геометрически неизменяемую систему. В стержневых фермах при узловой нагрузке все элементы работают на центральные осевые силы, что позволяет рационально использовать рабочие площади их сечений.

Однако при небольших пролетах экономия металла не достигается или получается незначительной из-за неизбежных излишков в площадях сечений стержней, обусловленных ограничениями в использовании малых номеров профильного проката, необходимостью выдерживать нормируемую гибкость стержней и т. п. Трудоемкость изготовления и общая стоимость сквозных ферм малых пролетов оказываются выше, чем балок со сплошной стенкой.

Точно установить границы целесообразного применения сквозных ферм не представляется возможным, так как они зависят от многих условий: состояния техники изготовления на заводах, условий перевозки и монтажа, строительной высоты, системы моста, качества стали. Решение вопроса каждый раз определяется конкретными условиями проектирования моста.


В мостах используются сквозные пролетные строения с разрезными, неразрезными и консольными фермами при езде поверху и понизу (рис. 95).

Простейшее пролетное строение с ездой поверху (рис. 96) состоит из двух главных ферм, соединенных верхними и нижними продольными связями, а также опорными и промежуточными поперечными связями. Продольные связи формируются как горизонтальные фермы: их поясами служат пояса главных ферм.

Поперечные связи размещаются в плоскостях крайних и промежуточных стоек главных ферм. Расстояние между смежными узлами пояса фермы называют панелью.

Геометрическая неизменяемость пролетного строения, представляющего собой пространственную конструкцию, обеспечивается неизменяемостью шести его плоских граней: главных ферм, систем верхних и нижних продольных и опорных поперечных связей.

Полученную горизонтальную нагрузку ферма верхних продольных связей передает опорным поперечным связям, а последние - через опорные части на опоры моста. Горизонтальная нагрузка от нижних продольных связей передается непосредственно на опорные части пролетного строения.

Промежуточные поперечные связи предназначены выравнивать вертикальную нагрузку между главными фермами при неодинаковом их загружении и повышать сопротивление пролетного строения кручению. Кроме того, при современной технологии сборки больших пролетных строений без устройства поддерживающих подмостей (навесным или полунавесным способами) промежуточные поперечные связи должны обеспечивать геометрическую неизменяемость пролетного строения в процессе его сборки, когда одна из систем опорных поперечных связей отсутствует.

К основным размерам пролетного строения относятся: расчетный пролет l , высота ферм h , измеряемая между осями верхнего и нижнего поясов, расстояние между фермами В , длина панели d и угол наклона раскосов к вертикали а (рис. 97, а).

Высота главных ферм h при езде поверху определяется, как правило, требованиями вертикальной жесткости и экономичности. Показателем достаточной жесткости является величина прогиба ферм от нормативной временной вертикальной нагрузки. Для железнодорожных мостов прогиб не должен превышать 1/800 l , а для автодорожных мостов - 1/400 l .

Многолетняя практика проектирования показала, что наиболее экономичными по расходу металла фермы железнодорожных мостов получаются при высоте их h , равной (1/5 - 1/7) l .

В автодорожных мостах это отношение колеблется в пределах (1/5 - 1/10) l .

В ряде случаев высота ферм при езде поверху может быть назначена и меньшей с целью сокращения высоты и стоимости насыпи на подходах к мосту.

Назначение высоты ферм может быть также подчинено удобствам заводского изготовления. Например, для ферм разных пролетов высота может быть принята одинаковой с целью использования одних и тех же заводских обустройств (кондукторов, шаблонов и т. д.) для изготовления их элементов.

В городских условиях высота ферм пролетных строений, входящих в комплекс мостового перехода, иногда определяется архитектурными соображениями.

Расстояние между осями ферм В в пролетных строениях с ездой поверху зависит от числа путей (у железнодорожных мостов), ширины проезжей части и тротуаров (у автодорожных и городских мостов), конструкции проезжей части, а также от требований, предъявляемых к устойчивости пролетных строений и жесткости в горизонтальной плоскости.

При небольших пролетах мостов под однопутную железную дорогу (до 30-35 м) и при езде на деревянных, мостовых брусьях стандартных размеров, уложенных непосредственно на пояса ферм, минимальное расстояние между фермами может быть назначено таким же, как и у пролетных строений со сплошными стенками, т. е. 2,0-2,2 м.

Однако верхние пояса ферм при этом будут работать в трудных условиях на сжатие и местный изгиб в связи с внеузловым приложением нагрузки.

Длину панели d при опирании мостовых брусьев на пояса ферм стараются назначать по возможности меньшей, чтобы уменьшить изгибающий момент в поясах, а высоту верхних поясов развивают до (1/5 - 1/7) l , учитывая работу поясов на сжатие с изгибом.


При пролетах более 35-40 м приходится увеличивать расстояние между фермами для обеспечения устойчивости пролетного строения и создания достаточной жесткости в горизонтальной плоскости. Обеспечить устойчивость можно, расположив, например, опорные части на более высоком уровне (рис. 97, б) или применив опорные части, способные воспринимать отрицательные реакции.

По требованиям жесткости пролетного строения в горизонтальной плоскости, основанным на опыте эксплуатации пролетных строений с ездой поверху, рекомендуется назначать расстояние между фермами не менее (1/16 - 1/20) l .

При расстоянии между фермами до 2,5 м можно применить деревянные мостовые брусья с увеличенной высотой. При большем расстоянии между фермами сечения деревянных брусьев оказываются непомерно большими.

В этом случае пролетное строение снабжают балочной клеткой, состоящей из поперечных балок, прикрепленных в узлах главных ферм, и продольных балок, опирающихся на поперечные (рис. 98). Стандартные мостовые брусья укладываются на продольные балки, расстояние между которыми 1,9-2 м. В таком пролетном строении обеспечивается узловая передача вертикальной нагрузки на главные фермы, и пояса работают на осевые усилия.

Угол наклона раскосов к вертикали а в фермах зависит от длины панели и высоты ферм, поэтому при назначении этих размеров ферм приходится обращать внимание на получаемый наклон раскоса. При очень остром угле усилия в раскосах и их длина уменьшаются, но число раскосов и их суммарная длина возрастают; с увеличением угла растут усилия в раскосах и их длина, что приводит к увеличению сечений раскосов, однако при этом количество и общая протяженность раскосов сокращаются.

Наиболее выгодным по расходу металла и удобным для конструирования узлов является угол, близкий к 40°. Допустимыми являются углы в пределах от 30 до 50°. При иных значениях угла слишком высокими или широкими получаются узловые фасонки, неконструктивными оказываются прикрепления элементов й повышается расход металла на раскосы и в целом на фермы.

В условиях нашей страны с преобладающим равнинным характером рек для перекрытия русловых судоходных пролетов редко применяются пролетные строения с ездой поверху из-за их большой строительной высоты, от которой зависит общая высота моста и подходов к нему. Чаще используются пролетные строения с ездой понизу, отличающиеся малой строительной высотой.

У ферм этих пролетных строений целесообразно исключить концевые стойки и примыкающие к ним элементы верхних поясов, так как они не работают на вертикальную нагрузку. Очертание контура ферм в этом случае приобретает форму трапеции.

Пролетное строение с ездой понизу под однопутную железную дорогу формируется из двух главных ферм, соединенных верхними и нижними продольными связями, промежуточными и опорными поперечными связями (рис. 99). Расстояние между осями ферм здесь приходится увеличивать до 5,6-5,8 м, чтобы фермы размещались вне пределов габарита приближения строений. При больших пролетах это расстояние также определяется требованиями обеспечения поперечной устойчивости и горизонтальной жесткости.

Наименьшая высота главных ферм определяется из условий размещения верхних продольных и поперечных связей за пределами габарита приближения строений и составляет 7,5-8,0 м.

В пролетном строении с ездой понизу увеличиваются длины элементов продольных связей и усложняется устройство поперечных связей. Опорные псщеречные связи обычно размещают в плоскостях крайних раскосов и формируют в виде жестких рам, называемых портальными.

Промежуточные поперечные связи устраивают в плоскостях стоек или подвесок также в виде рам со сквозными или сплошными ригелями, расположенными выше габарита приближения строений.

Продольные и поперечные балки проезжей части для сокращения строительной высоты обычно располагают в одном уровне.

Продольные балки в пределах каждой панели представляют собой как бы небольшие пролетные строения. Они объединяются верхними продольными и промежуточными поперечными связями.

Затрата металла на проезжую часть (продольные и поперечные балки) составляет существенную часть общего расхода металла на пролетное строение. Наименьший расход металла на балочную клетку с ездой на деревянных мостовых брусьях достигается при длине панели 5-6 м.

В редких случаях, при небольших пролетах, высота главных ферм принималась менее 7,5-8,0 м. При этом исключается возможность установки верхних продольных связей.

Для обеспечения поперечной жесткости открытых пролетных строений (рис. 100) поперечные балки объединяют со стойками ферм в жесткие полурамы, ригелями которых служат поперечные балки.

Верхние пояса ферм таких пролетных строений работают в очень неблагоприятных условиях как сжатые стержни, упруго закрепленные в местах установки полурам. При недостаточной жесткости полурам случались аварии подобных конструкций вследствие потери верхними поясами устойчивости.

Пролетные строения железнодорожных мостов подвержены воздействию значительных тормозных сил. Тормозные силы приложены к продольным балкам и если балки не закрепить в продольном направлении, то они будут смещаться вдоль пролета, изгибая поперечные балки в горизонтальной плоскости. Во избежание этого ставят специальные тормозные связи (рис. 101), прикрепляющие продольные балки к поясам главных ферм и передающие тормозные усилия с продольных балок в узлы главных ферм. Далее тормозные силы с поясов передаются на опоры через неподвижные опорные части.

В многопролетных мостах на каждой промежуточной опоре под одно из пролетных строений обычно устанавливают неподвижные опорные части, а под другое - подвижные, чтобы равномернее распределить между опорами нагрузку от тормозных сил.



2024 stdpro.ru. Сайт о правильном строительстве.