Что такое молниезащита? Внутренняя молниезащита Внутренняя молниезащита

Комплекс различных мер от вторичного воздействия молний. Основная составляющая внутренней молниезащиты - это УЗИП (Устройство Защиты от Импульсных перенапряжений). Оно служит для защиты электрооборудования от импульсных и коммутационных перенапряжений. Основными источниками импульсных перенапряжений являются молнии (грозовые разряды) и коммутация больших нагрузок.

Внутренняя молниезащита - залог исправной работы электрооборудования

Во время гроз возникает импульсное перенапряжение – короткие импульсы высокой энергии, возникающие на входах электрического оборудования на объекте. Причины их возникновения - разряды молний в объект, близкие разряды молний, включая высотные, техногенные источники.

Эта проблема в последнее время стоит особенно остро, потому что современное жилище буквально нашпиговано инженерным оборудованием с микропроцессорами. Туда входят компьютерные сети, системы отопления, видеоконтроля, климат контроля, телевизионные сети и прочее. В результате импульсного перенапряжения сети выходят их строя вместе с электроприборами.

Средством решения проблем становится система внутренней молниезащиты – комплекс устройств защиты от импульсных перенапряжений, сокращенно УЗИП. Цель УЗИП – сохранить электронное, электрическое оборудование от перенапряжений которые вызваны током молний. Перенапряжения от прямого воздействия молний определяют как тип 1, форма волны здесь 10/350мкс. Это самый опасный вид ввиду большой запасенной энергии. Перенапряжения вследствие непрямых ударов (вблизи здания) называются тип 2, форма волны 8/20мкс. Запасенная энергия меньше чем у типа 2 в 17 раз.

В процессе работы внутренней молниезащиты в различных зонах выравниваются потенциалы. Это осуществляется устройством, называемым «шина выравнивания потенциалов»(далее ШВП). Она обеспечивает соединение заземляющих проводников от каркаса, металлических конструкций, электронной и электрической техники, кабелей и т.п. ШВП соединяется с заземлением всего объекта.

Внутренняя молниезащита зданий содержит различные УЗИП 3х классов: I класс – предварительная защита, устанавливается в главном распределительном щите или вводно-распределительном устройстве. Класс II – вторая ступень защиты от прямых ударов и первой – для отдаленных. Это устройства средней защиты, устанавливаются в распределительных щитах. III класс – окончательная (тонкая) защита. Выполняет функции защиты электрооборудования, фильтрации высокочастотных помех. Устанавливается в конечных распределительных щитах либо вблизи электроприборов с расстоянием не ближе 5м.

Внутренняя молниезащита, спроектированная и установленная специалистами в этой области, надежно обеспечивает сохранность имущества хозяев загородных домов.

Механизм разряда молнии достаточно изучен, однако природа часто преподносит сюрпризы и в некоторых случаях даже профессионалы оказываются в тупике. Эффективная система грозозащиты включает внешнюю молниезащиту и внутреннюю. Первая защищает от прямого удара молнии в дом, строение или какой-нибудь объект (спутниковую антенну, памятник, резервуар с топливом и т.п.). При этом специалисты давно уже знакомы с возможным распространением тока молнии по подземным и надземным коммуникациями типа трубопроводов и коммуникационных сетей. Они научились надежно защищать человека и его имущество от прямого поражения молнией. В соответствии с действующими отечественными нормативными актами определяются категории защиты от прямого удара молнии и выполняется расчет молниезащиты.

Словосочетание внутренняя молниезащита для многих не совсем непонятно. Молния не может проникнуть внутрь строения через оконное стекло, вентиляцию или дымоход, поэтому многие не понимают, зачем нужно создавать внутреннюю защиту и что можно считать эффективной внутренней грозозащитой. Благодаря работоспособной внешней молниезащите электрический разряд улавливается громоотводом и по токоотводам направляется через специальные заземления для рассеивания в земле. Однако вся совокупность этих мероприятий и устройств не спасает от возникающего во время этого процесса электромагнитного поля. Оно может с легкостью проникать глубоко внутрь здания и становится причиной выхода из строя бытовой электроники, а также сложных микропроцессорных агрегатов. Электромагнитное поле способно повредить работу автоматики и стать причиной ложных или некорректных команд в системах управления. Надежно защитить все чувствительное электронное оборудование, расположенное внутри здания, позволяет именно система внутренней молниезащиты.

Внутренняя молниезащита: жизненно необходимая безопасность

Опытные специалисты считают разделение молниезащиты на внешнюю и внутреннюю условным. Сила негативного влияния электромагнитного поля внутри дома напрямую зависит от траектории распространения молнии и путей растекания тока. Наглядным примером этого является не выдуманный пример из жизни. Иностранными архитекторами на территории нашей страны было спроектировано и построенное интересное здание высотой с телебашню. В качестве изысканного декора очертания постройки архитекторы использовали тонкий шпиль установленный вертикально. Основание шпиля было на уровне земли, а вершина превышала кровлю на 50 м. Такое решение архитекторов не вызвало негативных отзывов у электриков, а даже наоборот понравилось им.

Статистика утверждает, что в центрально-европейской части России в 350-метровые постройки молния бьет в среднем 10-15 раз за сезон гроз. Согласно наблюдениям всего две из них имеют стандартный механизм разряда, то есть формируются в грозовом облаке и по плазменному каналу стремятся вниз к земле. Все оставшиеся образуются в верхней точке самого здания и устремляются от него вверх к грозовому облаку. Это явление получило название «восходящие молнии». В связи с тем, что место зарождения и старта молнии находится на вершине сооружения ее легко перехватывать. Казалось бы, громоотвод не нужен, его функции заменил шпиль.

Проблема была выявлена после детального разбора и анализа сложившейся ситуации. Шпиль находился у задней стенки конструкции. Из-за сильно выраженной несимметричной геометрии здания получилось, что разряд молнии концентрированным потоком направлялся к земле по задней стенке. При этом он создавал магнитное поле огромной силы, которое ничем не компенсировалось. Мощное электромагнитное поле создавало большую опасность для внутренней электросети постройки. Поэтому проектировщикам пришлось создать сложную систему внешней молниезащиты, которая позволяла бы снизить величину суммарного электромагнитного поля. Все их старания все же не помогли полностью защитить электрооборудование в этом здании и профессионалам пришлось заниматься проектированием и монтажом элементов внутренней молниезащиты.

Вторым ярким примером, важности грамотной организации внутренней защиты может служить резервуар с жидким топливом, который размещается под открытым небом. Данный объект спроектирован таким образом, что он не боится прямого разряда молнии. Однако даже тут во время грозы нередко регистрируются серьезные пожары. Тяжелые аварии случаются из-за воспламенения над дыхательным клапаном резервуара горючих газообразных выбросов. Это происходит в случае, когда неидеальная система преграждения пламени пропускает его внутрь резервуара. Специально на эти случаи данные объекты оснащаются автоматической пожарной сигнализацией и системой пожаротушения. Во время аварий электромагнитное поле, созданное током молнии, является причиной выхода из строя этих систем и первопричиной серьезных аварий.

Устройства защиты от импульсных перенапряжений

Даже грамотно выполненные мероприятия по проектировке защиты от негативного воздействия разряда молний и правильный расчет молниезащиты не позволяет на 100 % защитить внутренние электрические цепи от разрушающего действия электромагнитного поля. Основным элементом внутренней защиты являются устройства, предотвращающие импульсные перенапряжения (УЗИП) и специальные металлические экраны. Главной функцией УЗИП является преграждение распространения высоких потенциалов на пути к подключенному электрооборудованию. Из-за огромного разнообразия электроприборов, которые нуждаются в защите, ведущие производители УЗИП предлагают самые разные конфигурации этих устройств. Для этих изделий они вынуждены выделять отдельные крупноформатные тома и купить комплектующие молниезащиты по ним без детальной консультации бывает достаточно тяжело.

УЗИП необходимы для предотвращения проникновения по электрическим цепям перенапряжения к электробытовым приборам. Механизм их действия заключается в быстром прерывании электродуги сопровождающего тока, а это в некоторых случаях очень сложно. Требования к этим защитным устройствам достаточно жесткие. Некоторые изделия должны безупречно с высокой надежностью выполнять свои функции, несмотря на свои миниатюрные габариты и огромное количество защищаемых микросхем. От этого часто зависит не только безопасность и стабильное функционирование объекта, но и жизни многих сотен и тысяч людей.

Большинство мировых производителей УЗИП для грозозащиты имеют специальные исследовательские и испытательные лаборатории, которые ищут пути решения проблемы надежности самых миниатюрных УЗИП. В испытательных комплексах моделируется все возможные негативные воздействия разряда молнии на защитные устройства. Кроме того, специалисты этих отделов решают вопросы совместимости УЗИП с высокочастотными агрегатами (каналами передачи информации, системами телевизионной охраны предприятий и т.п.). Поэтому толстые каталоги производителей - это скорее залог успешной реализации самого сложного проекта грозозащиты. Ведь они точно гарантируют, что нужные комплектующие молниезащиты купить будет просто.

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты

Должна уменьшать электромагнитные эффекты воздействия тока молнии на людей, инсталляции и оборудование, находящееся внутри строительных объектов. В дальнейшей части работы будут представлены только основные вопросы внутренней молниезащиты, касающиеся:

  • Уравнивания потенциалов инсталляций, входящих в строительный объект
  • Уравнивание потенциалов внутри строительного объекта
  • Подбора и размещения устройств, ограничивающих перенапряжения и защищающих электрическую инсталляцию, системы передачи сигналов, а также устройства от прямого воздействия части тока молнии

Основные принципы уравнивания потенциалов содержатся в нормах молниезащиты строительных объектов. В соответствии с этими принципами следует уравнивать потенциалы всех проводящих инсталляций входящих в объект.
Уравнивание потенциалов следует выполнить при помощи соединений с низким импедансом:

  • Непосредственных - между проводящими инсталляциями и устройствами, на которых не возникает постоянно электрический потенциал,
  • Ограничивающих - между устройствами, заземленными и изолированными от земли, а также находящимися под напряжением проводами электрических устройств.

Принимая во внимание представленные требования, рекомендуется, вводя инсталляции в строительный объект, соединять их с уравнивающей шиной, произвольным элементом молниезащитного устройства или металлическим элементом конструкции объекта в месте, расположенным как можно ближе к месту введения инсталляции. Оптимальным решением является введение всех инсталляций в одном общем месте. Пример проведения в одном месте электроустановке, сигнальных проводов, а также других проводящих инсталляций представлен на рис.1.

Рис. 1. Соединения проводников с шиной уравнивания потенциалов в месте их ввода в объект

1. К уравнивающей шине следует непосредственно присоединить:

  • Металлические трубы
  • Телекоммуникационные, вспомогательные, и измерительные заземляющие электроды
  • Экраны или проводящие конструктивные элементы линии передачи сигналов
  • Проводники PEN или PE электроэнергетической сети

2. Если внешние инсталляции, линии электропитания, телекоммуникационные и сигнальные линии нельзя ввести в объект в одном и том же месте и требуется применение нескольких уравнивающих шин, то они должны быть соединены как можно более коротким проводником с заземлителем или металлическими элементами железобетонной конструкции объекта.

3. Проводник, соединяющий уравнивающие шины, следует соединить с проводящими элементами железобетонной конструкции или другими экранирующими элементами.

4. Уравнивающая шина размещается чаще всего на уровне земли, как можно ближе к месту, в которое входят проводящие инсталляции и соединена с заземлителем, напр., с фундаментным. К шине следует также присоединить существующие в объекте металлические части лифтовых конструкций, вентиляционные каналы и т.п.

Удар молнии - это явление природы. И всем абсолютно понятно, что носит оно случайный характер: может попадет, а может и не попадет! Однако, если все-таки попадет, последствия его могут быть очень печальными.
Пример первый: На опушке леса недалеко от живописного озера стоит рубленый деревянный дом. Добротный, уютный, с крышей из металлочерепицы. Во время сильной июньской грозы в крышу дома попадает молния…

Но перед тем как продолжить, надо сказать буквально несколько слов о физической сущности молнии. При "старте" молнии от грозового облака направление ее развития определяет так называемый лидер. Предсказать траекторию его движения практически невозможно, иногда лишь можно с определенной степенью вероятности угадать оконечную точку, куда он стремится. Лидер молнии можно образно сравнить с иголкой, за которой тянется нитка. Ниткой же в нашем случае является так называемый канал молнии. По своей сути канал молнии - это нагретый до нескольких тысяч градусов, сильно ионизированный воздух, образующий идеальную токопроводящую среду между заряженным до очень больших разностей потенциалов облаком и поверхностью земли. В канале молнии начинают протекать импульсные токи огромных величин (до сотен килоампер), основная задача которых выровнять существующую между облаком и землей разницу потенциалов.

Теперь представим себе, что на пути молнии возникло препятствие в виде коттеджа, деревянного дома, да и любого другого объекта (трубы котельной, заводского корпуса, антенной мачты объекта связи, просто высокого дерева….). Преодолев расстояние в несколько сотен, а то и более, метров, что будет стоить для молнии прожечь дыру в металлочерепице крыши, заодно поджарив стропила, пробить изоляцию проложенного на чердаке кабеля, устроив короткое замыкание в электропроводке, перекинуться дугой или фонтаном искр между крышей и водосточными трубами, а потом таким же образом на землю, по пути подпалив не успевший намокнуть тополиный пух… Страшную сказку можно рассказывать долго. Но страшным как раз является то, что сказка иногда становится реальностью. Нечто подобное и произошло с тем домом на опушке леса, от беды спасло только то, что хозяева были дома и успели потушить загоревшиеся деревянные конструкции крыши! А если бы в это время дом был пуст?! А если бы это случилось ночью.., когда все спали?!

А теперь другой случай! И пусть хоть кто-то скажет, что он от него застрахован, если только он уже не научен своим или чужим горьким опытом, и не предусмотрел все необходимые технические решения, позволяющие свести к минимуму неприятные последствия удара молнии. Итак: идет строительство элитного жилого дома с большой благоустроенной территорией, фонтанами, беседками, теннисным кортом… Понятно, что стоимость такого объекта очень и очень велика. Под стать внешнему виду и планируемые внутренние инженерные сети (электрика, кондиционирование, системы интеллектуального дома, системы охраны и видеонаблюдения и т.д.)

Во время грозы молния ударила в корабельную сосну, рядом с которой в земле был проложен электрический кабель освещения прогулочной дорожки. Токи молнии, повредив изоляцию кабеля, по его металлическим жилам проникли в главный распределительный щит, находящийся в отдельно стоящем хозяйственном здании. Спалив по дороге несколько автоматических выключателей, они растеклись по всем электрическим цепям, подключенным к этому щиту, в том числе проникли и в помещение автоматизированной газовой котельной, которая уже была смонтирована и эксплуатировалась. В результате попадания всего лишь небольшой части от общего тока молнии в контроллер (электронное устройство управления) котельной, он тут же был выведен из строя. Стоимость подобного устройства может находиться в пределах от нескольких тысяч долларов и выше. Надо сразу сказать, что потери могли бы быть много выше, если бы на данном объекте были введены в эксплуатацию все перечисленные выше системы. Спасло то, что жилой дом находился еще на стадии отделки и предусмотренные проектом электронные системы еще не были смонтированы или подключены к сети электрического питания.

Вот теперь и подошло время ответа на первую часть заданного в начале статьи вопроса:

Что же такое молниезащита?

Под молниезащитой понимается целый комплекс технических решений и специальных приспособлений. В первую очередь, на доме должна быть установлена система внешней молниезащиты (см. фотографии ниже). Основным ее элементом является один или несколько молниеприемников. Эти устройства могут иметь различный внешний вид, но все они должны выполнить очень важную задачу - не пропустить молнию к поверхности крыши и ее элементам, а так же к фасадам здания и прилегающей к нему территории. От молниеприемников по стенам здания опускаются несколько металлических проводников, называемых токоотводами. Их задача отвести токи пойманной молнии на специальные заземляющие устройства, находящиеся под поверхностью земли в стороне от входов в дом и прогулочных дорожек. Зоны защиты молниеприемников, места нахождения заземляющих устройств и пути прокладки токоотводов рассчитываются проектировщиком систем электроснабжения объекта. И очень важно, чтобы это делалось на этапе архитектурного проектирования здания при обязательном взаимодействии с архитектором. Тогда можно будет избежать многих технологических сложностей, которые обязательно возникнут (уже есть печальный опыт) при монтаже системы внешней молниезащиты на уже готовом, сияющем свежими отделочными материалами доме! Тогда удастся максимально замаскировать все элементы этой очень важной для дома системы, чтобы они органично вписались в его внешний вид и архитектуру!!!

На приведенных фотографиях показан дом, система молниезащиты которого выполнена в виде так называемой молниеприемной сетки. Так как здание имеет несколько усложненную архитектуру, помимо сетки на выступающих элементах конструкции крыши устанавливаются дополнительные штыревые вертикальные молниеприемники, которые должны обеспечить увеличение зоны защиты от прямого удара молнии. Существует несколько методов расчета подобной системы молниезащиты. Для того чтобы правильно разместить и смонтировать все ее элементы необходимо обращаться к специалистам в этой области, так как в ином случае эффективность ее окажется неприемлемо низкой, и никак не будет соответствовать произведенным материальным затратам.

Её основным элементом является так называемый активный молниеприемник. Принцип действия такой системы молниезащиты заключается в том, что вокруг активного молниеприемника во время грозы создается область ионизации. И в тот момент времени, когда напряженность электрического поля между грозовым облаком и поверхностью земли достигнет критического значения (т.е. разряд молнии становится неизбежным) от молниеприемника происходит старт встречного лидера (искрового разряда) в сторону уже развивающейся от облака молнии. В том случае если молния будет продолжать свой путь к защищаемому объекту, то она обязательно будет "притянута" к молниеприемнику (в пределах его расчетной зоны защиты). Если же она уйдет в сторону от зоны защиты, активный молниеприемник не окажет на нее никакого воздействия. Достоинством такой системы молниезащиты является относительная простота ее монтажа и минимальное влияние на внешний вид дома. Недостатком является отсутствие какой-либо отечественной нормативной базы на ее применение. Тем не менее, различные конструкции такого типа широко применяются в США, Франции, странах Балтии, Польше и многих других государствах. Основным стандартом на применение активных систем молниезащиты является французский стандарт NFC 17-102.

И в завершении, обязательно надо отметить одну очень важную вещь. Первоначально принцип работы систем активной молниезащиты основывался на применении радиоактивных изотопов, что, конечно же, не прибавляло им популярности! В настоящее время подобные технические решения не применяются, но все же при выборе этого весьма дорогого технического приспособления, поинтересуйтесь у продавца, как же оно устроено и каков его принцип работы, и если ничего вразумительного в ответ вы не услышите, поостерегитесь покупать его без оглядки. Береженного бог бережет!!!

Так зачем же все-таки нужна молниезащита?

Вы уже наверное догадались! Конечно же, в первую очередь, чтобы защитить дом от пожара в случае удара молнии! Приняв на себя удар молнии система, состоящая из надежно соединенных между собой проводников определит для токов молнии самый прямой, самый легкий путь к той точке к которой она так стремилась - к земле! При этом не будет искр, потому что нет зазоров, через которые надо перескакивать в виде искры. Сечения элементов внешней молниезащиты таковы, что сильного нагрева при протекании по ним очень больших токов молнии не произойдет. Да и прокладываются они по международным, а теперь и Российским нормативным документам ("Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций", СО-153-34.21.122-2003), на некотором расстоянии от поверхности стен и крыши, если они выполнены из горючего материала.

С первым примером теперь все стало понятно. А как быть во втором случае, когда молния ударила в дерево, а ведь в условиях пригородной местности это может быть сплошь и рядом! А еще более серьезные повреждения могут возникнуть, если молния попадет прямо в провода воздушной линии электропередач, а это основной способ подвода электроэнергии в сельской местности. В этом случае основная часть ее токов потечёт через вводное устройство вашего дома и далее, используя все возможные пути, на землю. Кто знает, что это будут за пути, и какое дорогостоящее оборудование может попасться этим токам по дороге. Для того, что бы сберечь современную сложную и умную электронную технику, необходимо поставить на пути токов молнии надежное препятствие в виде устройств защиты от импульсных перенапряжений. Вместе с системой уравнивания потенциалов, которую обязательно должен предусмотреть проектировщик, они и создадут внутреннюю систему молниезащиты вашего дома. Представьте себе такую картину: на проводе линии воздушной линии электропередачи сидит ворона. И пусть по проводам текут большие токи, пусть там присутствуют высокие напряжения, они не причиняют птице никакого вреда, потому что они не текут через нее. Но это все до той поры, пока она не зацепится, неосторожно взмахнув крылом, за соседний провод. Дальше продолжать не будем… То же самое происходит и внутри вашего дома. Грамотно выполненная система заземления и уравнивания потенциалов, позволит избежать поражения током людей внутри или вблизи дома, в том числе и во время грозы. Потому что не будет внутри дома точек с разными потенциалами, некуда будет течь токам. Устройства защиты от импульсных перенапряжений (разрядники, варисторы, комбинированные устройства) обеспечивают кратковременное присоединение к системе уравнивания потенциалов тех проводов (электрических, телефонных, телевизионных и других кабелей), которые в нормальном своем состоянии никогда не связаны с заземлением. Все токи, которые должны были течь через вашу бытовую технику, будут протекать через предназначенные для этого устройства, что позволит защитить ее от электрических пробоев. А потом все само вернется в первоначальное состояние. Вы, скорее всего, даже ничего и не заметите!!

УЗИП - устройствозащиты от импульсного перенапряжения (так называемая внутренняя грозозащита). Основной задачей внутренней молниезащиты является защита электронного оборудования и электропроводки от высокого перенапряжения возникающего не только от прямого попадания разряда молнии в здание, но и при удаленном попадании 1-2 км.

Существует несколько классов зашиты:

УЗИП IB класса - предназначен для защиты электрических цепей от последствий прямого попадания разряда молнии в систему грозозащиты или воздушную линию электропередач(ЛЭП). Разрядники данного класса устанавливаются внутрь распределительного щитка.

УЗИП IIC класса - предназначен для защиты токораспределительных сетей от отдаленных ударов молнии и при пиковых напряжениях возникающих в электросети. Разрядники данного класса установлены в последующей распределительной коробке.

УЗИП IIID класса - защищает от дифференциальных (не симметрических) перенапряжений и фильтрации высокочастотных помех. Поглощают остаточные токи и обеспечивают защиту от импульсов, которые образуются при внутренних действиях по переключению.

Защита силовых и сигнальных цепей

Устанавливаемый в вводно-распределительный щит, этот блок способен гасить возникающие импульсы в сети, как при прямых ударах молнии, так и при наведенных или занесенных потенциалах.

DS 250 | DUT 250 VG-300 объединяет в себе сразу несколько ступеней защиты. При прекращении воздействия импульса не возникают сопровождающие токи, а сохраняется лишь небольшое остаточное напряжение.

Сам блок компактен, что существенно экономит место и время на установку.

Индикатор отображает готовность устройства к работе. Если вследствие скачков перенапряжения, параметры устройства выходят за допустимый уровень, то включается красный индикатор, и в этом случае защитный элемент необходимо заменить.

Блок серийно оснащен системой удаленной сигнализации и подходит для всех видов электрических сетей.

Модификации устройств: системы TNC, TNC-S (TNS), TT, IT

Корпус: монолитный (серия DUT 250), раздельный (с возможностью замены каждой защищаемой фазы/нейтрали) (серия DS 250)

Серия устройств Р8АХ соответствует международным стандартам защиты телевизионного оборудования, а также систем передачи данных до 5 Ггц от грозовых (атмосферных) перенапряжений.

Предлагаем серийную линейку изделий защиты от атмосферных и бытовых перенапряжений Р8АХ для телевизионного оборудования, систем видеонаблюдения, систем передачи данных по коаксиальным линиям.

Ограничитель перенапряжения ZS.CAT.5 обеспечивает эффективную защиту от перепадов напряжения в компьютерных сетях, легко устанавливается и рассчитан на стандартные кабельные соединения в соответствии EN 50173 (ГОСТ) и CAT.5.

На входе и выходе уставлены экранированные розетки RJ45, а для соединения с шиной уравнивания потенциалов (ШУП) установлен отдельный заземляющий вывод. Защитное устройство ZS.CAT.5 может применяться как для конечных устройств, так и для защиты коммутаторов и маршрутизаторов в соответствии спецификации оборудования.

Типы используемых кабелей - категория 3 (10МГц), категория 5 (100МГц), а также CDDI, 100BaseT и ATM, UTP, FTP, STP. Защищаются все 4 пары. Таким образом, возможно использование защитных элементов для самых разнообразных линий. Принцип работы устройства - двухкаскадная схема на основе диодов-супрессоров и газовых разрядников.

Мы реализуем весь спектр оборудования для внутренней молниезащиты (грозозащиты), и предлагаем качественный монтаж внутренней молниезащиты.



2024 stdpro.ru. Сайт о правильном строительстве.