Металлические конструкции большепролётных покрытий зданий. История и перспективы развития большепролетных конструкций Большепролетные общественные здания с пространственными конструкциями

По функциональному назначению большепролётные здания можно разделить на:

1) здания общественного назначения (театры, выставочные павильоны, кинотеатры, концертные и спортивные залы, крытые стадионы, рынки, вокзалы);

2) здания специального назначения (ангары, гаражи);

3) промышленные здания (авиационных, судостроительных и машиностроительных заводов, лабораторные корпуса различных производств).

Несущие конструкции по конструктивной схеме подразделяются на:

Блочные,

Арочные,

Структурные,

Купольные,

Висячие,

Сетчатые оболочки.

Выбор той или иной схемы несущих конструкций здания зависит от целого ряда факторов: пролёта здания, архитектурно-планировочного решения и формы здания, наличия и типа подвесного транспорта, требований к жёсткости покрытия, типа кровли, аэрации и освещения, основания под фундаменты и т.д.

Сооружения с большими пролётами являются объектами индивидуального строительства, их архитектурные и конструктивные решения весьма индивидуальны, что ограничивает возможности типизации и унификации их конструкций.

Конструкции таких зданий работают в основном на нагрузки от собственного веса конструкций и атмосферных воздействий.

1.1 Балочные конструкции

Балочные большепролётные конструкции покрытий состоят из главных несущих поперечных конструкций в виде плоских или пространственных ферм (пролёт ферм от 40 до 100 м) и промежуточных конструкций в виде связей, прогонов и кровельного настила.

По очертанию фермы бывают : с параллельными поясами, трапециевидные, полигональные, треугольные, сегментные (см. схемы на рис. 1).

Высота ферм hф=1/8 ÷ 1/14L; уклон i=1/ 2 ÷ 1/15.

Треугольные фермы hф= 1/12 ÷ 1/20L; уклон поясов i=1/5 ÷ 1/7.

Рис.1 - Схемы строительных ферм

Поперечные сечения ферм:

При L > 36м одну из опор балочной фермы устанавливают подвижной.

Компоновка покрытия - вертикальные и горизонтальные связи по покрытию решаются аналогично промышленным зданиям со стропильными фермами.

А) нормальная компоновка

стена

б) усложнённая компоновка - с подстропильными фермами:

ПФ

Балочные схемы покрытий применяются:

При любых видах подопорных конструкций - кирпичные или бетонные стены, колонны (металлические или железобетонные);

Когда подопорные конструкции не могут воспринимать распорных усилий;

При строительстве зданий на просадочных или карстовых грунтах и подрабатываемых территориях.

Следует отметить, что балочные схемы покрытий тяжелее рамных и арочных, но просты в изготовлении и монтаже.

Расчёт ферм выполняют методами строительной механики (аналогично расчёту стропильных ферм промышленных зданий).

1.2 Рамные конструкции

Рамные конструкции для покрытий зданий применяют при пролёте

L=40 - 150м, при пролёте L > 150м они становятся неэкономичными.

Преимущества рамных конструкций по сравнению с балочными - это меньший вес, большая жёсткость и меньшая высота ригелей.

Недостатки - большая ширина колонн, чувствительность к неравномерным осадкам опор и изменениям T о.

Рамные конструкции эффективны при погонных жесткостях колонн, близких к погонным жесткостям ригелей, что позволяет перераспределить усилия от вертикальных нагрузок и значительно облегчить ригели.

При перекрытии больших пролётов применяют, как правило, двухшарнирные и бесшарнирные рамы самых разнообразных очертаний (см. рис.2).

Рис. 2 - Схемы сквозных рам

Бесшарнирные рамы более жёсткие и экономичные по расходу материала, однако, они требуют устройства мощных фундаментов, чувствительны к изменению Т о.

При больших пролётах и нагрузках ригели рам конструируют как тяжёлые фермы, при сравнительно малых пролётах (40-50м) они имеют такие же сечения и узлы, как лёгкие фермы.

Поперечные сечения рам аналогичны балочным фермам.

Компоновка каркаса и покрытия из рамных конструкций аналогична решению каркасов промышленных зданий и балочных покрытий.

Статический расчёт рамных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ.

Тяжелые сквозные рамы рассчитывают как решёточные системы с учётом деформации всех стержней решётки.

1.3 Арочные конструкции

Арочные конструкции покрытий большепролётных зданий оказываются более выгодными по затрате материала, чем балочные и рамные системы. Однако в них возникает значительный распор, который передаётся через фундаменты на грунт или устраивается затяжка для его восприятия (т.е. погашение распора внутри системы).

Схемы и очертания арок весьма разнообразны: двухшарнирные, трёхшарнирные, бесшарнирные (см. рис. 3).

Наиболее выгодная высота арок: f=1/4 ÷ 1/6 пролёта L.

Высота сечения арок:

Сплошностенчатых 1/50 ÷ 1/80 L,

Решёточных 1/30 ÷ 1/60 L.

Рис. 3 - Схемы арок. Самыми распространёнными являются двухшарнирные арки - они экономичны по расходу материала, просты в изготовлении и монтаже легко деформируются вследствие свободного поворота в шарнирах в них не возникает значительных дополнительх напряжений от Т о и осадок опор. В трёхшарнирных арках - всё аналогично двухшарнирным, однако ключевой шарнир осложняет конструкцию самих арок и покрытия. Бесшарнирные арки - самые лёгкие, наиболее благоприятно происходит распределение изгибающих моментов. Однако они требуют устройства мощных фундаментов. Их нужно рассчитывать на воздействие Т о. Сквозные арки конструируют аналогично фермам балочных схем покрытий. Компановка каркаса и покрытия из арочных конструкций аналогична решению каркасов из рамных конструкций. Статический расчёт арочных конструкций выполняют методами строительной механики и по специально разработанным программам на ЭВМ. Раскосы в сквозных арках проектируют как в фермах. Наиболее сложными в конструктивном плане являются опорные и ключевые шарниры (см. рис. 4 и 5)


Рис.4 - Схемы опорных шарниров арок и рам (а - плиточный,

б - пятниковый, в - балансирный:

1 - плита, 2 - цапфа, 3 -балансир).

Рис. 5 - Ключевые шарниры и арок

(а -плиточный; б -балансирный; в -листовой; г -болтовой)

После определения M, N, Q сечения стержней арки подбирают также, как сечения стерней ферм:

1.4 Пространственные конструкции покрытий большепролётных зданий

В балочных, рамных и арочных системах покрытий, состоящих из отдельных несущих элементов, нагрузка передаётся только в одном направлении - вдоль несущего элемента. В этих системах покрытий несущие элементы соединены между собой лёгкими связями, которые не предназначены для перераспределения нагрузок между несущими элементами, а только обеспечивают их пространственную устойчивость, т.е. с их помощью обеспечивается жёсткий диск покрытия.

В пространственных системах связи усиливают и привлекают к распределению нагрузок и передаче их на опоры. Приложенная к пространственной конструкции нагрузка передаётся в двух направлениях. Такая конструкция получается обычно легче плоской.

Пространственные конструкции могут быть плоскими (плиты) и криволинейными (оболочки).

Плоские пространственные системы (исключая висячие) для обеспечения необходимой жёсткости должны быть двухпоясными - по поверхности образующие сетчатую систему. Двухпоясные конструкции имеют две параллельные сетчатые поверхности, соединённые между собой жёсткими связями.

Однослойные конструкции, имеющие криволинейную систему поверхности, называются односетчатыми.

В таких конструкциях принцип концентрации материала заменён принципом многосвязности системы. Изготовление и монтаж таких конструкций очень трудоёмок, требует специальных приёмов изготовления и монтажа, что является одной из причин их ограниченного применения.

1.5 Пространственные сетчатые системы плоских покрытий

В строительстве получили распространение сетчатые системы регулярного строения, так называемые структурные конструкции или просто структуры , которые применяются в виде плоских покрытий большепролётных общественных и производственных зданий.

Плоские структуры представляют собой конструкции, образованные из различных систем перекрёстных ферм (см. рис.6):

1) Структуры, образованные из перекрёстных ферм, идущих в трёх направлениях. Поэтому они являются наиболее жёсткими, однако более сложными в изготовлении. Это структуры с поясными сетками из разносторонних треугольников.

2) Структуры, образованные из ферм, идущих в двух направлениях. Это структуры с поясными сетками из квадратных ячеек.

3) Структуры, образованные из ферм, также идущих в двух направлениях, но усиленных диагоналями в угловых зонах. Поэтому они более жёсткие.

Достоинства структур:

Большая пространственная жёсткость: можно перекрывать большие пролёты при различных опорных контурах или сетках колонн; получать выразительные архитектурные решения при высоте структуры.

Hструктур=1/12 - 1/20 L

Повторяемость стержней - из стандартных и однотипных стержней можно монтировать покрытия разных пролётов и конфигураций в плане (прямоугольные, квадратные, треугольные и криволинейные).

Позволяет крепить подвесной транспорт и изменять при необходимости направление его движения.

Системы покрытий из структур могут быть как одно-, так и многопролётными с опиранием как на стены, так и на колонны.

Устройством консольных свесов за линией опор уменьшают расчётный пролётный изгибающий момент и существенно облегчают конструкцию покрытия.

Рис. 6 - Схемы решёток структурных покрытий (а - с поясными сетками из равносторонних треугольных ячеек; б - с поясными сетками из квадратных ячеек; в - то же, усиленных диагоналями в условных зонах: 1 - верхние пояса,

2 - нижние пояса, 3 - наклонные раскосы, 4 - верхние диагонали, 5 -нижние диагонали, 6 - опорный контур).

Недостатки структур - повышенная трудоёмкость изготовления и монтажа. Пространственные узлы сопряжений стержней (см. рис. 7) - самые сложные элементы в структурах:

Шаровая вставка (а);

На винтах (б);

Цилиндрический сердечник с прорезями, стянутый одним болтом с шайбами (в, г);

Сварной узел сплюснутых концов стержней (д).

Рис. 7 - Узлы сопряжений стержней структур

Структурные конструкции представляют собой многократно статически неопределённые системы. Точный расчёт их сложен и выполняется на ЭВМ.

При упрощённом подходе структуры рассчитывают способами строительной механики - как изотропные плиты или как системы перекрёстных ферм без учёта крутящих моментов.

Величины моментов и поперечных сил определяют по таблицам для расчёта плит: Mплиты; Qплиты - далее переходят к расчёту стержней.

1.6 Оболочные покрытия

Для покрытий зданий применяют односетчатые, двухсетчатые цилиндрические оболочки и оболочки двоякой кривизны.

Цилиндрические оболочки (см. рис. 8) выполняют в виде сводов с опиранием:

а) прямолинейным образующим контура

б) на торцовые диафрагмы

в) на торцовые диафрагмы с промежуточными опорами

Рис.8 - Схемы опирания цилиндрических оболочек (1 - оболочка;

2 - торцовая диафрагма; 3 - связи; 4 - колонны).

Односетчатые оболочки применяют при пролётах В не более 30м.

Двухсетчатые - при больших пролётах В>30м.

По цилиндрической поверхности расположены стержни, образующие сетки различной системы (см. рис. 9):

Ромбическая сетка (а);

Ромбическая сетка с продольными рёбрами (б);

Ромбическая сетка с поперечными рёбрами (в);

Ромбическая сетка с поперечными и продольными рёбрами (г).

Наиболее простая сетка ромбического рисунка, которую получают из лёгких стандартных стержней (∟, ○, □) прокатных профилей. Однако такая схема не обеспечивает необходимой жёсткости в продольном направлении при передаче нагрузки на продольные стены.

Рис. 9 - Система сеток односетчатых оболочек

Жёсткость конструкции значительно увеличивается при наличии продольных стержней (схема "б") - конструкция может работать как оболочка пролётом L. В этом случае опорой могут служить торцовые стены или четыре колонны с торцовыми диафрагмами.

Наиболее жёсткими и выгодными являются сетки (схема "в"), у которых есть и продольные и поперечные рёбра (стержни), а решётка сетки направлена под углом 45 .

Расчёт оболочек выполняют методами теории упругости и методами теории оболочек. Оболочки без поперечных рёбер рассчитывают как безмоментные складки (способ Эллерса). При наличии поперечных рёбер , обеспечивающих жёсткость контура, - по моментной теории Власова (она сводится к решению восьмичленных уравнений).

При расчёте сквозных сетчатых оболочек, сквозные грани конструкций заменяются сплошными пластинами эквивалентной толщины при работе на сдвиг, осевое растяжение и сжатие.

Более точный расчёт сетчатых оболочек выполняют на ЭВМ по специально разработанным программам.

Двухсетчатые оболочки применяют при перекрытии пролётов шириной более B>30м.

Конструктивные схемы их аналогичны схемам двухсетчатых плоских плит - структур. Как и в структурах, они образуются системами перекрёстных ферм, связанных по верхним и нижним поясам специальными связями - решёткой. Но при этом в оболочках основная роль в восприятии усилий принадлежит криволинейным сетчатым плоскостям, соединяющая их решётка меньше участвует в передаче усилий, но придаёт конструкции большую жёсткость.

По сравнению с односетчатыми двухсетчатые оболочки обладают большей жёсткостью и несущей способностью. Ими можно перекрывать пролёты зданий от 30 до 700м.

Проектируют их в виде цилиндрической поверхности, опирающиеся на продольные стены или на металлические колонны. По торцам оболочки опираются на жёсткие диафрагмы (стены, фермы, арки с затяжкой и т.д.).

Наилучшее распределение усилий в оболочке при B=L.

Расстояние между сетчатыми поверхностями h=1/20÷1/100R при f/B=1/6÷1/10.

Как и в структурах, наиболее сложным является узел сопряжения стержней.

Расчёт двухсетчатых оболочек производят на ЭВМ по специально составленным программам.

Для приближённого расчёта оболочки необходимо стержневую систему привести к эквивалентной сплошной оболочке и установить модуль сдвига среднего слоя, эквивалентного по жёсткости соединительной решётке.

1.7 Купольные покрытия

Конструкции куполов бывают четырёх видов (см. рис.6): ребристые (а), ребристо-кольцевые (б), сетчатые (в), радиально-балочные (г).

Рис. 10 - Схемы куполов

Ребристые купола

Конструкции ребристых куполов состоят из отдельных плоских или пространственных рёбер в виде балок, ферм или полуарок, расположенных в радиальном направлении и связанных между собой прогонами.

Верхние пояса рёбер образуют поверхность купола (обычно сферическую). По прогонам устраивают кровлю.

В вершине для перестыковки рёбер устраивают жёсткое кольцо, работающее на сжатие. Рёбра к центральному кольцу могут крепиться шарнирно или иметь жёсткое закрепление. Пара рёбер купола, расположенных в одной диаметральной плоскости и прерванных центральным кольцом, рассматривается как единая, например арочная, конструкция (двухшарнирная, трёхшарнирная или бесшарнирная).

Ребристые купола являются распорными системами. Распор воспринимается стенами или специальным распорным кольцом в форме окружности или многогранника с жёсткими или шарнирными сопряжениями в углах.

Между рёбрами с определённым шагом укладывают кольцевые прогоны, на которые опирается кровельный настил. Погоны, помимо своего основного назначения, обеспечивают общую устойчивость верхнего пояса ребер из плоскости, уменьшая их расчётную длину.

Для обеспечения общей жёсткости купола в плоскости прогонов устраиваются с определённым шагом скатные связи между рёбрами, а также вертикальные связи для развязки внутреннего пояса арки - между вертикальными связями устраивают распорки.

Расчётные нагрузки - собственный вес конструкции, вес оборудования и атмосферные воздействия.

Расчётными элементами купольного покрытия являются: рёбра, опорное и центральное кольцо, прогоны, скатные и вертикальные связи.

Если распор купола воспринимают распорным кольцом, то при расчёте арки кольцо может быть заменено условной затяжкой, находящейся в плоскости каждой пары полуарок (образующих плоскую арку).

При расчёте опорного кольца - при частом расположении арок (рёбер) купола действия их распоров можно заменить эквивалентной равномерно распределённой нагрузкой:

Ребристо-кольцевые купола

В них погоны с рёбрами составляют одну жёсткую пространственную систему. В этом случае кольцевые прогоны работают не только на изгиб от нагрузки на покрытие, но и от реакций промежуточных рёбер и воспринимают растягивающие или сжимающие кольцевые усилия, возникающие от распоров в месте опирания многопролётных полуарок.

Вес рёбер (арок) в таком куполе уменьшается благодаря включению в работу кольцевых прогонов, как промежуточных опорных колец. Кольцевые рёбра в таком куполе работают так же, как и опорное кольцо в ребристом куполе, и при расчёте арок могут быть заменены условными затяжками.

При симметричной нагрузке расчет купола можно вести, расчленяя его на плоские арки с затяжками на уровне кольцевых рёбер (прогонов).

Сетчатые купола

Если в ребристом или ребристо-кольцевом куполе увеличить связность системы, то можно получить сетчатые купола с шарнирным соединением стержней в узлах.

В сетчатых куполах между рёбрами (арками) и кольцами (кольцевыми прогонами) располагают раскосы, благодаря которым усилия распределяются по поверхности купола. Стержни в этом случае работают в основном только на осевые силы, что уменьшает вес рёбер (арок) и колец.

Стержни сетчатых куполов выполняют из замкнутых профилей (круглого, квадратного или прямоугольного сечения). Узлы соединений стержней как и в структурах или сетчатых оболочках.

Расчёт сетчатых куполов производят на ЭВМ по специально разработанным программам.

Приблизительно их рассчитывают по безмоментной теории оболочек - как сплошную осесимметричную оболочку по формулам из соответствующих расчётно-теоретических справочников.

Радиально-балочные купола

Представляют собой ребристые купола, составленные из сегментных полу-ферм, расположенных радиально. В центре сегментные полуфермы присоединяются к жёсткому кольцу (решётчатому или сплошностенчатому с диафрагмами жёсткости).

1.8 Висячие покрытия

Висячими называются покрытия, в которых основные несущие элементы работают на растяжение.

В этих элементах наиболее полно используются высокопрочные стали, поскольку их несущая способность определяется прочностью, а не устойчивостью.

Несущие растянутые стержни - ванты - могут выполняться гибкими или жёсткими.

Жёсткие - выполняют из выгнутых двутавровых балок.

Гибкие - выполняют из стальных канатов (тросов) свитых из высокопрочной проволоки с R= 120 кН/см2 ÷ 240 кН/см2.

Висячие конструкции покрытий являются одной из наиболее перспективных конструктивных форм для применения высокопрочных материалов. Конструктивные элементы висячих покрытий легко транспортировать, относительно легко монтировать. Однако сооружение висячих покрытий имеет ряд трудностей, от удачного инженерного решения которых зависит эффективность покрытия в целом:

Первый недостаток - висячие покрытия - системы распорные и для восприятия распора необходима опорная конструкция, стоимость которой может составлять значительную часть стоимости всего покрытия. Уменьшения стоимости опорных конструкций можно достичь за счёт повышения эффективности их работы - созданием покрытий круглой, овальной и других не прямолинейных форм плана;

второй недостаток - повышенная деформативность висячих систем. Это вызвано тем, что модуль упругости витых тросов меньше чем у прокатной стали (Етроса=1,5 ÷ 1,8×10 5 МПа; Е прокатных стержней = 2,06×10 5 Мпа), а область упругой работы высокопрочной стали значительно больше, чем у обычной стали. Таким образом, относительная деформация троса в упругой стадии работы ε=G/Е получается в несколько раз больше чем у элементов из обычной стали.

Большинство висячих систем покрытия являются системами мгновенной жёсткости, т.е. системами, которые работают упруго лишь на равновесные нагрузки, а при действии неравномерных нагрузок в них, помимо упругих деформаций, появляются ещё и кинематические перемещения системы, ведущие к изменению целостности геометрической системы покрытия.

Для уменьшения кинематических перемещений висячие системы покрытий часто снабжают специальными стабилизирующими устройствами и предварительно напрягают.

Типы схем висячих покрытий

1. Однопоясные системы с гибкими вантами

Такие системы покрытий в плане проектируют прямоугольными или изогнутыми, например, круглыми (см. рис.11).

Они представляют собой предварительно напряжённые железобетонные оболочки, работающие на растяжение. Напряжённой арматурой в них является система из гибких вант, на которые во время монтажа укладывают сборные железобетонные плиты. В это время на ванты даётся дополнительный пригруз, который после укладки всех железобетонных плит и замоноличивания швов снимают. Ванты обжимают железобетонные плиты и образовавшаяся железобетонная оболочка получает предварительное напряжение сжатия, позволяющее ей воспринимать растягивающее напряжение от внешних нагрузок и обеспечивает общую устойчивость конструкции. Несущая способность покрытия обеспечивается растяжением вант.

В покрытиях прямоугольного плана распор вант воспринимает опорная конструкция из оттяжек и анкеров, закреплённых в грунте.

Рис. 11 - Однопоясные покрытия с гибкими вантами

(а - прямоугольные в плане; б - круглые в плане)

В покрытиях круглого (овального) плана распор передаётся на наружное сжатое кольцо, лежащее на колоннах и внутреннее (растянутое) металлическое кольцо.

Стрела провеса вант таких покрытий обычно составляет f=1/10÷1/20 L. Такие оболочки являются пологими.

Сечение вант покрытия определяют по монтажной нагрузке. В этом случае ванты работают как отдельные нити, и распор в них можно определять без учёта их деформаций H=M/f , где M - балочный момент от расчётной нагрузки, f - стрела провисания нити.


Наибольшее усилие в ванте будет на опоре

где V - балочная реакция.

2. Однопоясные системы с жёсткими вантами

Рис. 12 - 1 - продольные изгибно-жёсткие рёбра; 2 - поперечные рёбра;

3 - мембрана алюминиевая, t = 1,5 мм

В таких покрытиях гнутые жёсткие ванты, прикреплённые к опорному поясу, работают под действием нагрузки на растяжение с изгибом. Причём при действии равномерной нагрузки доля изгиба в напряжениях невелика. При действии неравномерной нагрузки жёсткие ванты начинают сильно сопротивляться местному изгибу, чем значительно уменьшают деформативность всего покрытия.

Стрела провеса вант таких покрытий обычно составляет 1/20 ÷ 1/30 L. Однако, использование жёстких нитей возможно лишь при небольших пролётах, т.к. с увеличением пролёта значительно усложняется монтаж и увеличивается их масса. По таким жёстким вантам можно укладывать лёгкую кровлю, отсутствует необходимость в предварительном напряжении (его роль выполняет изгибная жёсткость ванты).

При равномерной нагрузке распор в ванте определяют по формуле

H = 8/3 ×[(EA)/(l 2 mо)] × (f+fо) × ∆f +Hо;

где ∆f=f–fо,

f - прогиб под нагрузкой,

fо – начальный провес;

m1=1+(16/3)/(fо/l) 2

Изгибный момент в середине ванты находят по формуле

M= q I 2 /8–Hf .


3. Однопоясные висячие покрытия, напрягаемые с помощью поперечных балок или ферм

Рис. 13

Стабилизация таких канатно-балочных систем достигается либо увеличенной массой поперечных и жёстких на изгиб элементов, либо предварительным напряжением оттяжек, которые соединяют поперечные балки или фермы с фундаментами или опорами. Таким способом напрягаются покрытия с лёгким кровельным настилом.

Благодаря изгибной жёсткости поперечных балок или ферм покрытие приобретает пространственную жёсткость, которая особенно проявляется при загружении пролётной конструкции местной нагрузкой.

4. Двухпоясные системы

Рис. 14

В покрытиях такого типа имеется две системы вант :

- Несущие - имеющие изгиб вниз;

- Стабилизирующие - имеющие изгиб вверх.

Это делает такую систему мгновенно жёсткой - способной воспринимать нагрузки, действующие в двух различных направлениях. Вертикальная нагрузка вызывает у несущей нити растяжение , а у стабилизирующей - сжатие . Отсос ветра вызывает в вантах усилия обратного знака.

В покрытиях данного типа можно применять лёгкие кровли.

5. Седловидные напряжённые сетки

Рис. 15

Покрытия такого типа применяются для капитальных зданий и временных сооружений.

Сетка покрытия: несущие (продольные) тросы изогнуты вниз, стабилизирующие (поперечные) тросы изогнуты вверх.

Такая форма покрытия позволяет предварительно напрягать сетку. Поверхность покрытия лёгкая из различных материалов: от стального листа до плёнки и тента.

Шаг сеток приблизительно один метр. Точный расчёт сеток таких покрытий возможен только на ЭВМ.

6. Металлические оболочки-мембраны

Рис. 16

По форме в плане это эллипс или круг, а форма оболочек довольно разнообразная: цилиндрическая, коническая, чашеобразная, седловидная и шатровая. Большинство из них работает по пространственной схеме, делает её весьма выгодной и позволяет применять листы толщиной 2 - 5мм.

Расчёт таких систем производят на ЭВМ.

Главное преимущество таких систем покрытий - это совмещение несущих и ограждающих функций.

Утеплитель и гидроизоляцию укладывают на несущую оболочку, не применяя кровельных плит.

Полотнища оболочки выпускают на заводе-изготовителе и доставляют на монтаж в виде рулонов, из которых на площадке строительства собирают всю оболочку без применения лесов.

Раздел 2. Листовые конструкции

Листовыми называют конструкции, состоящие в основном из металлических листов и предназначенные для хранения, транспортирования жидкостей, газов и сыпучих материалов.

К этим конструкциям относятся:

Резервуары для хранения нефтепродуктов, воды и других жидкостей.

Газгольдеры для хранения и распределения газов.

Бункера и силосы для хранения и перегрузки сыпучих материалов.

Трубопроводы больших диаметров для транспортирования жидкостей, газов и размельчённых или разжиженных твёрдых веществ.

Специальные конструкции металлургической, химической и др. отраслей промышленности:

Кожухи доменных печей

Воздухонагреватели

Пылеуловители - скрубера, корпуса электрофильтров и рукавных фильтров

Дымовые трубы

Сплошностенчатые башни

Градирни и т.д.

Такие листовые конструкции занимают 30% от всех металлических конструкций.

Условия работы листовых конструкций достаточно разнообразны:

Они могут быть надземными, наземными, полузаглублёнными, подземными, подводными;

Могут воспринимать статические и динамические нагрузки;

Работать под низким, средним и высоким давлением;

Под воздействием низких и высоких температур, нейтральных и агрессивных сред.

Для них характерно двухосновное напряжённое состояние, а в местах сопряжения с днищем и рёбрами жёсткости, в местах сопряжения оболочек различной кривизны (т.е. на границе изменения радиуса кривизны) возникают местные высокие напряжения, быстро затухающие по мере удаления от этих участков это - так называемое явление краевого эффекта.

Листовые конструкции всегда совмещают несущую и ограждающую функции.

Сварные соединения элементов листовых конструкций выполняют встык, внахлёстку и впритык. Соединения выполняют автоматической и полуавтоматической дуговой сваркой.

Большинство листовых конструкций являются тонкостенными оболочками вращения.

Рассчитывают оболочки методами теории упругости и теории оболочек.

Листовые конструкции рассчитывают на прочность, устойчивость и выносливость.

1.1 Резервуары

В зависимости от положения в пространстве и геометрической формы они делятся на цилиндрические (вертикальные и горизонтальные), сферические и каплевидные.

По расположению относительно планировочного уровня земли различают: надземные (на опорах), наземные, полузаглублённые, подземные и подводные.

Они могут быть постоянного и переменного объёмов.

Тип резервуара выбирают в зависимости от свойств хранимой жидкости, режима эксплуатации, климатических особенностей района строительства.

Наибольшее распространение получили вертикальные и горизонтальные цилиндрические резервуары как самые простые при изготовлении и монтаже.

Вертикальные резервуары со стационарной крышей являются сосудами низкого давления, в которых хранят нефтепродукты при малой их оборачиваемости (10 - 12 раз в год). В них образуется избыточное давление в паро-воздушной зоне до 2кПа, а при опорожнении вакуум (до 0,25кПа).

Вертикальные резервуары с плавающей крышей и понтоном применяют при хранении нефтепродуктов при большой оборачиваемости. В них практически отсутствует избыточное давление и вакуум.

Резервуары повышенного давления (до 30кПа) используют для длительного хранения нефтепродуктов при их оборачиваемости не более 10 - 12 раз в год.

Шаровидные резервуары - для хранения больших объёмов сжиженных газов.

Каплевидные резервуары - для хранения бензина с высокой упругостью паров.

Вертикальные резервуары


Рис. 17

Основные элементы:

Стенка (корпус);

Крыша (покрытия).

Все элементы конструкций изготавливают из листовой стали. Они просты в изготовлении и монтаже, достаточно экономичны по расходу стали.

Установлены оптимальные размеры вертикального цилиндрического резервуара постоянного объёма, при которых расход металла будет наименьшим. Так, резервуар со стенкой постоянной толщины имеет минимальную массу, если

[(mдн + mпок) / mст] = 2, а значение оптимальной высоты резервуара определяется по формуле

где V - объём резервуара,

∆= t дн.+t прив. покр. - сумма приведённой толщины днища и покрытия,

tст. - толщина стенки корпуса.

В резервуарах больших объёмов толщина стенки переменна по высоте. Масса такого резервуара получится минимальной, если суммарная масса днища и покрытия равна массе стенки, т.е. mдн.+mпокр.= mст.

В этом случае

где ∆= tдн. + tприв. покр.,

n - коэффициент перегрузки,

γ ж. - удельный вес жидкости.

Днище резервуара

Так как днище резервуара опирается по всей своей площади на песчаное основание, то от давления жидкости оно испытывает незначительные напряжения. Поэтому толщину листа днища не рассчитывают, а принимают конструктивно с учётом удобств монтажа и сопротивляемости коррозии.

При V≤1000м и Д<15м → tдн = 4мм; при V>1000м и Д=18-25м → tдн = 5мм; при Д > 25м → tдн = 6мм. Рис. 18

Листы полотнищ днища соединяют между собой по продольным кромкам внахлёстку с перекрытием 30 - 60мм при tдн. = 4 - 5мм, а при tдн.= 6мм - выполняются встык. Крайние листы - "окрайки" - принимают на 1-2мм толще листов средней части днища. Из завода-изготовителя всё поставляется в рулонах (Q ≤ 60т).

Конструирование стенок:

Рис. 19

Стенка резервуара состоит из ряда поясов высотой, равной ширине листа. Соединяют пояса между собой встык или внахлёстку в телескопическом или ступенчатом порядке. Сопряжение встык выполняют в основном на заводе изготовителе (реже на монтаже), внахлёстку - как на заводе, так и на монтаже.

Распространён метод строительства резервуаров методом рулонирования.

Расчёт на прочность - стенка корпуса является несущим элементом и рассчитывается по методу предельных состояний в соответствии с требованиями СНиП 11-23-81

Федеральное агентство по образованию

Уфимский государственный нефтяной технический университет

Архитектурно-строительный факультет

И.В. Федорцев, Е.А. Султанова

Технология возведения

конструкций покрытия

большепролетных зданий

(учебное пособие)

Утверждено решением Ученого Совета УГНТУ в качестве

учебного пособия (протокол от _________№ _______)

Рецензенты:

____________________________________________________________________________________________________________________

Федорцев И.В., Султанова Е.А.

Технология возведения конструкций покрытия большепролетных зданий: Учебное пособие / И.В.Федорцев, Е.А. Султанова. – Уфа: Изд-во УГНТУ, 2008. – с. ______

ISBN – 5 – 9492 – 055 – 1.

Учебное пособие «Технология возведения конструкций покрытия большепролетных зданий» разработано в качестве основного учебно-методического руководства для студентов специальности – «Промышленное и гражданское строительство» при изучении специальной дисциплины «Технология возведения зданий и сооружений» (ТВЗС).

Содержит систематизированный материал имеющегося опыта строительства таких большепролетных конструкций как: балочные, рамные, арочные, вантовые, мембранные, структурные плиты, купольные, тентовые и др. Организация и технология монтажных процессов при строительстве этих зданий и сооружений изложена в виде четкого технологического регламента работ, выполняемого в определенной технологической последовательности с достаточной «детализацией» монтажных процессов в виде «технологических карт» и схем механизации работ. Последние могут быть использованы как принципиальные рекомендации для разработки организационно-технологической документации при проектировании проекта производства работ для конкретных объектов.

Определенный интерес представляет изложенный в «Пособии» опыт монтажа арочного покрытия ледового дворца в г. Уфе, метод возведения которого был впервые в практике строительства подобных большепролетных зданий реализован строительно-монтажными подразделениями Башкортостана по проекту и силами ОАО «Востокнефтезаводмонтаж». Пособие содержит по каждому типу конструкций выводы и контрольные вопросы, позволяющие пользователю осуществлять самостоятельную оценку усвоения изложенного в нем материала.

Предназначено для студентов строительных специальностей УГНТУ при изучении курсов ТВЗС, ТВБзд и ТСМР, слушателей ИПК УГНТУ и строительных организаций и подразделений, так или иначе, связанных с вопросами возведения большепролетных зданий и сооружений.

И.В. Федорцев, Е.А. Султанова

ISBN – 5 – 9492 – 055 – 1 УДК 697.3

Введение. . . . . . . . . . . . . . . . . . . . . .

1. Классификация большепролетных конструкций. . . . . . .

2. Классификация методов монтажа большепролетных

конструкций. . . . . . . . . . . . . . . . . . . .

3. Технология монтажа блочных покрытий. . . . . . . . . .

3.1 Конструктивная схема зданий с балочными покрытиями. .

3.2 Технология монтажа балочного покрытия. . . . . . .

3.3 Выводы по балочным покрытиям. . . . . . . . . .

3.4 Контрольные вопросы к разделу «Технология монтажа балочных покрытий. . . . . . . . . . . . . . . .

3.5 Литература. . . . . . . . . . . . . . . . . .

4. Монтаж арочных покрытий. . . . . . . . . . . . . .

4.1 Конструктивные схемы арок и ее опорных узлов. . . . .

4.2 Обоснование типа фундамента арок. . . . . . . . .

4.2.1 Расчет «затяжки» арочного покрытия. . . . . .

4.2.2 Расчет размера нижней ступени фундамента. . . .

4.3 Монтаж двух- и трехшарнирных арок. . . . . . . . .

4.3.1 Технология возведения двух- и трехшарнирных арок.

4.3.2 Монтаж двухшарнирной арки методом «поворота» . .

4.3.3 Монтаж арок методом «надвига» . . . . . . . .

4.3.4 Технология монтажа арочного покрытия ледового

дворца «Уфа-арена» . . . . . . . . . . . . . .

4.3.4.1 Конструктивная схема арочного покрытия и обоснование метода монтажа. . . . . . . . .

4.3.4.2 Технология монтажа арочного покрытия

«Уфа-арена» . . . . . . . . . . . . . . .

4.3.5 Обоснование схем механизации монтажных работ при возведении арок. . . . . . . . . . . . . . .

4.3.5.1 Обоснование средств механизации монтажных работ при возведении двухшарнирных арок. . . .

4.3.5.2 Обоснование средств механизации монтажных работ при возведении трехшарнирных арок. . . .

4.3.5.3 Обоснование средств механизации монтажных работ при возведении арок методом «поворота» . . .

4.3.5.4 Обоснование средств механизации монтажных работ при возведении арок методом «надвига» . . .

4.3.5.5 Обоснование средств механизации метода «надвига» арочного покрытия ледового дворца «Уфа-арена» . . . . . . . . . . . . . . .

4.3.5.6 Расчет «оттяжек», обеспечивающих устойчивость арок в монтажном блоке при монтаже их методом «надвига» . . . . . . . . . . . . . . . .

4.3.5.7 Расчет такелажного оборудования для «надвига» монтажного блока арок. . . . . . . . . . . .

4.4 Организация строительных потоков при возведении арочных покрытий. . . . . . . . . . . . . . .

4.5 Выводы по разделу «Монтаж арочных покрытий» . . . .

4.6 Контрольные вопросы по разделу «Монтаж арочных покрытий» . . . . . . . . . . . . . . . . .

4.7Литература. . . . . . . . . . . . . . . .

5. Монтаж структурных плит. . . . . . . . . . . . . . .

5.1 Конструктивные схемы структурных плит и узлов решетки структуры. . . . . . . . . . . . . . . . . . .

5.1.1 Структурная плита конструкции ЦНИИСК. . . . .

5.1.2 Структурная плита «Кисловодск» . . . . . . . .

5.1.3 Структурная плита «Берлин» . . . . . . . . .

5.2 Технико-экономические показатели структурных плит покрытия. . . . . . . . . . . . . . . . . . . .

5.3 Классификация методов монтажа структурных плит. . . .

5.3.1 Поэлементный монтаж. . . . . . . . . . .

5.3.2 Монтаж структурных плит укрупненными блоками. .

5.3.3 Обоснование комплекта средств механизации для укрупненного метода монтажа. . . . . . . . . . .

5.3.4 Конвейерный метод монтажа структурных плит. . .

5.3.5 Обоснование средств механизации при монтаже «структур» конвейерным методом. . . . . . . . . .

5.3.5.1 Обоснование потребности в средствах механицации. . . . . . . . . . . . . . . . . . .

5.3.6 Расчет темпоритма работы конвейерной линии. . . .

5.3.7 Методика технико-экономического обоснования монтажа структурных плит конвейерным методом. . . . . . .

5.4 Выводы по разделу «Монтаж структурных плит покрытия» . .

5.5 Контрольные вопросы к разделу «Монтаж структурных плит покрытия» . . . . . . . . . . . . . . . . . . .

5.6 Литература. . . . . . . . . . . . . . . . . .

6. Монтаж купольных покрытий. . . . . . . . . . . . . .

6.1 Конструктивные схемы купольных покрытий. . . . . . .

6.2 Узлы сопряжения купольной оболочки с опорными контурами.

6.3 Классификация методов монтажа купольных покрытий. . .

6.3.1 Технология поэлементного монтажа купольного покрытия. . . . . . . . . . . . . . . . . .

6.3.2 Конструктивная характеристика цирка с купольным покрытием пролетом 64,5 м. . . . . . . . . . . .

6.3.3 Технология монтажа купольного покрытия цирка в

г. Москве. . . . . . . . . . . . . . . . .

6.4 Обоснование средств механизации при монтаже купольных покрытий. . . . . . . . . . . . . . . . . . . . . .

6.4.1 Обоснование средств механизации для поэлементного монтажа купола. . . . . . . . . . . . . . . . .

6.4.2 Обоснование средств механизации при монтаже купольного покрытия крупноблочным методом. . . . .

6.5 Выводы по разделу «Монтаж купольных покрытий» . . . .

      Контрольные вопросы к разделу «Монтаж купольных

6.7 Литература. . . . . . . . . . . . . . . . . .

7. Монтаж вантовых покрытий. . . . . . . . . . . . . .

7.1 Конструктивные схемы вантовых покрытий. . . . . .

7.2 Технология возведения вантовых покрытий. . . . . . .

7.2.1 Технология устройства опалубки опорного контура. .

7.2.2 Технология бетонирования опорного контура. . . .

7.2.3 Методика расчета технологических параметров бетонирования опорного контура. . . . . . . . .

7.3 Технология монтажа вантовой системы. . . . . . . .

7.3.1 Монтаж «прототипа» вантовой системы. . . . . .

7.3.2 Изготовление вант. . . . . . . . . . . .

7.3.3 Монтаж вантовой системы. . . . . . . . . .

7.3.4 Монтаж плит покрытия. . . . . . . . . . .

7.4 Выводы по разделу «Монтаж вантовых покрытий» . . . .

7.5 Контрольные вопросы к разделу «Монтаж вантовых

покрытий» . . . . . . . . . . . . . . . . . . .

7.6 Литература. . . . . . . . . . . . . . . . . .

8. Мембранные покрытия. . . . . . . . . . . . . . . .

8.1 Конструктивные характеристики мембранных покрытий. .

8.2 Принципы методов монтажа мембранных покрытий. . . .

8.3 Возведение мембранного покрытия пролетом 228 м Олимпийского стадиона в г. Москве. . . . . . . . . .

8.3.1 Организация строительства мембранного покрытия. .

8.4 Технология монтажных работ при устройстве мембранного покрытия

8.4.1 Технология возведения опорного контура. . . .

8.4.2 Технология возведения конструкции мембранного покрытия. . . . . . . . . . . . . . . . .

8.5 Выводы по разделу «Мембранные покрытия» . . . .

8.6 Контрольные вопросы к разделу «Мембранные покрытия» . .

8.7 Литература. . . . . . . . . . . . . . . . . .

9. Монтаж рамных покрытий. . . . . . . . . . . . . .

9.1 Конструктивные схемы рамных покрытий. . . . . . .

9.2 Технология возведения рамных покрытий. . . . . . .

9.3 Выводы по разделу «Монтаж рамных покрытий» . . . .

9.4 Контрольные вопросы к разделу «Монтаж рамных покрытий» .

9.5 Литература. . . . . . . . . . . . . . . . . .

10. Монтаж шатровых покрытий. . . . . . . . . . . . .

10.1 Конструктивная схема шатровых покрытий. . . . . .

10.2 Технология возведения шатровых покрытий. . . . . .

10.3 Выводы по разделу «Монтаж шатровых покрытий» . . .

10.4 Контрольные вопросы к разделу «Монтаж шатровых

покрытий» . . . . . . . . . . . . . . . . . . .

10.5 Литература. . . . . . . . . . . . . . . . .

11. Монтаж тентовых покрытий. . . . . . . . . . . . .

11.1 Конструктивные схемы тентовых покрытий. . . . . .

11.2 Технология монтажа тентовых покрытий. . . . . . .

11.2.1 Раскладка оболочки в монтажной зоне. . . . .

11.2.2 Оснащение краевых зон оболочки контурными элементами и монтаж опорной мачты. . . . . . . .

11.2.3 Монтаж тентовой оболочки. . . . . . . . .

11.2.4 Обоснование средств механизации для монтажа тентового покрытия. . . . . . . . . . . . . .

11.3 Выводы по разделу «Монтаж тентовых покрытий» . . .

11.4 Контрольные вопросы к разделу «Монтаж тентовых

покрытий» . . . . . . . . . . . . . . . . . . .

11.5 Литература. . . . . . . . . . . . . . . . .

ВВЕДЕНИЕ

Большепролетными считаются здания, у которых расстояние между опорами несущих конструкций покрытия составляет более 40м.

Системы, перекрывающие большие пролеты, проектируются чаще всего однопролетными, что вытекает из основного фундаментального требования – отсутствие промежуточных опор.

В промышленном строительстве это, как правило, сборочные цеха судостроительных, авиационных, машиностроительных заводов. В гражданском – выставочные залы, павильоны, концертные залы и спортивные сооружения. Опыт проектирования и строительства большепролетных покрытий показывает, что наиболее сложной задачей их возведения является монтаж конструкций покрытия.

Несущие конструкции покрытий больших пролетов по статической схеме подразделяются на балочные, рамные, арочные, структурные, купольные, складчатые, висячие, комбинированные и сетчатые. Все они выполняются, главным образом, из стали и алюминия, железобетона, дерева, пластмасс и воздухонепроницаемых тканей. Возможности и область применения пространственных конструкций обусловлены их конструктивной схемой и величиной пролета.

При выборе типа здания и сооружения важным, зачастую решающим фактором, является метод их возведения. Это обусловлено тем, что существующие средства механизации и традиционные методы монтажа не всегда пригодны для большепролетных конструкций. Поэтому затраты на строительство таких зданий в значительной мере превышают затраты на возведение типовых традиционных конструкций. Теория и практика строительства большепролетных сооружений у нас в стране и за рубежом показали, что наибольший резерв повышения эффективности такого строительства в современных условиях заключен в совершенствовании организационно-технологических аспектов строительства, монтажной технологичности и архитектурно-конструктивных решений. Под монтажной технологичностью понимается свойство конструкции, определяющее соответствие ее требованиям технологии монтажных работ и позволяющее наиболее просто, с наименьшими затратами труда, времени и средств производства, осуществить их изготовление, транспортировку и монтаж при соблюдении требований безопасности и качества продукции. Примером такого комплексного инженерно-обоснованного организационно-технологического решения монтажа большепролетного здания в «Пособии» является приведенный опыт возведения юбилейного объекта в Башкортостане – ледового дворца «Уфа-арена». Уникальность монтажа арочного покрытия сооружения заключается в предложенной ОАО «Востокнефтезаводмонтаж» оригинальной организации сборочно-монтажных процессов, выполняемых не на земле, как обычно, а на проектных отметках (20м) с последующим «надвигом» полностью укрупненного блока весом более 500т с помощью системы гидродомкратов. Такой метод монтажа, впервые разработанный ОАО ВНЗМ, обеспечил «оптимальные» сроки возведения юбилейного объекта и, главное, позволил имеющимся у подрядчика комплекта тяжелой строительной техники осуществить сборку и монтаж массивных конструкций непосредственно в проектном положении. Использование альтернативного, в этом случае, как вариант, традиционного метода «надвига» потребовал бы привлечения более мощных монтажных кранов (СКГ-160), что в условиях сложившейся инфраструктуры микрорайона города, где строился ледовый дворец, было практически неосуществимо.

Характеристика большепролетных конструкций как совокупность их конструктивных параметров, материала изготовления и габаритных размеров рассматривается ниже согласно следующего типажа этих конструкций, а именно:

Балочные;

Арочные;

Структурные плиты;

Вантовые системы;

Мембранные покрытия;

Тентовые сооружения;

Шатровые покрытия.

1 Классификация большепролетных конструкций

Классификация большепролетных конструкций по типам конструктивных схем покрытия зданий и сооружений приведена в табл. 1, содержащей основные сведения, характеризующие область их применения и диапазон пролетов, перекрываемых этими системами. Краткая аннотация по каждому из типов большепролетных конструкций, дифференцированных по величине пролетов, позволяет систематизировать присущие им преимущества и недостатки и, в конечном итоге, определить возможный «рейтинг» того или иного решения «кровельного» покрытия проектируемого здания.

Балочные покрытия - состоят из главных поперечных пространственных и плоских промежуточных балок конструкций – прогонов. Характеризуются отсутствием распора от конструкции покрытия, что существенно «упрощает» характер работы несущих элементов каркаса и фундаментов. Главный недостаток – большой расход стали и значительная строительная высота самих пролетных конструкций. Поэтому они могут применяться в пролетах до 100 м и, главным образом, в производствах, характеризующихся необходимостью применения тяжелых мостовых кранов.

Рамные покрытия характеризуются по сравнению с балочными меньшей массой, большей жесткостью и меньшей строительной высотой. Могут применяться в зданиях пролетом до 120 м.

Арочные покрытия по статической схеме подразделяются на 2 х, 3 х и бесшарнирные. Они имеют меньшую массу чем балочные и рамные, но более

Возможности применения пространственных конструкций

Таблица 1

Тип конструкции

Пролеты, м

Материал

пластмасса

1- плиты; 2 – контрфорсы опор; 3 – арки покрытия; L– пролет;b– шаг конструкции в здании.

1 – колонны; 2 – фермы; 3 – плиты; L– пролет;b– шаг конструкции в здании.

    Структуры размером 18х12; 24х12; 30х30; 36х30

1 – колонны; 2 – плиты структуры; L – длина плит; b – ширина плит.

1 – колонны; 2 – складки; 3 – тип профиля; L– длина складки;b– шаг (пролет) складки.

    Ребристо-кольцевой купол

1 – опорное кольцо; 2 – верхнее опорное кольцо;

3 – ребра жесткости; 4 – Кольцевые ребра жесткости;

B– пролет купола;H– высота купола.

    Вантовые покрытия с арками

1 – арки; 2 – ванты; 3 – оттяжки; 4 – анкер оттяжки;

L– длина здания;b– пролет здания, определяемый пролетом арок.

    Гиперболические параболоиды

1 – опорные колонны; 2 – железобетонная оболочка.

    Вантовые с оттяжными

1 – клоны; 2 – ванты; 3 – стойки-распорки; 4 – оттяжки; 5 – анкерные устои оттяжек.

    Ребристые купола

1 – опорный контур; 2 – опорное верхнее кольцо; 3 – продольные ребра жесткости.

    Пневматические конструкции

Размеры оболочек: 36х25, 42х36, 48х36, 72х48

L– длина оболочки;B– пролет оболочки.

    Тентовые покрытия

1 – мачта, поддерживающая оболочку; 2 – оттяжки мачты; 3 – анкеры оттяжек мачты; 4 – оттяжки тентовой оболочки; 5 – тентовая оболочка; 6 – анкер натяжения тентовой оболочки.

    Мембранные покрытия

1 – колоны; 2 – опорный контур; 3 – фермы стабилизирующие; 4 – мембраны из стального листа; B– пролет мембранной оболочки;H– высота здания.

    Цилиндрические оболочки

1 – колонны; 2 - контурный элемент из ж/б балок: 3 – контурный элемент – затяжка; 4 – оболочка из сборных плит; L – длина здания; b – пролет оболочки.

    Висячие вантовые покрытия

1 – колонны каркаса; 2 – опорный контур; 3 – внутренне опорное кольцо; 4 – вантовая система; B– пролет здания;H– высота здания

Условные обозначения:

Область рационального применения;

Область возможного применения;

Наиболее применяемый материал изготовляемой конструкции;

Возможный вариант материала изготовления конструкции.

сложны в изготовлении и монтаже. Качественная характеристика арок в основном зависит от их высоты и очертания. Оптимальная высота арки – 1/4 …1/6 пролета. Наилучшее очертание, если геометрическая ось совпадает с кривой давления.

Сечения арок делают решетчатыми или сплошными высотой соответственно 1/30 … 1/60 и 1/50 … 1/80 пролета. Арочные покрытия используются при величине пролета до 200 м.

Пространственные покрытия характерны тем, что оси всех несущих элементов не лежат в одной плоскости. Они подразделяются на: купола и оболочки, характеризующиеся как трехмерные несущие конструкции, отличающиеся пространственной работой и состоящие из поверхностей одинарной или двойной кривизны. Под оболочкой понимается структура, форма которой представляет криволинейную поверхность с достаточно малой ее толщиной по сравнению с самой поверхностью. Основное отличие оболочек от сводов состоит в том, что в них возникают и растягивающие и сжимающие усилия.

Ребристые купола состоят из системы плоских ферм, связанных понизу и поверху опорными кольцами. Верхние пояса ферм образуют поверхность вращения (сферическую, параболическую). Такой купол является распорной системой, в которой нижнее кольцо подвергается растяжению, а верхнее – сжатию.

Ребристо-кольцевые купола образуются ребристыми полуарками, опирающимися на нижнее кольцо. Ребра по высоте связывают горизонтальными кольцевыми балками. По несущим ребрам могут быть уложены криволинейные плиты из легкого бетона или стальной настил. Опорное кольцо, как правило, железобетонное и преднапряженное.

Ребристо-кольцевые купола с решетчатыми связями проектируются, главным образом, из металлоконструкций. Введение в систему ребристо-кольцевых элементов диагональных связей позволяет более рационально распределить сжато-растянутые и изгибающие усилия, что обеспечивает малый расход металла и стоимость самого купольного покрытия.

Структурные покрытия применяются для перекрытия больших пролетов промышленного и гражданского назначения. Это пространственно - стержневые системы, отличающиеся тем, что при их формировании появляется возможность применения многократно повторяющихся элементов. Наибольшее распространение получили структуры типа: ЦНИИСК, «Кисловодск», «Берлин», «МАРХИ» и др.

Висячие покрытия (ванты и мембраны ) – основными несущими элементами являются гибкие стальные канаты или тонкостенные листовые металлические конструкции ортогонально растянутые на опорные контуры.

Ванты и мембраны существенно отличаются от традиционных конструкций. К их достоинствам относится: растянутые элементы эффективно используются по всей площади сечения; обеспечивается малая масса несущей конструкции, возведение этих конструкций не требует устройства лесов и подмостей висячих покрытий. Чем больше пролет здания, тем более экономична конструкция покрытия. Однако им присуще и свои недостатки:

    Повышенная деформативность покрытия. Для обеспечения жесткости покрытия приходится принимать дополнительные конструктивные решения за счет введения стабилизирующих элементов;

    Необходимость устраивать специальную опорную конструкцию в виде опорного контура для восприятия «распора» от вант или мембраны, что увеличивает стоимость покрытия.

Конструктивные решения металлических покрытий большепролетных зданий могут быть балочными, арочными, пространственными, висячими Байтовыми, мембранными и др. Учитывая, что в таких конструкциях основной нагрузкой является собственный вес, следует стремиться к его уменьшению, что достигается применением сталей повышенной прочности и алюминиевых сплавов.

Балочные системы (как правило, фермы) включаются в состав поперечных рам, что улучшает статическую схему работы. При пролетах более 60-80 м целесообразно использовать арочные покрытия (рис. 1). Такие покрытия при больших пролетах целесообразно проектировать предварительно-напряженными. В арочном покрытии, представленном на рис. 2, верхний пояс предусмотрен жестким, а нижний пояс и решетка арки выполнены из тросов. После монтажа арки осуществляют принудительное смещение опорных узлов наружу, что вызывает предварительное растяжение в нижнем поясе и раскосах арки.

Рисунок 1. 1 - арка; 2 - затяжка; 3 - неподвижная шарнирная опора; 4 - подвижная шарнирная опора

Рисунок 2. 1 - трос; 2 - жесткий пояс

Пространственные решетчатые конструкции покрытий могут быть плоскими двухслойными (двухсетчатыми) и криволинейными однослойными (односетчатыми) или двухслойными. В двухсетчатых конструкциях две параллельные сетчатые поверхности соединяются между собой решетчатыми связями.

Сетчатые системы регулярного строения называются структурными и применяются, как правило, в виде плоских покрытий. Они представляют собой различные системы перекрестных ферм (рис. 3). Структурные плоские перекрытия благодаря большой пространственной жесткости имеют небольшую высоту (1/16-1/20 пролета), ими можно перекрывать большие пролеты. Устройством консольных свесов за линией опор достигается уменьшение изгибающих моментов и веса покрытия.

Рисунок 3. 1,2 - верхняя и нижняя поясные сетки; 3 - раскосы; 4 - тетраэдр; 5 - октаэдр; 6 - опорная капитель

Криволинейные пространственные покрытия имеют, как правило, цилиндрическую или купольную поверхность.

Цилиндрические покрытия могут быть односетчатыми или двухсетчатыми (криволинейные структуры). Они в поперечном направлении работают как свод, распор которого воспринимается стенами или затяжками.

Купольные покрытия могут иметь ребристую (или ребристо-кольцевую) конструктивную схему (рис. 4а) или сетчатую (рис. 4б). В ребристых куполах радиально расположенные ребра соединены между собой кольцевыми прогонами. Если последние составляют с ребрами единую жесткую пространственную систему, то тогда кольцевые прогоны работают не только на местный изгиб, но в составе купольной системы воспринимают также кольцевые сжимающие или растягивающие усилия. В сетчатых куполах в состав конструкции кроме ребер и кольцевых элементов входят раскосы, что создает условия, при которых стержни работают только на осевые усилия.

Рисунок 4. а - ребристое; б - сетчатое

Висячие покрытия состоят из опорного контура и основных несущих элементов в виде вант или тонких стальных листов, работающих на растяжение. Поскольку основные элементы покрытия работают на растяжение, их несущая способность определяется прочностью (а не устойчивостью), что позволяет эффективно использовать высокопрочные канаты или листовую сталь. Такие покрытия весьма экономичны, однако повышенная деформативность ограничивает их применение для покрытий производственных зданий. Кроме того, учитывая большую распорность таких систем, форму в плане целесообразно принимать круглой, овальной или многоугольной, что облегчает восприятие распора. В связи с этим они применяются, в основном, для покрытий спортивных зданий, крытых рынков, выставочных павильонов, складов, гаражей и других зданий больших пролетов.

В состав вантовых висячих покрытий входят гибкие ванты (стальные канаты или арматурные стержни), располагаемые в радиальном направлении (рис. 5а), в ортогональных направлениях (рис. 5б) или параллельно друг другу в одном направлении (рис. 6). Криволинейные замкнутые опорные контуры работают преимущественно на сжатие, а центральное кольцо - на растяжение. В этих случаях на поддерживающие покрытие конструкции (стены, колонны, рамы) передаются только вертикальные силы. В отличие от этого при незамкнутых контурах распор передается на несущие конструкции здания, что требует устройства анкерных фундаментов, работающих на выдергивание, или стен с контрфорсами и т. п. На систему вант укладываются плиты из легкого железобетона или металлические с полимерным утеплителем, трехслойные и др.

Рисунок 5. а - радиальное расположение вант; б - ортогональное; 1 - ванты; 2 - опорный контур; 3 - центральное кольцо

Рисунок 6. 1,2 - ванты соответственно в середине и в торце; 3 - опорный контур; 4 - железобетонные плиты; 5 - анкерный фундамент

Системы висячих вантовых покрытий отличаются большим разнообразием. Нередко применяют шатровую вантовую систему, при которой центральное кольцо покоится на колонне и поднимается на более высокую отметку, чем опорное контурное.

Примером такой системы может служить покрытие автобусного парка в Киеве диаметром 161м. Описанные выше системы являются однопоясными. Кроме них применяются также двухпоясные системы (особенно при больших ветровых нагрузках), в которых стабилизация покрытия осуществляется с помощью контура обратной кривизны. В таких системах несущие ванты имеют выгиб вниз, а стабилизирующие - вверх. Стабилизирующие ванты с установленным на них настилом могут быть расположены над несущими, что вызывает сжатие распорок (рис. 7а). При расположении стабилизирующих тросов под несущими вантами связи между ними будут растянутыми (рис. 7б). Возможен и третий вариант, при котором несущие и стабилизирующие тросы пересекаются, а стойки сжаты в средней части покрытия и растянуты - в крайних (рис. 7б).

Рисунок 7. 1 - стабилизирующие ванты; 2 - стойки; 3 - несущие ванты

Большое распространение в зарубежной и отечественной практике получили также висячие тонколистовые системы - мембранные покрытия.

Они представляют собой пространственную конструкцию из тонкого металлического листа (стального или из алюминиевых сплавов) толщиной в несколько миллиметров, закрепленного по периметру в опорном контуре. Их преимущества состоят в совмещении несущей и ограждающей функций, а также в повышенной индустриальности изготовления. В некоторых случаях вместо сплошной мембраны покрытие образуется из отдельных, не соединяемых друг с другом, тонких стальных лент. Располагаемые в двух взаимоперпендикулярных направлениях ленты могут переплетаться, что предотвращает их расслаивание.

Сплошное мембранное покрытие успешно применено для универсального стадиона на проспекте Мира в Москве, размеры, в плане которого достигают 183x224 м (рис. 8).

Рисунок 8. Конструктивная схема покрытия универсального стадиона на проспекте Мира в Москве (стальная мембрана толщиной 5 мм): а - план; б - продольный разрез; в - поперечный

В состав спортивного комплекса, построенного в г. Бишкеке, входит зал на 3 тысячи зрителей, покрытие которого решено в виде предварительно напряженной мембранно-балочной висячей системы (рис. 9). Каркас здания выполнен из монолитного здания железобетона в виде раскосных ферм, расположенных по периметру размерами в плане 42,5x65,15 м. Покрытие состоит из собственно мембраны толщиной 2 мм, продольных прогонов и поперечных балок - распорок. Утеплитель в виде минераловатных матов подвешен к мембране снизу, потолок выполнен из штампованных алюминиевых элементов.

Мембранные покрытия использованы и в ряде других большепролетных зданиях. Так, в Санкт-Петербурге универсальный спортивный зал диаметром 160 м перекрыт мембранной оболочной толщиной 6 мм. Подобными оболочками перекрыты также универсальный спортивный зал с размерами в плане 66x72 м на 5 тысяч зрителей в Измайлово (Москва), здание плавательного бассейна «Пионер» с размерами в плане 30x63 м в Харькове и др.

Складчатые своды покрытий - пространственная конструкция, которая может быть выполнена из металла (стали, алюминиевых сплавов), железобетона, пластмасс.

Особенно эффективны такие покрытия из алюминиевых сплавов. Основным конструктивным элементом в последних может служить лист ромбовидной формы (рис. 10), согнутый вдоль большей диагонали. Сопряжения ромбовидных элементов между собой может осуществляться при помощи цилиндрических шарниров или жесткими фланцевыми сочленениями. Для повышения пространственной жесткости покрытия (особенно при шарнирных сопряжениях) необходимо

предусматривать установку продольных затяжек по выступающим узлам складчатого свода.

Рисунок 9. 1 - каркас здания; 2 - мембрано-балочная висячая система

Рисунок 10.

Плоскостные конструкции

а

ЛЕКЦИЯ 7. КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

Каркасы промышленных зданий

Стальной каркас одноэтажных зданий

Стальной каркас одноэтажных зданий состоит из тех же элементов, что и железобетонный (рис.)

Рис. Стальной каркас здания

В стальных колоннах различают две основные части: стержень (ветвь) и базу (башмак) (рис.73) .

Рис. 73. Стальные колонны.

а – постоянного сечения с консолью; б – раздельного типа.

1 – подкрановая часть колонны; 2 – надколонник, 3 – добавочная высота надколонника; 4 – шатровая ветвь; 5 – подкрановая ветвь; 6 – башмак; 7 – подкрановая балка; 8 – подкрановый рельс; 9 – ферма покрытия.

Башмаки служат для передачи нагрузки от колонны на фундамент. Башмаки и нижние части колонн, соприкасающиеся с землей, во избежание коррозии обетонивают. Для опирания стен между фундаментами крайних колонн устанавливают сборные железобетонные фундаментные балки.

Стальные подкрановые балки бывают сплошные и решетчатые. Наибольшее применение получили сплошные подкрановые балки, имеющие двутавровое сечение: несимметричное, применяемые при шаге колонн 6 метров, или симметричное при шаге 12 метров.

Основными несущими конструкциями покрытий в зданиях со стальным каркасом являются стропильные фермы (рис. 74).

Рис. 74. Стальные фермы:

а – с параллельными поясами; б – то же; в – треугольная; г – полигональная;

д – конструкция полигональной фермы.

По очертанию они могут быть с параллельными поясами, треугольные, полигональные.

Фермы с параллельными поясами применяют в зданиях с плоскими крышами, а также в качестве подстропильных.

Треугольные фермы применяют в зданиях с кровлями, требующими больших уклонов, например из асбоцементных листов.

Жесткость стального каркаса и восприятие им ветровых нагрузок и инерционных воздействий от кранов обеспечивается устройством связей. Между колоннами в продольных рядах ставят вертикальные связи – крестовые или портальные. Горизонтальные поперечные связи ставят в плоскостях верхнего и нижнего поясов, а вертикальные – по осям опорных стоек и в одной или нескольких плоскостях посередине пролета.

Деформационные швы

В каркасных зданиях деформационные швы расчленяют на отдельные участки каркас здания и все опирающиеся на него конструкции. Различают швы поперечные и продольные.

Поперечные температурные швы устраивают на спаренных колоннах, поддерживающих конструкции смежных, разрезанных швом, участков здания. Если шов является одновременно осадочным, то он устраивается и в фундаментах спаренных колонн.

В одноэтажных зданиях ось поперечного деформационного шва совмещают с поперечной разбивочной осью ряда. Так же решают деформационные швы в перекрытиях многоэтажных зданий.

Продольные температурные швы в зданиях с железобетонным каркасом решают на двух продольных рядах колонн, а в зданиях со стальным каркасом – на одном ряде колонн.

Стены промышленных зданий

В зданиях бескаркасных и с неполным каркасом наружные стены являются несущими и выполняются из кирпича, крупных блоков или других камней. В зданиях с полным каркасом стены выполняют из тех же материалов самонесущими по фундаментным балкам или панельными – самонесущими или навесными. Наружные стены располагают с внешней стороны колонн, внутренние стены зданий опирают на фундаментные балки или на ленточные фундаменты.

В каркасных зданиях при значительной протяженности и высоте стен для обеспечения устойчивости между элементами основного каркаса вводят дополнительные стойки, иногда ригели, образующие вспомогательный каркас, называемый фахверком .

При наружном водостоке с покрытий продольные стены промышленных зданий выполняют с карнизами, а торцовые – с парапетными стенками. При внутреннем водоотводе парапеты возводят по всему периметру здания.

Стены из крупных панелей

Железобетонные ребристые панели предназначаются для неотапливаемых зданий и зданий с большими производственными тепловыделениями. Толщина стенки 30 миллиметров.

Панели для отапливаемых зданий применяют железобетонные утепленные или из легких ячеистых бетонов. Железобетонные утепленные панели имеют толщину 280 и 300 миллиметров.

Панели разделяются на рядовые (для глухих стен), панели-перемычки (для установки сверху и снизу оконных проемов) и парапетные.

На рис. 79 показан фрагмент стены каркасного панельного здания с ленточным остеклением.

Рис. 79. Фрагмент стены из крупных панелей

Заполнение оконных проемов панельных зданий производится преимущественно в виде ленточного остекления. Высота проемов принимается кратной 1,2 метров, ширина – равной шагу пристенных колонн.

При отдельных оконных проемах меньшей ширины применяются простеночные панели с размерами 0,75, 1,5, 3,0 метра в соответствии с размерами стандартных переплетов.

Окна, двери, ворота, фонари

Фонари

Для обеспечения освещения удаленных от окон рабочих мест и для аэрации (вентиляции) помещений в промышленных зданиях устраивают фонари.

Фонари бывают световые, аэрационные и смешанного типа:

Световые с глухими остекленными переплетами, служащие только для освещения помещений;

Светоаэрационные с открывающимися остекленными створками, служащие для освещения и проветривания помещений;

Аэрационные без остекления, применяемые только для целей аэрации.

Фонари могут быть различного профиля с вертикальным, наклонным или горизонтальным остеклением.

По профилю фонари бывают прямоугольные с вертикальным остеклением, трапециедальные и треугольные с наклонным остеклением, зубчатые с односторонним вертикальным остеклением. В промышленном строительстве обычно применяют прямоугольные фонари. (рис. 83).

Рис. 83. Основные схемы световых и светоаэрационных фонарей:

а – прямоугольный; б – трапециевидный; в – зубчатый; г – треугольный.

По расположению относительно оси здания различают фонари продольные и поперечные. Наибольшее распространение получили продольные фонари.

Отвод воды с фонарей бывает наружный и внутренний. Наружный применяют при фонарях шириной 6 метров или при отсутствии в здании внутреннего водоотвода.

Конструкция фонарей является каркасной и состоит из ряда поперечных рам, опирающихся на верхние пояса ферм или балок покрытия, и системы продольных связей. Конструктивные схемы фонарей и их параметры унифицированы. Для пролетов 12, 15, и 18 метров применяют фонари шириной 6 метров, для пролетов 24, 30 и 36 метров – шириной 12 метров. Ограждение фонаря состоит из покрытия, боковых и торцовых стенок.

Фонарные переплеты изготавливают стальными длиной 6000 миллиметров и высотой 1250, 1500 и 1750 миллиметров. Переплеты остекляют армированным или оконным стеклом.

Аэрацией называют естественный, управляемый и регулируемый воздухообмен.

Действие аэрации основывается:

На тепловом подпоре, возникающем вследствие разности температур внутреннего и наружного воздуха;

На высотном перепаде (разности центров вытяжных и приточных отверстий);

На действии ветра, который обдувая здание, создает на подветренной стороне разрежение воздуха (рис. 84).

Рис. 84. Схемы аэрации зданий:

а – действие аэрации при отсутствии ветра; б – то же, при действии ветра.

Недостатком светоаэрационных фонарей является необходимость закрывать переплеты с наветренной стороны, так как может происходить задувание ветром загрязненного воздуха обратно в рабочую зону.

Двери и ворота

Двери промышленных зданий по конструкции не отличаются от щитовых дверей гражданских зданий.

Ворота предназначаются для ввода внутрь здания транспортных средств и пропуска больших масс людей.

Размеры ворот определяются в соответствии с размерами перевозимого оборудования. Они должны превышать габариты подвижного состава в груженом состоянии по ширине на 0,5-1,0 метра, а по высоте – на 0,2 – 0,5 метра.

По способу открывания ворота бывают распашные, раздвижные, подъемные, шторные и т.д.

Распашные ворота состоят из двух полотнищ, навешенных посредством петель в воротной раме (рис. 81). Рама может быть деревянной, стальной или железобетонной.

Рис. 81. Распашные ворота:

1 – стойки железобетонной рамы, обрамляющей проем; 2 – ригель.

При отсутствии места для распахивания полотен ворота делают раздвижными. Раздвижные ворота бывают однопольные и двупольные. Полотна их имеют конструкция подобную распашным, но в верхней части снабжены стальными роликами, которые при открывании и закрывании ворот передвигаются по рельсу, прикрепленную к ригелю железобетонной рамы.

Полотна подъемных ворот – цельнометаллические, подвешены на тросах и двигаются по вертикальным направляющим.

Полотнище шторных ворот состоит из горизонтальных элементов, образующих стальную штору, которая при подъеме навертывается на вращающийся барабан, горизонтально расположенный над верхом проема.

Покрытия

В одноэтажных промышленных зданиях покрытия выполняются бесчердачными, состоящими из основных несущих элементов покрытия и ограждения.

В неотапливаемых зданиях и зданиях с избыточными производственными тепловыделениями ограждающие конструкции покрытий выполняются неутепленными, в отапливаемых зданиях – утепленными.

Конструкция холодного покрытия состоит из основания (настила) и кровли. В утепленное покрытие включают пароизоляцию и утеплитель.

Элементы настила подразделяют на мелкоразмерные (длиной 1,5 – 3,0 метра) и крупноразмерные (длиной 6 и 12 метров).

В ограждениях из мелкоразмерных элементов возникает необходимость применения прогонов, которые располагают вдоль здания по балкам или фермам покрытия.

Крупноразмерные настилы укладывают по основным несущим элементам и покрытия в этом случае называют беспрогонными.

Настилы

Беспрогонные железобетонные настилы выполняются из железобетонных предварительно напряженных ребристых плит шириной 1,5 и 3,0 метра и длиной, равной шагу балок или ферм.

В неутепленных покрытиях по верху плит устраивается цементная стяжка, по которой наклеивают рулонную кровлю.

В утепленных покрытиях в качестве утеплителя применяются малотеплопроводные материалы и устраивается дополнительная пароизоляция. Пароизоляция особенно необходима в покрытиях над помещениями с повышенной влажностью воздуха.

Мелкоразмерные плиты могут быть железобетонными, армоцементными или из армированных легких и ячеистых бетонов.

Рулонные кровли выполняются рубероидными. По верхнему слою рулонных кровель устраивается защитный слой гравия, втопленный в битумную мастику.

Также применяются настилы из листовых материалов.

Одним из таких настилов является стальной оцинкованный профилированный настил, укладываемый на прогонах (при шаге ферм 6 метров) или по решетчатым прогонам (при шаге 12 метров).

Скатные холодные покрытия часто выполняются из асбоцементных волнистых листов усиленного профиля толщиной 8 миллиметров.

Кроме того, применяются листы из волнистого стеклопластика и других синтетических материалов.

Водоотвод с покрытий

Водоотвод продлевает срок эксплуатации здания, предохраняя его от преждевременного старения и разрушения.

Водоотвод с покрытий промышленных зданий может быть наружным и внутренним.

В одноэтажных зданиях наружный водоотвод устраивают неорганизованным, а в многоэтажных – с применением водосточных труб.

Система внутреннего водоотвода состоит из водоприемных воронок и сети расположенных внутри здания труб, отводящих воду в ливневую канализацию (рис. 82).

Рис. 82. Внутренний водоотвод:

а – водоприемная воронка; б – чугунный поддон;

1 – корпус воронки; 2 – крышка; 3 – патрубок; 4 – воротник патрубка; 5 – чугунный поддон; 6 – отверстие для патрубка; 7 – мешковина, пропитанная битумом; 8 – рулонная кровля; 9 – заполнение расплавленным битумом; 10 – железобетонная плита покрытия.

Внутренний водоотвод устраивают:

В многопролетных зданиях с многоскатными крышами;

В зданиях, имеющих большую высоту или значительные перепады высот отдельных пролетов;

в зданиях с большими производственными тепловыделениями, вызывающими подтаивание снега на покрытии.

Полы

Полы в промышленных зданиях выбирают с учетом характера производственных воздействий на них и предъявляемых к ним эксплуатационных требований.

Такими требованиями могут быть: жаростойкость, химическая стойкость, водо- и газонепроницаемость, диэлектричность, неискримость при ударах, повышенная механическая прочность и другие.

Подобрать полы, удовлетворяющие всем необходимым требованиям, иногда бывает невозможно. В таких случаях в пределах одного помещения приходится применять полы различного типа.

Конструкция пола состоит из покрытия (одежды) и подстилающего слоя (подготовки). Кроме того, в конструкцию пола могут входить прослойки различного назначения. Подстилающий слой воспринимает через покрытие передаваемую на полы нагрузку и распределяет ее на основание.

Подстилающие слои бывают жесткие (бетонные, железобетонные, асфальтобетонные) и нежесткие (песчаные, гравийные, щебеночные).

При устройстве полов по междуэтажным перекрытиям основанием служат плиты перекрытий, а подстилающий слой или отсутствует вовсе, или его роль выполняют тепло- и звукоизоляционные слои.

Грунтовые полы применяют в складах и горячих цехах, где они могут подвергаться ударам от падения тяжелых предметов или соприкасаться с раскаленными деталями.

Каменные полы применяют в складах, где возможны значительные ударные нагрузки, или в зонах действия транспорта на гусеничном ходу. Полы эти прочные, но холодные и жесткие. Покрытием таких полов служат обычно брусчатка (рис. 85).

Рис. 85. Каменные полы:

а – булыжные; б – из крупной брусчатки; в – из мелкой брусчатки;

1 – булыжный камень; 2 – песок; 3 – брусчатка; 4 – битумная мастика; 5 – бетон.

Бетонные и цементные полы применяют в помещениях, где пол может подвергаться постоянному увлажнению или действию минеральных масел (рис. 86).

Рис. 86. Бетонные и цементные полы:

1 – бетонная или цементная одежда; 2 – бетонный подстилающий слой.

Асфальтовые и асфальтобетонные полы обладают достаточной прочностью, водостойкостью, водонепроницаемостью, эластичностью, легко ремонтируются (рис. 87). К недостатками асфальтовых полов относят их способность размягчаться при повышении температуры, вследствие чего их не устраивают в горячих цехах. Под действием длительных сосредоточенных нагрузок в них образуются вмятины.

Рис. 87. Асфальтовые и асфальтобетонные полы:

1 – асфальтовая или асфальтобетонная одежда; 2 – бетонный подстилающий слой.

К керамическим полам относятся клинкерные, кирпичные и плиточные полы (рис. 88). Такие полы хорошо сопротивляются действию высокой температуры, стойки против кислот, щелочей и минеральных масел. Их применяют в помещениях, требующих большой чистоты, при отсутствии ударных нагрузок.

Рис. 88. Полы из керамических плиток:

1 – керамическая плитка; 2 – цементный раствор; 3 – бетон.

Металлические полы применяют лишь на отдельных участках, где к полам прикасаются раскаленные предметы и в то же время нужна ровная твердая поверхность и в цехах при сильных ударных нагрузках (рис. 89).

Рис. 89. Металлические полы:

1 – чугунные плитки; 2 – песок; 3 – грунтовое основание.

Так же в промышленных зданиях могут применяться полы дощатые и из синтетических материалов . Применяются такие полы в лабораториях, инженерных корпусах, административных помещениях.

В полах с жестким подстилающим слоем во избежание появления трещин устраивают деформационные швы. Их располагают по линиям деформационных швов здания и в местах сопряжения полов разного типа.

Для прокладки инженерных коммуникаций в полах устраивают каналы.

Примыкание полов к стенам, колоннам и фундаментам станков делают с зазорами для свободной осадки.

В мокрых помещениях для стока жидкостей полам придают рельеф с уклонами по направлению к чугунным или бетонным водоприемникам, которые называются трапами. Трапы соединяют с канализацией. Вдоль стен и колонн необходимо устройство плинтусов и галтелей.

Лестницы

Лестницы промышленных зданий подразделяются на следующие виды:

- основные, применяемые в многоэтажных зданиях для постоянного сообщения между этажами и для эвакуации;

- служебные, ведущие на рабочие площадки и антресоли;

- пожарные наружные , обязательные при высоте здания более 10 метров и предназначенные для подъема на крышу бойцов пожарных команд (рис. 90).

Рис. 90. Пожарная лестница

- аварийные наружные , устраиваемые для эвакуации людей при недостаточном количестве основных лестниц (рис. 91);

Рис. 91. Аварийная лестница

Противопожарные преграды

Классификация зданий и помещений по взрывопожарной и пожарной опасности применяется для установления требования пожарной безопасности, направленных на предотвращение возможности возникновения пожара и обеспечения противопожарной защиты людей и имущества в случае возникновения пожара. По взрывопожарной и пожарной опасности помещения подразделяются на категории А, Б, В1-В4, Г и Д, а здания на категории А, Б, В, Г и Д.

Категории помещений и зданий определяются, исходя из вида находящихся в помещениях горючих веществ и материалов, их количества и пожароопасных свойств, а также, исходя из объемно-планировочных решений помещений и характеристик проводимых в них технологических процессов.

Противопожарные преграды устраивают с целью предотвратить распространение по зданию огня в случае возникновения пожара. Горизонтальными преградами в многоэтажных зданиях служат несгораемые перекрытия. Вертикальными преградами являются противопожарные стены (брандмауэры).

Брандмауэр предназначается для предотвращения распространения пожара из одного помещения или здания в смежное помещение или здание. Брандмауэры выполняются из несгораемых материалов – камня, бетона или железобетона, и должны иметь предел огнестойкости не менее четырех час. Брандмауэры должны опираться на фундаменты. Брандмауэры делаются на всю высоту здания, разделяя сгораемые и трудносгораемые покрытия, перекрытия, фонари и другие конструкции и должны возвышаться над сгораемыми кровлями не менее чем на 60 сантиметров, а над несгораемыми кровлями на 30 сантиметров. Двери, ворота, окна, крышки люков и другие заполнения проемов в брандмауэрах должны быть несгораемыми с пределом огнестойкости не менее 1,5 часа. Брандмауэры рассчитываются на устойчивость в случае одностороннего обрушения при пожаре перекрытий, покрытий и других конструкций (рис. 92).

Рис. 92. Брандмауэры:

а – в здании с несгораемыми наружными стенами; б – в здании со сгораемыми или трудносгораемыми наружными стенами; 1 – гребень брандмауэра; 2 – торцовый брандмауэр.

Контрольные вопросы

1. Назовите конструктивные схемы промышленных зданий.

2. Назовите основные типы каркасов промышленных зданий.

3. Какие существуют виды стен промышленных зданий?

ЛЕКЦИЯ 8 . КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ

Теплицы и парники

Теплицы и парники представляют собой застекленные сооружения, в которых искусственно создаются нужные климатические и почвенные условия, позволяющие выращивать ранние овощи, рассаду и цветы.

Здания теплиц строят преимущественно из сборных железобетонных остекленных панелей, скрепленных между собой сваркой закладных деталей.

Конструкция парника состоит из сборных железобетонных рам, устанавливаемых в грунт по длине парника и сборных железобетонных парубней (продольный лежень парника), укладываемых на консоли рам. Съемные остекленные парниковые рамы выполняются деревянными (рис. 94).

Рис. 94. Парник из сборных железобетонных элементов:

1 – железобетонные рамы; 2 – железобетонный парубень северный; 3 – то же, южный;

4 – песок; 5 – питательный слой грунта; 6 – отопительные трубы в слое песка;

7 – остекленная деревянная рама.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Маклакова Т. Г., Нанасова С. М. Конструкции гражданских зданий: Учебник. – М.: Издательство АСВ, 2010. – 296 с.

2. Будасов Б. В. , Георгиевский О. В., Каминский В. П. Строительное черчение. Учеб. для вузов / Под общ. ред. О. В. Георгиевского. – М.: Стройиздат, 2002. – 456 с.

3. Ломакин В. А. Основы строительного дела. – М.: Высшая школа, 1976. – 285 с.

4. Красенский В.Е., Федоровский Л.Е. Гражданские, промышленные и сельскохозяйственные здания. – М.: Стройиздат, 1972, – 367 с.

5. Короев Ю. И Черчение для строителей: Учеб. для проф. Учеб. заведений. – 6-е изд., стер. – М.: Высш. шк., Изд. Центр «Академия», 2000ю – 256 с.

6. Чичерин И. И. Общестроительные работы: учебник для нач. проф. Образования. – 6-е изд., стер. – М.: Издательский центр «Академия», 2008. – 416 с.

ЛЕКЦИЯ 6. КОНСТРУКЦИИ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ С ПРОСТРАНСТВЕННЫМИ ПОКРЫТИЯМИ

В зависимости от конструктивной схемы и статической работы несущие конструкции покрытий можно разделить на плоскостные (работающие в одной плоскости) и пространственные.

Плоскостные конструкции

К этой группе несущих конструкций относятся балки, фермы, рамы и арки. Они могут выполняться из сборного и монолитного железобетона, а также металлическими или деревянными.

Балки и фермы совместно с колоннами образуют систему поперечных рам, продольная связь между которыми осуществляется плитами покрытия и ветровыми связями.

Наряду со сборными рамами в ряде зданий уникального характера при повышенных нагрузках и больших пролетах применяют монолитные железобетонные или металлические рамы (рис. 48).

Рис. 48. Большепролетные конструкции:

а - рама железобетонная монолитная двухшарнирная.

Для перекрытия пролетов свыше 40 метров целесообразно использовать арочные конструкции. Арки конструктивно можно разделить на двухшарнирные (имеющие шарниры на опорах), трехшарнирные (с шарнирами на опорах и в середине пролета) и бесшарнирные.

Арка работает в основном на сжатие и передает на опоры не только вертикальную нагрузку, но и горизонтальное давление (распор).

По сравнению с балками, фермами и рамами арки имеют меньший вес и экономичнее по расходу материалов. Арки применяются в конструкциях в сочетании со сводами и оболочками.

Большепролетные покрытия бывают плоскими, пространственными и пневматическими. Эти покрытия применяются в общественных и промышленных зданиях.

Плоские конструкции выполняются из балок, ферм, рам, арок, которые изготовляют из клееной древесины, стального проката, монолитного и сборного железобетона.

Железобетонные балки применяют для перекрытия пролетов до 24 м. Балки используют таврового и П-образного сечения.

Фермами и рамами (бесшарнирными и шарнирными) из дерева, стали и железобетона перекрывают пролеты до 60 м.

Бесшарнирные рамы жестко заделываются в фундамент. Они очень чувствительны к неравномерным осадкам. Поэтому их применяют на прочных и однородных грунтах. Шарнирные рамы менее чувствительны к неравномерным осадкам грунтов. Бывают одно-, двух- и трехшарнирные рамы. Одношарнирные - шарнир в середине пролета. Двухшарнирные - шарниры в опорах.

Арки - эффективные конструкции для перекрытия больших пролетов, т.к. их очертания можно приблизить к кривой давления и за счет этого оптимально использовать материал. Горизонтальные усилия (распор), возникающие в арочных конструкциях, уменьшаются при увеличении радиуса очертания арки. При этом увеличивается стрела подъема арки, а, следовательно, и строительный объем здания. Это ведет к увеличению затрат на отопление и приведенных затрат. Арки широко распространены в покрытиях спортивных зданий больших пролетов.

Пространственные конструкции - перекрестные покрытия, купола, оболочки, висячие покрытия.

Перекрестные покрытия бывают складчатые и сетчатые.

Для покрытий больших пролетов применяют складчатые покрытия из железобетона (до 50 м) и армоцемента (до 60 м). Они образуются плоскими взаимопересекающимися элементами поперек пролета. Складки бывают: прямоугольные и цилиндрические; пилообразные; в виде треугольных плоскостей; призматического типа; трапециевидного профиля и т.д.

Сетчатые покрытия из железобетона проектируют при пролетах до 50 м, а из стальных элементов - до 100 м. В этих покрытиях пересекаются железобетонные и стальные треугольники. Элементы работают в двух направлениях поэтому их высота меньше, чем балочных, - это уменьшает объем здания.

Перекрестные конструкции и системы с плоскими фермами и рамами делают открытыми внутрь помещений. Часто делают подвесные потолки, которые укрепляют к низу ферм.

Купол - наиболее древняя конструкция. Его применяли, т.к. можно подобрать такие очертания, при которых в элементах свода не возникают растягивающие усилия. В залах, где желательно создать большое воздушное пространство (рынки, спортзалы) и где нет больших текущих затрат на отопление, применяют различного вида купольные конструкции из монолитного или сборного железобетона, куполы-мембраны из стального листа толщиной 3 мм с подклеенным снизу утеплителем. Во временных залах выставок - из клеенопластиковых конструкций.

Висячие покрытия перекрывают пролеты до 100 м. Основные элементы этих покрытий работают на растяжение и передают нагрузки от покрытия на анкеры. Они имеют криволинейные очертания и представляют собой гибкие или жесткие нити, мембраны или висячие фермы. По конструктивным особенностям различают висячие покрытия: однопоясные; двупоясные; гипары (гиперболические параболоиды) и вантовые.

В висячих покрытиях несущими элементами являются стальные тросы. Они натягиваются через какую-либо опорную конструкцию и укрепляются растяжками. Достоинства висячих конструкций - экономия металла и более эффективное использование несущих элементов по сравнению с балочными и рамными конструкциями, т.к. тросы работают на растяжение. Недостатки: у висячих покрытий низкая жесткость, поэтому кровельный настил часто деформируется; трудно обеспечить отвод атмосферной влаги.

Однопоясные покрытия применяются чаще других, т.к. они технологичны в изготовлении, просты в монтаже. Ими можно придавать сооружению самую разную форму. Однопоясные покрытия состоят из системы радиальных или перекрещивающихся растяжек, которые передают горизонтальные усилия на жесткие рамы, рамы-стойки или балки-затяжки замкнутого контура. На растяжки навешивают плиты, и под этой нагрузкой нити-растяжки растягиваются. В это время между плитами омоноличивают швы, стыки заваривают. За счет упругих деформаций нитей происходит обжатие плит, и конструкция начинает работать как монолитная оболочка. В цилиндрических покрытиях создают небольшую кривизну покрова в направлении, перпендикулярном осям нитей. Это делается для отвода дождевых вод. С параболических систем в форме перевернутого купола вода поступает к центру покрытия и ее отводят внутренним водостоком. Стояки устраивают по периметру зала, а горизонтальные разводящие трубопроводы прячут в подвесном потолке. Самый простой отвод воды - с шатровых покрытий.

В двупоясных покрытиях применяют два вогнутых пояса, соединенных напряженными нитями. Наиболее распространены циркульные в плане конструкции. Нити по периметру крепят к внешнему кольцу, а в центре - к внутреннему. В зависимости от высоты центрального кольца систему можно делать вогнутой или выпуклой. Выпуклая система позволяет поднять центральную часть покрытия и за счет этого отвести воду к наружным стенам, не прибегая к горизонтальной разводке водостоков, и применить складчатую систему покрытия.

Гипары (гиперболические параболоиды) - это седловидные висячие покрытия. Они формируются в решетчатые мембраны двумя видами нитей. Одни нити несущие, а вторые - напрягающие. По периметру нити заделывают в замкнутый контур. По нитям укладывают плиты или диски. Их омоноличивают, предварительно подгружая балластом или натягивая несущие тросы домкратами. После этого напрягающие нити получают наибольшее напряжение и стыки плит, перпендикулярные этим нитям раскрываются. Их заделывают раствором на расширяющемся цементе. В результате конструкцию превращают в жесткую оболочку. Гипарами перекрывают сооружения, имеющие циркульное очертание плана.

Вантовые покрытия состоят из растянутых элементов - вант; конструкций, работающих на сжатие, - стоек и изгиб - балок, ферм, плит и оболочек. Эти покрытия могут иметь не только пространственную конструктивную схему, но и плоскую. В них используют прямолинейные стержни - ванты. Поэтому вантовые конструкции жестче, кинематические перемещения их элементов меньше, чем у других висячих покрытий.

Оболочки - одинарной и двоякой кривизны. Одинарной кривизны - цилиндрические или конические поверхности. Двоякой кривизны - выполняется в виде купола, эллипсоида. По структуре оболочки бывают: гладкие, ребристые, волнистые, сетчатые, монолитные и сборные.

Применяются еще пневматические перекрытия для перекрытия пролетов до 30 м. Они используются для временных сооружений. Бывают трех видов: воздухоопорные оболочки; пневматические каркасы; пневматические линзы. Воздухоопорные оболочки - это баллоны из прорезиненных или синтетических тканей. Внутри них создается избыточное давление воздуха. Применяются для спортивных сооружений, выставок. Пневматические каркасы - это удлиненные баллоны в виде отдельных арок с избыточным давлением воздуха. Арки соединяются в непрерывный свод с шагом 3-4 м. Пневматические линзы - это большие подушки, надутые воздухом, которые подвешиваются к жестким каркасным конструкциям. Используются для устройства летних цирков, театров.



2024 stdpro.ru. Сайт о правильном строительстве.