Материал для печатных плат. Материалы печатных плат. Базовые материалы для печатных плат

В качестве основания используют фольгированные и нефольгированные диэлектрики (гетинакс, текстолит, стеклотекстолит, стеклоткань, лавсан, полиамид, фторопласт и др.), керамические материалы, металлические пластины, изоляционный прокладочный материал (препрег).

Фольгированные диэлектрики представляют собой электроизоляционные основания, плакированные обычно электролитической медной фольгой с оксидированным гальваностойким слоем, прилегающим к электроизоляционному основанию. В зависимости от назначения фольгированные диэлектрики могут быть односторонними и двусторонними и иметь толщину от 0,06 до 3,0 мм.

Нефольгированные диэлектрики, предназначенные для полуаддитивного и аддитивного методов производства плат, имеют на поверхности специально нанесенный адгезивный слой, который служит для лучшего сцепления химически осаждаемой меди с диэлектриком.

Основания ПП изготовляются из материала, способного хорошо сцепляться с металлом проводников; иметь диэлектрическую проницаемость не более 7 и малый тангенс угла диэлектрических потерь; обладать достаточно высокой механической и электрической прочностью; допускать возможность обработки резанием, штамповкой и сверлением без образования сколов, трещин и расслоения диэлектрика; сохранять свои свойства при воздействии климатических факторов, обладать негорючестью и огнестойкостью; обладать низким водопоглощением, низким значением теплового коэффициента линейного расширения, плоскостностью, а также устойчивостью к агрессивным средам в процессе создания рисунка схемы и пайки.

Материалы основания - это слоистые прессованные пластины, пропитанные искусственной смолой и возможно облицованные с одной или двух сторон медной электролитической фольгой. Фольгированные диэлектрики применяются в субтрактивных методах изготовления ПП, нефольгированные - в аддитивных и полуаддитивных. Толщина токопроводящего слоя может быть 5, 9, 12, 18, 35, 50, 70 и 100 мкм.

В производстве применяют материалы, например, для ОПП и ДПП - стеклотекстолит фольгированный марок СФ-1-50 и СФ-2-50 с толщиной медной фольги 50 мкм и собственной толщиной от 0,5 до 3.0 мм; для МПП - фольгированный травящийся стеклотекстолит ФТС-1-18А и ФТС-2-18А с толщиной медной фольги 18 мкм и собственной толщиной от 0,1 до 0,5 мм; для ГПП и ГПК - фольгированный лавсан ЛФ-1 с толщиной медной фольги 35 или 50 мкм и собственной толщиной от 0,05 до 0,1 мм.

По сравнению с гетинаксами стеклотекстолиты имеют лучшие механические и электрические характеристики, более высокую нагревостойкость, меньшее влагопоглощение. Однако у них есть ряд недостатков, например, невысокая нагревостойкость по сравнению с полиамидами, что способствует загрязнению смолой торцов внутренних слоев при сверлении отверстий.

Для изготовления ПП, обеспечивающих надежную передачу наносекундных импульсов, необходимо применять материалы с улучшенными диэлектрическими свойствами, к ним относят ПП из органических материалов с относительной диэлектрической проницаемостью ниже 3,5.

Для изготовления ПП, эксплуатируемых в условиях повышенной опасности возгорания, применяют огнестойкие материалы, например, стектотекстолиты марок СОНФ, СТНФ, СФВН, СТФ.

Для изготовления ГПК, выдерживающих многократные изгибы на 90 в обе стороны от исходного положения с радиусом 3 мм, применяют фольгированный лавсан и фторопласт. Материалы с толщиной фольги 5 мкм позволяют изготовить ПП 4-го и 5-го классов точности.

Изоляционный прокладочный материал применяют для склеивания слоев ПП. Их изготавливают из стеклоткани, пропитанной недополимеризированной термореактивной эпоксидной смолой с нанесенным с двух сторон адгезионным покрытием.

Для защиты поверхности ПП и ГПК от внешних воздействий применяют полимерные защитные лаки и покрывные защитные пленки.

Керамические материалы характеризуются стабильностью электрических и геометрических параметров; стабильной высокой механической прочностью в широком диапазоне температур; высокой теплопроводностью; низким влагопоглощением. Недостатками являются длительный цикл изготовления, большая усадка материала, хрупкость, высокая стоимость и др.

Металлические основания применяются в теплонагруженных ПП для улучшения отвода тепла от ИМС и ЭРЭ в ЭА с большой токовой нагрузкой, работающих при высоких температурах, а также для повышения жесткости ПП, выполненных на тонких основаниях; их изготавливают из алюминия, титана, стали и меди.

Для печатных плат с высокой плотностью монтажа и с микропереходами применяют материалы, пригодные для обработки лазером. Эти материалы можно разделить на две группы:

1. Упрочненные нетканые стекломатериалы и преприги (композиционный материал на основе тканей, бумаги, непрерывных волокон, пропитанный смолой в неотвержденном состоянии) с заданной геометрией и распределением нити; органические материалы с неориентированным расположением волокон Преприг для лазерной технологии имеет меньшую толщину стеклоткани по оси Z по сравнению со стандартной стеклотканью.

2. Неупрочненные материалы (медная фольга покрытая смолой, полимеризованная смола), жидкие диэлектрики и диэлектрики с нанесенной сухой пленкой.

Из других материалов, используемых при изготовлении печатных плат, наиболее широко применяют никель и серебро в качестве металлического резиста, для обеспечения пайки, сварки. Кроме того, используется целый ряд других металлов и сплавов (например, олово - висмут, олово - индий, олово - никель и т.д.), назначение которых - обеспечение избирательной защиты или низкого контактного сопротивления, улучшение режимов пайки. Дополнительные покрытия, увеличивающие электропроводность печатных проводников, в большинстве случаев выполняют гальваническим осаждением, реже - способами вакуумной металлизации и горячего лужения.

До недавнего времени фольгированные диэлектрики на основе эпоксидно-фенольных смол, а также применяемые в ряде случаев диэлектрики на основе полиимидных смол удовлетворяли основным требованиям изготовителей печатных плат. Необходимость улучшения теплоотвода от ИМС и БИС, требования низкой диэлектрической проницаемости материала платы для быстродействующих схем, важность согласования коэффициентов термического расширения материала платы, корпусов ИМС и кристаллоносителей, широкое внедрение современных методов монтажа привели к необходимости разработки новых материалов. Широкое применение в современных конструкциях технических средств ЭВМ находят МПП на основе керамики. Применение керамических подложек для изготовления печатных плат обусловлено прежде всего использованием высокотемпературных способов создания проводящего рисунка с минимальной шириной линий, однако используются и другие преимущества керамики (хорошая теплопроводность, согласование по коэффициенту термического расширения с корпусами ИМС и носителями и т.п.). При изготовлении керамических МПП наиболее широко используется толстопленочная технология.

В керамических основаниях в качестве исходных материалов широко применяются оксиды алюминия и бериллия, а также нитрид алюминия и карбид кремния.

Основным недостатком керамических плат является ограниченность их размеров (обычно не более 150x150 мм), что обусловлено в основном хрупкостью керамики, а также сложностью достижения необходимого качества.

Формирование проводящего рисунка (проводников) осуществляется трафаретной печатью. В качестве материалов проводников в керамических платах подложечного вида используются пасты, состоящие из металлических порошков, органического связующего вещества и стекла. Для проводниковых паст, которые должны обладать хорошей адгезией, способностью выдерживать многократную термообработку, низким удельным электрическим сопротивлением, применяются порошки благородных металлов: платины, золота, серебра. Экономические факторы заставляют применять также пасты на основе композиций: палладий - золото, платина - серебро, палладий - серебро и др.

Изоляционные пасты изготавливаются на основе кристаллизующихся стекол, стеклокристаллических цементов, стеклокерамики. В качестве материалов проводников в керамических платах пакетного вида используются пасты, изготовленные на основе порошков тугоплавких металлов: вольфрама, молибдена и др. В качестве основания заготовки и изоляторов применяются ленты из сыров керамики на основе оксидов алюминия и бериллия, карбида кремния, нитрида алюминия.

Металлические жесткие основания, покрытые диэлектриком, характеризуются (как и керамические) высокотемпературным вжиганием в подложку толстопленочных паст на основе стекол и эмалей. Особенности плат на металлическом основании - повышенная теплопроводность, конструкционная прочность и ограничения по быстродействию из-за сильной связи проводников с металлическим основанием.

Широкое применение находят пластины из стали, меди, титана, покрытые смолой или легкоплавким стеклом. Однако наиболее совершенным по комплексу показаний является анодированный алюминий и его сплавы с достаточно толстым слоем оксида. Анодированный алюминий применяется также для тонкопленочной многослойной разводки плат.

Перспективно применение в печатных платах оснований со сложной составной структурой, включая металлические прокладки, а также оснований из термопластиков.

Основания из фторопласта со стекловолокном используются в быстродействующих схемах. Различные композиционные основания из "кевлара и кварца" а также медь - инвар - медь используются в тех случаях, когда необходимо иметь термический коэффициент расширения, близкий к коэффициенту расширения оксида алюминия, например в случае монтажа на плату различных керамических кристаллоносителей (микрокорпусов). Сложные подложки на основе полиимида используются главным образом в мощных схемах или при высокотемпературных применениях печатных плат.

Что представляет из себя печатная плат а ?

Печатная плат а или плат а , представляет собой пластину или панель состоящее из одного или двух проводящих рисунков, расположенных на поверхности диэлектрического основания, или из системы проводящих рисунков, расположенных в объеме и на поверхности диэлектрического основания, соединенных между собой в соответствии с принципиальной электрической схемой, предназначенное для электрического соединения и механического крепления устанавливаемых на нем изделий электронной техники, квантовой электроники и электротехнических изделий - пассивных и активных электронных компонентов.

Самый простой печатной плат ой является плат а , которая содержит медные проводники на одной из сторон печатной плат ы и связывает элементы проводящего рисунка только на одной из ее поверхностей. Такие плат ы известны как однослойные печатной плат ы или односторонние печатные плат ы (сокращенно - ОПП ).

На сегодняшний день, самые популярные в производстве и наиболее распространенные печатные плат ы , которые содержат два слоя, то есть, содержащие проводящий рисунок с обеих сторон плат ы – двухсторонни (двухслойные) печатные плат ы (сокращённо ДПП ). Для соединения проводников между слоями используются сквозные монтаж ные и переходные металлизированные отверстия. Тем не менее, в зависимости от физической сложности конструкции печатной плат ы , когда разводка проводников на двусторонней плат е становится слишком сложной, на производстве заказ ывается многослойные печатные плат ы (сокращённо МПП ), где проводящий рисунок формируется не только на двух внешних сторонах плат ы , но и во внутренних слоях диэлектрика. В зависимости от сложности, многослойные печатные плат ы могут быть изготовлены из 4,6, ….24 или более слоев.


>
Рис 1. Пример двухслойной печатной плат ы с защитной паяльной маской и маркировкой.

Для монтаж а электронных компонентов на печатные плат ы , необходима технологическая операция - пайка, применяемая для получения неразъёмного соединения деталей из различных металлов путём введения между контактами деталей расплавленного металла - припоя, имеющего более низкую температуру плавления, чем материалы соединяемых деталей. Спаиваемые контакты деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате, припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается, и припой переходит в твёрдую фазу, образуя соединение. Этот процесс можно сделать вручную или с помощью специализированной техники.

Перед пайкой, компоненты размещаются на печатной плат е выводами компонентов в сквозные отверстия плат ы и припаиваются к контактным площадкам и/или металлизированной внутренней поверхности отверстия – т.н. технология монтаж а в отверстия (THT Through Hole Technology - технология монтаж а в отверстия или др. словами - штыревой монтаж или DIP-монтаж ). Так же, все большее распространение, в особенности, в массовом и крупносерийном производстве, получила более прогрессивная технология поверхностного монтаж а - также называемая ТМП (технология монтаж а на поверхность) или SMT (surface mount technology) или SMD-технология (от surface mount device – прибор, монтируемый на поверхность). Основным ее отличием от «традиционной» технологии монтаж а в отверстия является то, что компоненты монтируются и паяются на контактные площадки (англ. land), являющиеся частью проводящего рисунка на поверхности печатной плат ы . В технологии поверхностного монтаж а , как правило, применяются два метода пайки: пайка оплавлением припойной пасты и пайка волной. Основное преимущество метода пайки волной – возможность одновременной пайки компонентов, монтируемых как на поверхность плат ы , так и в отверстия. При этом пайка волной является самым производительным методом пайки при монтаж е в отверстия. Пайка оплавлением основана на применении специального технологического материала – паяльной пасты. Она содержит три основных составляющих: припой, флюс (активаторы) и органические наполнители. Паяльная паста наносится на контактные площадки либо с помощью дозатора, либо через трафарет , затем устанавливаются электронные компоненты выводами на паяльную пасту и далее, процесс оплавления припоя, содержащегося в паяльной пасте, выполняется в специальных печах путем нагрева печатной плат ы с компонентами.

Для избежания и/или предотвращения случайного короткого замыкания проводников из разных цепей в процессе пайки, производители печатных плат применяют защитную паяльную маску (англ. solder mask; она же «зеленка») – слой прочного полимерного материала, предназначенного для защиты проводников от попадания припоя и флюса при пайке, а также от перегрева. Паяльная маска закрывает проводники и оставляет открытыми контактные площадки и ножевые разъемы. Наиболее распространенные цвета паяльной маски, используемые в печатных плат а х - зеленый, затем красный и синий. Следует иметь в виду, что паяльная маска не защищает плат у от влаги в процессе эксплуатации плат ы и для влагозащиты используются специальные органические покрытия.

В наиболее популярных программах систем автоматизированного проектирования печатных плат и электронных приборов (сокращённо САПР - CAM350, P-CAD, Protel DXP, SPECCTRA, OrCAD, Allegro , Expedition PCB, Genesis), как правило, существуют правила, связанные с паяльной маской. Эти правила определяют расстояние/отступ, которое необходимо соблюсти, между краем паяемой площадки и границей паяльной маски. Эта концепция иллюстрируется на рисунке 2 (а).

Шелкография или маркировка.

Маркировка (англ. Silkscreen, legend) является процессом, в котором производитель наносит информацию о электронных компонентах и которая способствует облегчить процесс сборки, проверки и ремонта. Как правило, маркировка наносится для обозначения контрольных точек, а также положения, ориентации и номинала электронных компонентов. Также она может быть использована для любых целей конструктора печатных плат , например, указать название компании, инструкцию по настройке (это широко используется в старых материнских плат а х персональных компьютеров) и др. Маркировку можно наносить на обе стороны плат ы и ее, как правило, наносят методом сеткографии(шелкография) специальной краской (с термическим или УФ отверждением) белого, желтого или черного цвета. На рисунке 2 (b) показаны обозначение и область расположения компонентов, выполненные маркировкой белого цвета.


>
Рис 2. Расстояние от площадки до маски (а) и маркировка (b)

Структура слоев в САПР

Как уже отмечалось в начале этой статьи, печатные плат ы могут быть сделаны из нескольких слоев. Когда печатная плат а разработана с помощью САПР, часто можно увидеть в структуре печатной плат ы несколько слоев, которые не соответствуют необходимым слоям с разводкой из проводящего материала (меди). Например, слои с маркировкой и паяльной маской являются непроводящими слоями. Наличие проводящих и непроводящих слоев может привести к путанице, так как производители используют термин слой, когда они имеют в виду только токопроводящие слои. С этого момента, мы будем использовать термин «слои» без «САПР», только когда речь идет о проводящих слоях. Если мы используем термин «слои САПР» мы имеем в виду все виды слоев, то есть проводящие и непроводящие слои.

Структура слоев в САПР:

слои САПР (проводящие и непроводящие)

описание

Top silkscreen - верхний слой маркировки (непроводящий)

Top soldermask – верхний слой паяльной маски (непроводящий)

Top paste mask – верхний слой паяльной пасты (непроводящий)

Top Layer 1 – первый/верхний слой (проводящий)

Int Layer 2 – второй/внутренний слой (проводящий)

Substrate - базовый диэлектрик (непроводящий)

Bottom Layer n - нижний слой(проводящие)

Bottom paste mask - Нижний слой паяльной пасты (непроводящий)

Bottom soldermask Нижний слой паяльной маски (непроводящий)

Bottom silkscreen Нижний слой маркировки (непроводящий)

На рисунке 3. показаны три различных структур слоев. Оранжевый цвет подчеркивает проводящие слои в каждой структуре. Высота структуры или толщина печатной плат ы может варьироваться в зависимости от назначения, однако наиболее часто используется толщина 1,5мм.


>
Рис 3. Пример 3 различных структур печатных плат : 2-х слойная(а), 4-х слойная (b) и 6-и слойная(с)

Типы корпусов электронных компонентов

Сегодня на рынке присутствует большое разнообразие типов корпусов электронных компонентов. Обычно, для одного пассивного или активного элемента существует несколько типов корпусов. Например, вы можете найти одну и ту же микросхему и в корпусе QFP (от англ. Quad Flat Package - семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам) и в корпусе LCC (от англ. Leadless Chip Carrier - представляет собой низкопрофильный квадратный керамический корпус с расположенными на его нижней части контактами).

В основном существует 3 больших семейств электронных корпусов:

Описание

корпуса для монтаж а в отверстия, которые имеют контакты, предназначенные для сквозной установки через монтаж ные отверстие в печатной плат е. Такие компоненты паяются на противоположной стороне плат ы , где был вставлен компонент. Как правило, эти компоненты смонтированы только на одной стороне печатной плат ы .

SMD / SMT

корпуса для поверхностного монтаж а , которые паяются на одну сторону плат ы , где помещен компонент. Преимущество этого вида компоновки корпуса является то, что он может быть установлен на обе стороны печатной плат ы и кроме того, эти компоненты меньше чем корпуса для монтаж а в отверстия и позволяют проектировать плат ы меньших габаритов и с более плотной разводкой проводников на печатных плат а х.

(Ball Grid Array- массив шариков -тип корпуса поверхностно-монтируемых интегральных микросхем). BGA выводы представляют собой, шарики из припоя, нанесённые на контактные площадки с обратной стороны микросхемы. Микросхему располагают на печатной плат е и нагревают с помощью паяльной станции или инфракрасного источника, так что шарики начинают плавиться. Поверхностное натяжение заставляет расплавленный припой зафиксировать микросхему ровно над тем местом, где она должна находиться на плат е. У BGA длина проводника очень мала, и определяется расстоянием между плат ой и микросхемой, таким образом, применение BGA позволяет увеличить диапазон рабочих частот и увеличить скорость обработки информации. Так же технология BGA имеет лучший тепловой контакт между микросхемой и плат ой, что в большинстве случаев избавляет от установки теплоотводов, поскольку тепло уходит от кристалла на плат у более эффективно. Чаще всего BGA используется в компьютерных мобильных процессорах, чипсетах и современных графических процессорах.

Контактная площадка печатной плат ы (англ. land)

Контактная площадка печатной плат ы - часть проводящего рисунка печатной плат ы , используемая для электрического подсоединения устанавливаемых изделий электронной техники. Контактная площадка печатной плат ы представляет собой открытые от паяльной маски части медного проводника, куда и припаиваются выводы компонентов. Есть два типа площадок – контактные площадки монтаж ных отверстий для монтаж а в отверстия и планарные площадки для поверхностного монтаж а - SMD площадки. Иногда, SMD площадки с переходным отверстием очень похожи на площадки для монтаж а в отверстия.

На рисунке 4 представлены контактные площадки для 4х разных электронных компонентов. Восемь для IC1 и две для R1 SMD площадки, соответственно, а так же три площадки с отверстиями для Q1 и PW электронных компонентов.


>
Рис 4. Площадки для поверхностного монтаж а (IC1, R1) и контактные площадки для монтаж а в отверстия (Q1, PW).

Медные проводники

Медные проводники используется для подключения двух точек на печатной плат е -например, для подключения между двумя SMD площадками (рисунок 5.), или для подключения SMD площадки к площадке монтаж ного отверстия или для соединения двух переходных отверстия.

Проводники могут иметь разную, рассчитанную ширину в зависимости от токов, протекающих через них. Так же, на высоких частотах, необходимо рассчитывать ширину проводников и зазоры между ними, так как сопротивление, емкость и индуктивность системы проводников зависит от их длинны, ширины и их взаимного расположения.


>
Рисунок 5. Соединение двумя проводниками двух SMD микросхем.

Сквозные металлизированные переходные отверстие печатной плат ы

Когда надо соединить компонент, который находится на верхнем слое печатной плат ы с компонентом, который находится на нижнем слое, применяются сквозные металлизированные переходные отверстия, которые соединяют элементы проводящего рисунка на разных слоях печатной плат ы . Эти отверстия, позволяют току проходить сквозь печатную плат у. На рисунке 6 показаны два проводника, которые начинаются на площадках компонентов на верхнем слое и заканчивается на площадках другого компонента на нижнем слое. Для каждого проводника установлено свое переходное отверстие, проводящее ток из верхнего слоя на нижний слой.


>

Рисунок 6. Соединение двух микросхем через проводники и переходные металлизированные отверстия на разных сторонах печатной плат ы

На рисунке 7 более детально дано представление о поперечном сечении 4-слойных печатных плат . Здесь цветами обозначены следующие слои:

На модели печатной плат ы , на рисунке 7 показан проводник (красный), который принадлежит к верхнему проводящему слою, и который проходит сквозь плат у с помощью сквозного переходного отверстия, а затем продолжает свой путь по нижнему слою(синий).


>

Рисунок 7. Проводник из верхнего слоя, проходящий через печатную плат у и продолжающий свой путь на нижнем слое.

«Глухое» металлизированное отверстие печатной плат ы

В HDI (High Density Interconnect - высокая плотность соединений) печатных плат а х, необходимо использовать более чем два слоя, как это показано на рисунке 7. Как правило, в многослойных конструкциях печатной плат ы , на которых устанавливаются много интегральных микросхем, используются отдельные слои для питания и земли (Vcc или GND), и таким образом, наружные сигнальные слои освобождаются от шин питания, что облегчает разводку сигнальных проводников. Также бывают случаи, что сигнальные проводники должны переходить от внешнего слоя (сверху или снизу) по наименьшему пути, что бы обеспечить необходимое волновое сопротивление, требования по гальванической развязке и заканчивая требованиями на устойчивость к электростатическому разряду. Для таких видов соединений используются глухие металлизированные отверстие (Blind via - «глухие» или «слепые»). Имеются в виду отверстия, соединяющие наружный слой с одним или несколькими внутренними, что позволяет сделать подключение минимальным по высоте. Глухое отверстие начинается на внешнем слое и заканчивается на внутреннем слое, поэтому оно имеет префикс «глухое».

Чтобы узнать, какое отверстие присутствует на плат е, вы можете поместить печатную плат у над источником света и посмотреть - если вы видите свет, идущий от источника через отверстие, то это переходное отверстие, в противном случае глухое.

Глухие переходные отверстия полезно использовать в конструкции плат ы , когда вы ограничены в размерах и имеете слишком мало места для размещения компонентов и разводки сигнальных проводников. Вы можете разместить электронные компоненты с обеих сторон и максимально увеличить пространство под разводку и другие компоненты. Если переходы сделаны через сквозные отверстие, а не глухие, понадобиться дополнительное пространство для отверстий т.к. отверстие занимает место с обеих сторон. В то же время глухие отверстия могут находиться под корпусом микросхемы – например для разводки больших и сложных BGA компонентов.

На рисунке 8 показаны три отверстия, которые являются частью четырехслойной печатной плат ы . Если смотреть слева направо, то первое мы увидим сквозное отверстие через все слои. Второе отверстие начинается в верхнем слое и заканчивается на втором внутреннем слое - глухое переходное отверстия L1-L2. Наконец, третье отверстие, начинается в нижнем слое и заканчивается в третьем слое, поэтому мы говорим, что это глухое переходное отверстия L3-L4.

Основным недостатком этого типа отверстия, является более высокая цена изготовления печатной плат ы с глухими отверстиями, по сравнению с альтернативными сквозными отверстиями.


>
Рис 8. Сравнение переходного сквозного отверстие и глухих переходных отверстий.

Скрытые переходные отверстия

Англ. Buried via - «скрытые», «погребенные», «встроенные». Эти переходные отверстия похожи на глухие, с той разницей, что они начинаются и заканчиваются на внутренних слоях. Если мы посмотрим на рисунок 9 слева направо, мы увидим, что первое отверстие сквозное через все слои. Второе представляет собой глухое переходное отверстия L1-L2, а последнее является, скрытое переходное отверстие L2-L3, которое начинается на втором слое и заканчивается на третьем слое.


>

Рисунок 9. Сравнение переходного сквозного отверстие, глухого отверстия и скрытого отверстия.

Технология изготовления глухих и скрытых переходных отверстий

Технология изготовления таких отверстий может быть различной, в зависимости от той конструкции, которую заложил разработчик, и в зависимости от возможностей завод а-изготовителя. Мы будем выделять два основных вида:

    Отверстие сверлится в двусторонней заготовке ДПП , металлизируется, травиться и затем эта заготовка, по сути готовая двухслойная печатная плат а , прессуется через препрег в составе многослойной заготовки печатной плат ы . Если эта заготовка находиться сверху «пирога» МПП , то мы получаем глухие отверстия, если в середине, то - скрытые переходные отверстия.

  1. Отверстие сверлится в спрессованной заготовке МПП , глубина сверления контролируется, что бы точно попасть в площадки внутренних слоев, и затем происходит металлизация отверстия. Таким образом мы получаем только глухие отверстия.

В сложных конструкциях МПП могут применяться комбинации вышеперечисленных видов отверстий – рисунок 10.


>

Рисунок 10. Пример типовой комбинации видов переходных отверстий.

Заметим, что применение глухих отверстий иногда может привести к удешевлению проекта в целом, за счет экономии на общем количестве слоев, лучшей трассируемости, уменьшения размера печатной плат ы , а также возможности применить компоненты с более мелким шагом. Однако в каждом конкретном случае решение об их применении следует принимать индивидуально и обоснованно. Однако не следует злоупотреблять сложностью и многообразием видов глухих и скрытых отверстий. Опыт показывает, что при выборе между добавлением в проект еще одного вида несквозных отверстий и добавлением еще одной пары слоев правильнее будет добавить пару слоев. В любом случае, конструкция МПП должна быть спроектирована с учетом того, как именно она будет реализована в производстве.

Финишные металлические защитные покрытия

Получение правильных и надежных паяных соединений в электронном оборудовании зависит от многих конструктивных и технологических факторов, включая должный уровень паяемости соединяемых элементов, таких как компоненты и печатные проводники. Для сохранения паяемости печатных плат до монтаж а электронных компонентов, обеспечения плоскостности покрытия и для надежного монтаж а паяных соединений необходимо защищать медную поверхность контактных площадок печатной плат ы от окисления, так называемым финишным металлическим защитным покрытием.

При взгляде на разные печатные плат ы , можно заметить, что контактные площадки почти не когда не имеют цвет меди, зачастую и в основном это серебристые цвета, блестящий золотой или матовый серый. Эти цвета и определяют типы финишных металлических защитных покрытий.

Наиболее распространенным методом защиты паяемых поверхностей печатных плат является покрытие медных контактных площадок слоем серебристого сплава олово-свинеца (ПОС-63) - HASL. Большинство изготавливаемых печатных плат защищены методом HASL. Горячее лужение HASL - процесс горячего облуживания плат ы , методом погружения на ограниченное время в ванну с расплавленным припоем и при быстрой выемке обдувкой струей горячего воздуха, убирающей излишки припоя и выравнивающей покрытие. Это покрытие доминирует в течение нескольких последних лет, несмотря на его серьезные технические ограничения. Плат ы , выпущенные таким способом, хотя и хорошо сохраняют паяемость в течение всего периода хранения, непригодны для некоторых применений. Высокоинтегрированные элементы, используемые в SMT технологиях монтаж а , требуют идеальной планарности (плоскостности) контактных площадок печатных плат . Традиционные покрытия HASL не соответствуют требованиям планарности.

Технологии нанесения покрытий, соответствующие требованиям планарности, это наносимое химическими методами покрытия:

Иммерсионное золочение (Electroless Nickel / Immersion Gold - ENIG), представляющее собой тонкую золотую пленку, наносимую поверх подслоя никеля. Функция золота - обеспечивать хорошую паяемость и защищать никель от окисления, а сам никель служит барьером, предотвращающим взаимную диффузию золота и меди. Это покрытие гарантирует превосходную планарность контактных площадок без повреждения печатных плат , обеспечивает достаточную прочность паяных соединений, выполненных припоями на основе олова. Их главный недостаток - высокая себестоимость производства.

Иммерсионное олово (Immersion Tin - ISn) – серое матовое химическое покрытие, обеспечивающее высокую плоскостность печатных площадок плат ы и совместимое со всеми способами пайки, нежели ENIG. Процесс нанесения иммерсионного олова, схож с процессом нанесения иммерсионного золота. Иммерсионное олово обеспечивает хорошую паяемость после длительного хранения, которое обеспечивается введением подслоя органометалла в качестве барьера между медью контактных площадок и непосредственно оловом. Однако, плат ы , покрытые иммерсионным оловом, требуют осторожного обращения, должны хранится в вакуумной упаковке в шкафах сухого хранения и плат ы с этим покрытием не пригодны для производства клавиатур/сенсорных панелей.

При эксплуатации компьютеров, устройств с ножевыми разъемами, контакты ножевых разъемов, подвергаются трению при эксплуатации плат ы , поэтому, концевые контакты, гальваническим способом покрывают более толстым и более жестким слоем золота. Гальваническое золочение ножевых разъёмов (Gold Fingers) - покрытие семейства Ni/Au, толщина покрытия: 5 -6 Ni; 1,5 – 3 мкм Au. Покрытие наносится электрохимическим осаждением (гальваника) и используется в основном для нанесения на концевые контакты и ламели. Толстое, золотое покрытие имеет высокую механическую прочность, стойкость к истиранию и неблагоприятному воздействию окружающей среды. Незаменимо там, где важно обеспечить надежный и долговечный электрический контакт.


>
Рисунок 11. Примеры металлических защитных покрытий - олово-свинец, иммерсионное золочение, иммерсионное олово, гальваническое золочение ножевых разъёмов.
Что такое печатная платa

Печа́тная пла́та (англ. printed circuit board, PCB, или printed wiring board, PWB) - пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.

В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:

    односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.

    двухсторонние (ДПП): два слоя фольги.

    многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат.

По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах.

Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс. Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору. В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д), и керамика. Гибкие платы делают из полиимидных материалов, таких как каптон.

Какой материал будем использовать для изготовления плат

Самые распространненые, доступные материалы для изготовления плат - это Гетинакс и Стеклотекстолит. Гетинакс-бумага пропитанная бакелитовым лаком, текстолит стекловолокно с эпоксидкой. Однозначно будем использовать стеклотекстолит!

Стеклотекстолит фольгированный представляет собой листы, изготовленные на основе стеклотканей, пропитанных связующим на основе эпоксидных смол и облицованные с двух сторон медной электролитической гальваностойкой фольгой толщиной 35 мкм. Предельно допустимая температура от -60ºС до +105ºС. Имеет очень высокие механические и электроизоляционные свойства, хорошо поддается механической обработке резкой, сверлением, штамповкой.

Стеклотекстолит в основном используется одно или двухсторонний толщиной 1.5мм и с медной фольгой толщиной 35мкм или 18мкм. Мы будем использовать односторонний стеклотекстолит толщиной 0.8мм с фольгой толщиной 35мкм (почему будет подробно рассмотрено далее).

Методы изготовления печатных плат дома

Платы можно изготавливать химическим методом и механическим.

При химическом методе в тех местах где должны быть дорожки (рисунок) на плате на фольгу наносится защитный состав (лак, тонер, краска и т.д.). Далее плата погружается в специальный раствор (хлорное железо, перекись водорода и другие) который «разъедает» медную фольгу, но не действует на защитный состав. В итоге под защитным составом остается медь. Защитный состав в дальнейшем удаляется растворителем и остаётся готовая плата.

При механическом методе используется скальпель (при ручном изготовлении) или фрезерный станок. Специальная фреза делает бороздки на фольге, в итоге оставляя островки с фольгой - необходимый рисунок.

Фрезерные станки довольно дорогое удовольствие, а также сами фрезы дороги и имеют небольшой ресурс. Так что, этот метод мы не будем использовать.

Самый простой химический метод - ручной. Ризографом лаком рисуются дорожки на плате и потом травим раствором. Этот метод не позволяет делать сложные платы, с очень тонкими дорожками - так что это тоже не наш случай.


Следующий метод изготовления плат - с помощью фоторезиста. Это очень распространненая технология (на заводе платы делаются как раз этим методом) и она часто используется в домашних условиях. В интернет очень много статей и методик изготовления плат по этой технологии. Она дает очень хорошие и повторяемые результаты. Однако это тоже не наш вариант. Основная причина - довольно дорогие материалы (фоторезист, который к тому же портится со временем), а также дополнительные инструменты (УФ ламка засветки, ламинатор). Конечно, если у вас будет объемное производство плат дома - то фоторезист вне конкуренции - рекомендуем освоить его. Также стоит отметить, что оборудование и технология фоторезиста позволяет изготовливать шелкографию и защитные маски на платы.

С появлением лазерных принтеров радиолюбители стали активно их использовать для изготовления плат. Как известно, для печати лазерный принтер использует «тонер». Это специальный порошок, который под температурой спекается и прилипает к бумаге - в итоге получается рисунок. Тонер устойчив к различным химическим веществам, это позволяет использовать его как защитное покрытие на поверхности меди.

Итак, наш метод состоит в том, чтобы перенести тонер с бумаги на поверхность медной фольги и потом протравить плату специальным раствором для получения рисунка.

В связи с простотой использования данный метод заслужил очень большое распространение в радиолюбительстве. Если вы наберете в Yandex или Google как перенести тонер с бумаги на плату - то сразу найдёте такой термин как «ЛУТ» - лазерно утюжная технология. Платы по этой технологии делаются так: печатается рисунок дорожек в зеркальном варианте, бумага прикладывается к плате рисунком к меди, сверху данную бумагу гладим утюгом, тонер размягчяется и прилипает к плате. Бумага далее размачивается в воде и плата готова.

В интернет «миллион» статей о том как сделать плату по этой технологии. Но у данной технологии есть много минусов, которые требуют прямых рук и очень долгой пристройки себя к ней. То есть ее надо почувствовать. Платы не выходят с первого раза, получаются через раз. Есть много усовершенствований - использовать ламинатор (с переделкой - в обычном не хватает температуры), которые позволяют добиться очень хороших результатов. Даже есть методы построения специальных термопрессов, но все это опять требует специального оборудования. Основные недостатки ЛУТ технологии:

    перегрев - дорожки растекаются - становятся шире

    недогрев - дорожки остаютяся на бумаге

    бумага «прижаривается» к плате - даже при размокании сложно отходит - в итоге может повредится тонер. Очень много информации в интернете какую бумагу выбрать.

    Пористый тонер - после снятия бумаги в тонере остаются микропоры - через них плата тоже травится - получаются изъеденные дорожки

    повторяемость результата - сегодня отлично, завтра плохо, потом хорошо - стабильного результат добиться очень сложно - нужна строго постоянная температура прогрева тонера, нужно стабильное давление прижима платы.

К слову, у меня этим методом не получилось сделать плату. Пробовал делать и на журналах, и на мелованной бумаге. В итоге даже платы портил - от перегрева вздувалась медь.

В интернет почему-то незаслуженно мало информации про еще один метод переноса тонера - метод холодного химического переноса. Он основан на том факте, что тонер не растворяется спиртом, но растворяется ацетоном. В итоге, если подобрать такую смесь ацетона и спирта, которая будет только размягчать тонер - то его можно «переклеить» на плату с бумаги. Этот метод мне очень понравился и сразу дал свои плоды - первая плата была готова. Однако, как оказалось потом, я нигде не смог найти подробной информации, которая давала бы 100% результат. Нужен такой метод, которым плату мог сделать даже ребёнок. Но на второй раз плату сделать не вышло, потом опять и пришло долго подбирать нужные ингридиенты.

В итоге после долгих была разработана последовательность действий, подобраны все компоненты, которые дают если не 100% то 95% хорошего результата. И самое главное процесс настолько простой, что плату может сделать ребенок полностью самостоятельно. Вот этот метод и будем использовать. (конечно его можно и далее доводить до идеала - если у вас выйдет лучше - то пишите). Плюсы данного метода:

    все реактивы недорогие, доступные и безопасные

    не нужны дополнительные инструменты (утюги, лампы, ламинаторы - ничего, хотя нет - нужна кастрюля)

    нет возможности испортить плату - плата вообще не нагревается

    бумага отходит сама - видно результат перевода тонера - где перевод не вышел

    нет пор в тонере (они заклеиваются бумагой) - соответственно нет протравов

    делаем 1-2-3-4-5 и получаем всегда один и тот же результат - почти 100% повторяемость

Прежде чем начать, посмотрим какие платы нам нужны, и что мы сможем сделать дома данным методом.

Основные требования к изготовленным платам

Мы будем делать приборы на микроконтроллерах, с применением современных датчиков и микросхем. Микросхемы становятся все меньше и меньше. Соответственно необходимо выполнение следующих требований к платам:

    платы должны быть двух сторонними (как правило развести одностороннюю плату очень сложно, сделать дома четырехслойные платы довольно сложно, микроконтроллерам нужен земляной слой для защиты от помех)

    дорожки должны быть толщиной 0.2мм - такого размера вполне достаточно - 0.1мм было бы еще лучше - но есть вероятность протравов, отхода дорожек при пайке

    промежутки между дорожками - 0.2мм - этого достаточно практически для всех схем. Уменьшение зазора до 0.1мм чревато сливанием дорожек и сложностью в контроле платы на замыкания.

Мы не будем использовать защитные маски, а также делать шелкографию - это усложнит производство, и если вы делаете плату для себя, то в этом нет нужды. Опять же в интернет много информации на эту тему, и если есть желание вы можете навести «марафет» самостоятельно.

Мы не будем лудить платы, в этом тоже нет необходимости (если только вы не делаете прибор на 100лет). Для защиты мы будем использовать лак. Основная наша цель - быстро, качественно, дёшево в домашних условиях сделать плату для прибора.

Вот так выглядит готовая плата. сделанная нашим методом - дорожки 0.25 и 0.3, расстояния 0.2

Как сделать двухстороннюю плату из 2-ух односторонних

Одна из проблем изготовления двухсторонних плат - это совмещение сторон, так чтобы переходные отверстия совпадали. Обычно для этого делается «бутерброд». На листе бумаги печатается сразу 2 стороны. Лист сгибается пополам, на просвет точно совмещаются стороны с помощью специальных меток. Внутрь вкладывается двухсторонний текстолит. При методе ЛУТ такой бутерброд проглаживается утюгом и получается двухсторонняя плата.

Однако, при методе холодного переноса тонера сам перенос осуществляется с помощью жидкости. И поэтому очень сложно организовать процесс смачивания одной стороны одновременно с другой стороной. Это конечно тоже можно сделать, но с помощью специального приспособления - мини пресса (тисков). Берутся плотные листы бумаги - которые впитывают жидкость для переноса тонера. Листы смачиваются так, чтобы жидкость не капала, и лист держал форму. И дальше делается «бутерброд» - смоченный лист, лист туалетной бумаги для впитывания лишней жидкости, лист с рисунком, плата двухсторонняя, лист с рисунком, лист туалетной бумаги, опять смоченный лист. Все это зажимается вертикально в тиски. Но мы так делать не будем, мы поступим проще.

На форумах по изготовлению плат проскочила очень хорошая мысль - какая проблема делать двухстороннюю плату - берем нож и режем текстолит пополам. Так как стеклотекстолит - это слоеный материал, то это не сложно сделать при опредленной сноровке:


В итоге из одной двухсторонней платы толщиной 1.5мм получаем две односторонние половинки.


Далее делаем две платы, сверлим и все - они идеально совмещены. Ровно разрезать текстолит не всегда получалось, и в итоге пришла идея использовать сразу тонкий односторонний текстолит толщиной 0.8мм. Две половинки потом можно не склеивать, они будут держаться за счет запаяных перемычек в переходных отверстиях, кнопок, разъемов. Но если это необходимо без проблем можно склеить эпоксидным клеем.

Основные плюсы такого похода:

    Текстолит толщиной 0,8мм легко режется ножницами по бумаге! В любую форму, то есть очень легко обрезать под корпус.

    Тонкий текстолит - прозрачный - посветив фонарем снизу можно легко проверить корректность всех дорожек, замыкания, разрывы.

    Паять одну сторону проще - не мешают компоненты на другой стороне и легко можно контролировать спайки выводов микросхем- соединить стороны можно в самом конце

    Сверлить надо в два раза больше отверстий и отверстия могут чуть-чуть не совпасть

    Немного теряется жёсткость конструкции если не склеивать платы, а склеивать не очень удобно

    Односторонний стеклотекстолит толщиной 0.8мм трудно купить, в основном продается 1.5мм, но если не удалось достать, то можно раскроить ножем более толстый текстолит.

Перейдем к деталям.

Необходимые инструменты и химия

Нам понадобятся следующие ингридиенты:


Теперь когда все это есть, делаем по шагам.

1. Компоновка слоев платы на листе бумаги для печати c помощью InkScape

Автоматический цанговый набор:

Мы рекомендуем первый вариант - он дешевле. Далее необходимо к мотору припаять провода и выключатель (лучше кнопку). Кнопку лучше разместить на корпусе, чтобы удобнее было быстро включать и выключать моторчик. Остается подобрать блок питания, можно взять любой блок питания на 7-12в током 1А (можно и меньше), если такого блока питания нет, то может подойти зарядка по USB на 1-2А или батарейка Крона (только надо пробовать - не все зарядки любят моторы, мотор может не запустится).

Дрель готова, можно сверлить. Но вот только необходимо сверлить строго под углом 90градусов. Можно соорудить мини станок - в интернет есть различные схемы:

Но есть более простое решение.

Кондуктор для сверления

Чтобы сверлить ровно под 90 градусов достаточно изготовить кондуктор для сверления. Мы будем делать вот такой:

Изготовить его очень легко. Берем квадратик любого пластика. Кладем нашу дрель на стол или другую ровную поверхность. И сверлим в пластике нужным сверлом отверстие. Важно обеспечить ровное горизонтальное смещение дрели. Можно прислонить моторчик к стене или рейке и пластик тоже. Далее большим сверлом рассверлить отверстие под цангу. С обратной стороны рассверлить или срезать кусок пластика, чтобы было видно сверло. На низ можно приклеить нескользящую поверхность - бумагу или резинку. Такой кондуктор надо сделать под каждое сверло. Это обеспечит идеально точное сверление!

Такой вариант тоже подойдет, срезать сверху часть пластика и срезать уголок снизу.

Вот как производится сверление с его помощью:


Зажимаем сверло так, чтобы оно торчало на 2-3мм при полном погружении цанги. Ставим сверло на место где надо сверлить (при травлении платы у нас будет оставаться метка где сверлить в виде мини отверстия в меди - в Kicad мы специально ставили галку для этого, так что сверло будет само вставать туда), прижимаем кондуктор и включаем мотор - отверстие готово. Для подстветки можно использовать фонарик, положив его на стол.

Как уже мы писали ранее, сверлить можно только отверстия с одной стороны - там где подходят дорожки - вторую половину можно досверлить уже без кондуктора по направляющему первому отверстию. Это немного экономит силы.

8. Лужение платы

Зачем лудить платы - в основном для защиты меди от корозии. Основной минус лужения - перегрев платы, возможная порча дорожек. Если у вас нет паяльной станции - однозначо - не лудите плату! Если она есть, то риск минимальный.

Можно лудить плату сплавом РОЗЕ в кипящей воде, но он дорого стоит и его сложно достать. Лудить лучще обычным припоем. Чтобы сдеалать это качественно, очень тонким слоем надо сделать простое приспособление. Берем кусочек оплетки для выпайки деталей и одеваем ее на жало, прикручиваем проволокой к жалу, чтобы она не соскочила:

Плату покрываем флюсом - например ЛТИ120 и оплетку тоже. Теперь в оплетку набираем олово и ей водим по плате (красим)- получается отличный результат. Но по мере использования оплетка расподается и на плате начинают оставаться ворскинки медные - их обязательно надо убрать, а то будет замыкание! Увидеть это очень легко посветив фонарем с обратной стороны платы. При таком методе хорошо использовать или мощный паяльник (60ват) или сплав РОЗЕ.

В итоге, платы лучше не лудить, а покрывать лаком в самом конце- например PLASTIC 70, или простой акриловый лак купленный в автозапчастях KU-9004:

Тонкий тюнинг метода переноса тонера

В методе есть два момента, которые поддаются тюнингу, и могут не получиться сразу. Для их настройки, необходимо в Kicad сделать тестовую плату, дорожки по квадратной спирали разной толщины, от 0.3 до 0.1 мм и с разными промежутками, от 0.3 до 0.1 мм. Лучше сразу распечатать несколько таких образцов на одном листе и провести подстройку.

Возможные проблемы, которые мы будем устранять:

1) дорожки могут менять геометрию - растекаться, становится шире, обычно очень не значительно, до 0.1мм - но это не хорошо

2) тонер может плохо прилипать к плате, отходить при снятии бумаги, плохо держаться на плате

Первая и вторая проблема взаимосвязаны. Решаю первую, вы приходите ко второй. Надо найти компромисс.

Дорожки могут растекаться по двум причинам - слишкой большой груз прижима, слишком много ацетона в составе полученной жидкости. В первую очередь надо попробовать уменьшить груз. Минимальный груз - около 800гр, ниже уменьшать не стоит. Соответственно груз кладем без всякого прижима - просто ставим сверху и все. Обязательно должно быть 2-3 слоя туалетной бумаги для хорошего впитывания лишнего раствора. Вы должны добиться того, что после снятия груза, бумага должна быть белая, без фиолетовых подтеков. Такие подтеки говорят о сильном расплавлении тонера. Если грузом отрегулировать не получилось, дорожки все равно расплываются, то увеличиваем долю жидкости для снятия лака в растворе. Можно увеличить до 3 части жидкости и 1 часть ацетона.

Вторая проблема, если нет нарушения геометрии, говорит о недостаточном весе груза или малом количестве ацетона. Начать опять же стоит с груза. Больше 3кг смысла не имеет. Если тонер все равно плохо держится на плате, то надо увеличить количество ацетона.

Эта проблема в основном возникает, когда вы меняете жидкость для снятия лака. К сожалению, это не постоянный и не чистый компонент, но на другой его заменить не получилось. Пробовал заменить его спиртом, но видимо получается не однородная смесь и тонер прилипает какими-то вкраплениями. Также жидкость для снятия лака может содержать ацетон, тогда ее надо будет меньше. В общем, такой тюнинг вам надо будет провести один раз, пока не закончится жидкость.

Плата готова

Если вы не будете сразу запаивать плату, то ее необходимо защитить. Самый простой способ сделать это - покрыть спиртоканифольным флюсом. Перед пайкой это покрытие надо будет снять например изопропиловым спиртом.

Альтернативные варианты

Вы также можете сделать плату:

Дополнительно, сейчас набирает популярность сервис изготовления плат на заказ - например Easy EDA . Если необходима более сложная плата (например 4-х слойная) - то это единственный выход.

Стеклотекстолит чаще других материалов применяется для изготовления основания жесткой платы. Стеклотекстолит обладает хорошими диэлектрическими свойствами, механической прочностью и химической стойкостью, долговечностью и безопасностью, допускается эксплуатация стеклотекстолита в условиях повышенной влажности. Наиболее важные характеристики материала – электроизолирующие свойства и вторая по значимости характеристика – температура стеклования Tg, ограничивающая область применения. Температура перехода материала из твердого состояния в пластичное состояние – температура стеклования . Чем выше температура стеклования смолы, тем меньше коэффициент линейного расширения диэлектрика, приводящего к разрушению проводников платы. Значение температуры стеклования зависит от молекулярного веса молекул смолы, используемой при изготовлении материала. Появление и увеличение эластичности происходит в некотором диапазоне температур. Центральная величина внутри этого диапазона называется температурой стеклования. Увеличение температуры стеклования возможно при совершенствовании технологии производства стеклотекстолита.

Стеклотекстолит – материал, изготавливаемый методом горячего прессования нескольких слоев стеклоткани, пропитанных связующим составом – эпоксидной или фенолформальдегидной смолой. Существует множество марок выпускающихся для различных условий эксплуатации. Выработаны различные требования к технологии изготовления. Температура воспламенения различных марок стеклотекстолита от 300 до 500 °С. СТЭФ распространенная отечественная марка стеклотекстолита расшифровывается как стеклотекстолит эпоксиднофенольный. СТЭФ-1 отличается от СТЭФ только технологией изготовления делающей его более пригодным для механической обработки. СТЭФ-У имеет улучшенные механические и электроизолирующие свойства по сравнению с маркой СТЭФ-1.

Разновидностью этого материала является фольгированный стеклотекстолит, использующийся в производстве плат.

Фольгированным материалом называют материал основания платы, имеющий с одной или двух сторон проводящую фольгу – листовой проводниковый материал, предназначенный для образования проводящего рисунка платы. От качества и параметров применяемого материала зависит успех производства плат и надежность изготавливаемого прибора.

Фольгированный стеклотекстолит имеет множество марок. Для производства плат используются отечественные марки в соответствии с ГОСТ выпускающиеся нашими производителями: СФ, СОНФ-У, СТФ, СТНФ, СНФ, ДФМ-59, СФВН и марки импортных стеклотекстолитов FR-4, FR-5, CEM-3 имеющие множество модификаций. Для изготовления плат предназначенных для работы в условиях нормальной и повышенной влажности при температуре от -60 до +85 °С применяется марка СФ, имеющая множество типов, один из них СФ-1-35Г .

Обозначения в наименовании СФ-1-35Г:

  • СФ - стеклотекстолит фольгированный
  • 1 - односторонний
  • 35 - Толщина фольги 35 микрон
  • Г - гальваностойкая фольга

Для производства большинства электронных приборов можно применять марку СОНФ-У , ее температура эксплуатации от -60 до +155 °С. Обозначения в наименовании: С и Ф – стеклотекстолит фольгированный, ОН – общего назначения, У - содержит бромсодержащую добавку и относится к классу негорючих пластиков. Толщина фольги размещенной на основании имеет значения из ряда 18, 35, 50, 70, 105 микрон. Толщина фольгированного стеклотекстолита находится в диапазоне от 0,5 до 3 мм .

FR-4 огнеупорный (Fire Retardent) импортный фольгированный стеклотекстолит. FR-4 на сегодня самая распространенная марка материала для производства печатных плат. Высокие технологические и эксплуатационные характеристики обусловили популярность этого материала.

FR-4 имеет номинальную толщину 1,6 мм, облицованный медной фольгой толщиной 35 мкм с одной или двух сторон. Стандартный FR-4 толщиной 1,6 мм состоит из восьми слоев ("препрегов") стеклотекстолита. На центральном слое обычно находится логотип производителя, цвет его отражает класс горючести данного материала (красный - UL94-VO, синий - UL94-HB). Обычно, FR-4 - прозрачен, стандартный зелёный цвет определяется цветом паяльной маски, нанесённой на законченную печатную плату

  • объемное электрическое сопротивление после кондиционирования и восстановления (Ом х м): 9,2 х 1013;
  • поверхностное электрическое сопротивление (Ом): 1,4 х1012;
  • прочность на отслаивание фольги после воздействия гальванического раствора (Н/мм): 2,2;
  • горючесть (вертикальный метод испытания): класс Vо.

Односторонний фольгированный стеклотекстолит CEM-3. CEM-3 – импортный материал (Composite Epoxy Material), наиболее соответствующий фольгированному стеклотекстолиту марки FR-4, при цене на 10-15 % меньше. Представляет собой стекловолокнистое основание между двумя наружными слоями стеклоткани. Подходит для металлизации отверстий. CEM-3 молочно-белого цвета или прозрачный материал, очень гладкий. Материал легко сверлится и штампуется. Кроме фольгированного текстолита для изготовления плат используется множество различных материалов.

Гетинакс

Односторонний фольгированный гетинакс.

Фольгированный гетинакс предназначен для изготовления плат предназначенных для работы при обычной влажности воздуха с одно- или двухсторонним монтажом деталей без металлизации отверстий. Технологическое отличие гетинакса от стеклотекстолита состоит в использовании при его производстве бумаги, а не стеклоткани. Материал является дешевым и легко штампуемым. Имеет хорошие электрические характеристики в нормальных условиях. Материал обладает недостатками: плохая химическая стойкость и плохая теплостойкость, гигроскопичность.

Отечественный фольгированный гетинакс марок ГФ-1-35, ГФ-2-35, ГФ-1-50 и ГФ-2-50 рассчитан на работу при относительной влажности 45 - 76 % и температуре 15 - 35 С°, материал основания имеет коричневый цвет. XPC, FR-1, FR-2 – импортные фольгированные гетинаксы. Эти материалы имеют основание из бумаги с фенольным наполнителем, материалы хорошо штампуются.

- FR-3 – модификация FR-2, но в качестве наполнителя вместо фенольной смолы используется эпоксидная смола. Материал предназначен для производства плат без металлизации отверстий.

- CEM-1 – материал, состоящий из эпоксидной смолы (Composite Epoxy Material) на бумажной основе с одним слоем стеклоткани. Предназначен для производства плат без металлизации отверстий, материал хорошо штампуется. Обычно молочно-белого или молочно-желтого цвета.

Прочие фольгированные материалы применяются для более жестких условий эксплуатации, но имеют более высокую цену. Их основание выполнено на основе химических соединений, позволяющих улучшить свойства плат: керамика, арамид, полиэстер, полиимидная смола, бисмалеинимид-триазин, эфир цианат, фторопласт.

Покрытия площадок печатной платы

Рассмотрим, какие бывают покрытия медных площадок. Наиболее часто площадки покрываются сплавом олово-свинец, или ПОС . Способ нанесения и выравнивания поверхности припоя называют HAL или HASL (от английского Hot Air Solder Leveling - выравнивание припоя горячим воздухом). Это покрытие обеспечивает наилучшую паяемость площадок. Однако на смену ему приходят более современные покрытия, как правило, совместимые с требованиями международной директивы RoHS . Эта директива требует запретить присутствие вредных веществ, в том числе свинца, в продукции. Пока что действие RoHS не распространяется на территорию нашей страны, однако помнить о ее существовании небесполезно. HASL применяется повсеместно, если нет иных требований. Иммерсионное (химическое) золочение используется для обеспечения более ровной поверхности платы (особенно это важно для площадок BGA), однако имеет несколько более низкую паяемость. Пайка в печи выполняется примерно по той же технологии, что и HASL, но ручная пайка требует применения специальных флюсов. Органическое покрытие, или OSP, защищает поверхность меди от окисления. Его недостаток - малый срок сохранения паяемости (менее 6 месяцев). Иммерсионное олово обеспечивает ровную поверхность и хорошую паяемость, хотя тоже имеет ограниченный срок пригодности для пайки. Бессвинцовый HAL имеет те же свойства, что и свинец-содержащий, но состав припоя - примерно 99,8% олова и 0,2% добавок. Контакты ножевых разъемов, подвергающихся трению при эксплуатации платы, гальваническим способом покрывают более толстым и более жестким слоем золота. Для обоих видов золочения применяется никелевый подслой для предотвращения диффузии золота.

Защитные и другие виды покрытий печатной платы

Для полноты картины рассмотрим функциональное назначение и материалы покрытий печатной платы.

Паяльная маска - наносится на поверхность платы для защиты проводников от случайного замыкания и грязи, а также для защиты стеклотекстолита от термоударов при пайке. Маска не несет другой функциональной нагрузки и не может служить защитой от влаги, плесени, пробоя и т. д. (за исключением случаев применения специальных видов масок).

Маркировка - наносится на плату краской поверх маски для упрощения идентификации самой платы и расположенных на ней компонентов.

Отслаиваемая маска - наносится на заданные участки платы, которые надо временно защитить, например, от пайки. В дальнейшем ее легко удалить, так как она представляет собой резиноподобный компаунд и просто отслаивается.

Карбоновое контактное покрытие - наносится в определенные места платы как контактные поля для клавиатур. Покрытие имеет хорошую проводимость, не окисляется и износостойко.

Графитовые резистивные элементы - могут наноситься на поверхность платы для выполнения функции резисторов. К сожалению, точность выполнения номиналов невысока - не точнее ±20% (с лазерной подгонкой- до 5%).

Серебряные контактные перемычки - могут наноситься как дополнительные проводники, создавая еще один проводящий слой при недостатке места для трассировки. Применяются в основном для однослойных и двусторонних печатных плат.

Ламинат FR4

Наиболее широко используемым материалом основы печатных плат является материал FR4. Диапазон толщин этих ламинатов стандартизован. В основном, мы используем ламинаты сорта А (высший) марки ILM.

Подробное описание ламината вы можете найти .

Ламинаты на складе ТеПро

Толщина диэлектрика, мм Толщина фольги, мкм
0,2 18/18
0,2 35/35
0,3 18/18
0,3 35/35
0,5 18/18
0,5 35/35
0,7 35/35
0,8 18/18
1,0 18/18
1,0 35/00
1,0 35/35
1,5 18/18
1,5 35/00
1,5 35/35
1,5 50/50
1,5 70/70
1,55 18/18
2,0 18/18
2,0 35/35
2,0 70/00

СВЧ материал ROGERS

Техническое описание материала ROGERS, используемого на нашем производстве находится (английский язык).

ПРИМЕЧАНИЕ . Для использования при производстве плат материала ROGERS просим указывать это в бланке заказа

Поскольку материал Rogers стоит значительно дороже стандартного FR4 мы вынуждены ввести дополнительную наценку для плат, изготовленных на материале Rogers. Рабочие поля применяемых заготовок: 170 × 130; 270 × 180; 370 × 280; 570 × 380.

Ламинаты на основе из металла

Наглядное изображение материала

Алюминиевый ламинат ACCL 1060-1 с теплопроводностью диэлектрика 1 Вт/(м·K)

Описание

Материал ACCL 1060-1 — это односторонний ламинат на основе из алюминия марки 1060. Диэлектрик сосотоит из специального термопроводящего препрега. Верхний проводящий слой из рафинированной меди. Подробное описание ламината вы можете найти .

Алюминиевый ламинат CS-AL88-AD2(AD5) с теплопроводностью диэлектрика 2(5) Вт/(м·K)

Описание

Материал CS-AL88-AD2(AD5) — это односторонний ламинат на основе из алюминия марки 5052 — примерный аналог АМг2,5; теплопроводность 138 Вт/(м·K). Термопроводящий диэлектрик состоит из эпоксидной смолы с керамическим термопроводящим керамическим наполнителем. Верхний проводящий слой из рафинированной меди. Подробное описание ламината вы можете найти .

Препрег

В производстве мы используем препреги 2116, 7628 и 1080 сорта А (высший) марки ILM.

Подробное описание препрегов вы сможете найти .

Паяльная маска

В производстве печатных плат мы используем жидкую фотопроявляемую паяльную маску RS2000 различных цветов.

Свойства

Паяльная маска RS2000 обладает прекрасными физическими и химическими свойствами. Материал показывает прекрасные характеристики при нанесении через сетку, и отлично прилипает как к ламинату, так и к медным проводникам. Маска обладает высоким сопротивлением к термоудару. Благодаря всем этим характеристикам паяльная маска RS-2000 рекомендуется как универсальная жидкая фотопроявляемая маска, используемая при производстве всех видов двухслойных и многослойных печатных плат.

Подробное описание паяльной маски вы можете найти .

Часто задаваемые вопросы и ответы по ламинатам и препрегам

Что такое XPC?

XPC — это материал с основой из бумаги с фенольным наполнителем. Этот материал имеет класс горючести UL94-HB.

Какая разница между FR1 и FR2?

В основном, это одно и то же. У FR1 большая температура стеклования 130°C вместо 105°C у FR2. Некоторые производители, которые выпускают FR1 не будут выпускать FR2, поскольку стоимость производства и область применения одна и та же и нет никаких преимуществ в том, чтобы выпускать оба материала.

Что такое FR2?

Материал с основой из бумаги с фенольным наполнителем. Этот материал имеет класс горючести UL94-V0.

Что такое FR3?

FR3 — это, в основном, европейский продукт. В основном, это FR2, но в качестве наполнителя вместо фенольной смолы используется эпоксидная смола. Основной слой — это бумага.

Что такое FR4?

FR4 — это стеклотекстолит. Это наиболее распространенный материал для печатных плат. FR4 толщиной 1.6мм состоит из 8 слоев стеклоткани #7628. Логотип производителя / обозначение класса горючести красного цвета расположен в середине (4 слой). Температура использования этого материала — 120 - 130°C.

Что такое FR5?

FR5 — это стеклотекстолит подобный FR4, но температура использования этого материала 140 — 170°C.

Что такое CEM-1?

CEM-1 — это ламинат на бумажной основе с одним слоем стеклоткани #7628. Этот материал не годится для металлизации сквозных отверстий.

Что такое CEM-3?

CEM-3 наиболее похож на FR4. Конструктив: стекловолокнистый мат между двумя наружними слоями стеклоткани #7628. CEM-3 молочно белый очень гладкий. Цена этого материала на 10 — 15% ниже, чем у FR4. Материал легко сверлится и штампуется. Это полная замена FR4 и у этого материала очень большой рынок в Японии.

Что такое G10?

G10 немодный ныне материал для стандартных печатных плат. Это стеклоткань, но с другим, чем у FR4 наполнителем. G10 бывает только класса горючести UL94-HB. На сегодняшний день основной областью применения являются платы для наручных часов, так как этот материал легко штампуется.

Как можно заменять ламинаты?

XPC >>> FR2 >>> FR1 >>> FR3 >>> CEM-1 >>> CEM-3 или FR4 >>> FR5.

Что такое «препреги»?

«Препрег» — это стеклоткань, покрытая эпоксидной смолой. Применения следующие: как диэлектрик в многослойных печатных платах и как исходный материал для FR4. 8 слоев препрега #7628 используются в одном листе FR4 толщиной 1.6 мм. Центральный слой (№ 4) обычно содержит красный логотип компании.

Что означает FR или CEM?

CEM — материал, состоящий из эпоксидной смолы (Composite Epoxy Material); FR — огнеупорный (Fire Retardent).

FR4 действительно зеленого цвета?

Нет, он обычно прозрачный. Зеленый цвет, свойственный печатным платам — это цвет паяльной маски.

Означает ли что-нибудь цвет логотипа?

Да, существуют красные и синие логотипы. Красный означает класс горючести UL94-V0, а синий — класс горючести UL94-HB. Если у вас материал с синим логотипом, то это или XPC (фенольная бумага) или G10 (стеклотекстолит). В FR4 толщиной 1.5 / 1.6 мм логотип находится в среднем слое (№ 4) при 8 слойной конструкции.

Означает ли что-нибудь ориентация логотипа?

Да, направленность логотипа показывает направление основы материала. Длинную сторону платы надо ориентировать по направлению основы. Это особенно важно для тонких материалов.

Что такое ламинат с ультрафиолетовой блокировкой?

Это материал, который не пропускает ультрафиолетовые лучи. Это свойство нужно для того, чтобы не происходило ложного экспонирования фоторезиста с противоположной от источника света стороны.

Какие ламинаты годятся для металлизации сквозных отверстий?

CEM-3 и FR4 — наилучшие. FR3 и CEM-1 не рекомендуются. Для прочих металлизация невозможна. (Конечно, вы можете использовать «металлизацию серебряной пастой»).

Есть ли альтернатива для металлизации сквозных отверстий?

Для хобби / самостоятельного изготовления вы можете использовать заклепки, которые можно купить в магазинах, торгующих радиодеталями. Существует несколько других методов для плат с низкой плотностью, как например, соединение проволочной перемычкой и т.п. Более профессиональный способ — это получение соединений между слоями методом «металлизацию серебряной пастой». Серебряная паста наносится на плату методом шелкографии, создавая металлизацию сквозных отверстий. Этот способ пригоден для всех типов ламинатов, включая фенольную бумагу и т.п.

Что такое «толщина материала»?

Толщина материала — это толщина основания ламината без учета толщины медной фольги. Это существенно для изготовителей многослойных плат. В основном, это понятие используется для тонких ламинатов FR4.

Что такое: PF-CP-Cu? IEC-249? GFN?

Здесь приведена таблица общих стандартов на ламинаты:
ANSI-LI-1 DIN-IEC-249 part 2 MIL 13949 BS 4584 JIS
XPC - - PF-CP-Cu-4 PP7
FR1 2 — 1 - PF-CP-Cu-6 PP7F
FR2 2 — 7-FVO - PF-CP-Cu-8 PP3F
FR3 2 — 3-FVO PX - PE1F
CEM-1 2 — 9-FVO - - CGE1F
CEM-3 - - - CGE3F
G10 - GE EP-GC-Cu-3 GE4
FR4 2 — 5-FVO GFN EP-GC-Cu-2 GE4F

Внимание! Эти данные могут быть не полными. Многие производители также производят ламинаты не полностью соответствующие спецификации ANSI. Это означает, что действующие спецификации DIN/JIS/BS и т.д. могут отличаться. Пожалуйста проверяйте, что стандарт конкретного производителя ламината наиболее соответствует вашим требованиям.

Что такое CTI?

CTI — Comparative Tracking Index. Показывает наибольшее рабочее напряжение для данного ламината. Это становится важным в изделиях, работающих в условиях высокой влажности, как например, в посудомоечных машинах или автомобилях. Больший индекс означает лучшую защиту. Индекс подобен PTI и KC.

Что означает #7628? Какие еще существуют номера?

Вот ответ...
Тип Вес (г/м 2) Толщина (мм) Основа / Плетение
106 25 0,050 22 × 22
1080 49 0,065 24 × 18,5
2112 70 0,090 16 × 15
2113 83 0,100 24 × 23
2125 88 0,100 16 × 15
2116 108 0,115 24 × 23
7628 200 0,190 17 × 12

Что такое 94V-0, 94V-1, 94-HB?

94 UL — это ряд стандартов, разработанных Underwriters Laboratories (UL) для определения степени огнестойкости и горючести материалов.
— Спецификация 94-HB (Horisontal burning, образец помещается в пламя горизонтально)
Скорость горения не превышает 38 мм в минуту для материала толщиной более ли равной 3 мм.
Скорость горения не превышает 76 мм в минуту для материала толщиной более 3 мм.
— Спецификация 94V-0 (Vertical burning, образец помещается в пламя вертикально)
Материал способен к самозатуханию.

2024 stdpro.ru. Сайт о правильном строительстве.