Отчего отсыревают плинты в шр, чем сушить, как повысить изоляцию. Печь для сушки изоляции электрического провода Способ сушки низковольтных кабелей после замыкания

Надежность и бесперебойность эксплуатации любого кабеля обусловлено в первую очередь качеством изоляционного покрытия его жил, выражаемым в его электрической прочности.

Для кабелей до 3 кВ может применяться пластмассовая изоляция: поливинилхлорид, полиэтилен, полиимид (Kapton). Для кабелей до 35 кВ используется бумажная изоляция, характеризующаяся высокими электрическими характеристиками, относительно высокой допустимой температурой, продолжительным эксплуатационным сроком и невысокой стоимостью. Таким образом, именно кабельная бумага занимает ведущее место в вопросе изоляции токоведущих жил.

Кабельная бумага для изоляции бывает марки К-12 (толщина 0,125 мм) и К-17 (толщина 0,175 мм). Производится она из небеленой, сульфатной целлюлозы, как правило, натурального цвета, но для маркировки в многожильных кабелях верхняя лента выполняется из цветной бумаги.

Наложение осуществляется намоткой непропитанной ленты для обмотки одним из следующих способов: встык, с отрицательным или положительным перекрытием. Изоляционные слои накладываются на крутильно-изолировочном оборудовании, одновременно осуществляющем скрутку и уплотнение жилы в случае, если она многопроволочная.

Если каждая жила освинцовывается отдельно и предназначены для одножильного кабеля, то после крутильно-изолировочных машин они направляются непосредственно в сушку. В остальных случаях заизолированные жилы наматываются на барабаны и поступают на оборудование для общей скрутки в кабель. Отличие скрутки заизолированных жил от не заизолированных отличается лишь меньшим их количеством и большим шагом скрутки. В процессе скрутки одновременно заполняются промежутки между жилами, для чего используются либо бумажные жгуты, либо сульфатная бумага, толщина которых составляет до 0,08 мм. Кроме того, сверху накладывается поясная изоляция. Смысл заполнения свободного пространства до достижения округлой формы заключается в затруднении перемещения состава для пропитки вдоль кабеля, что позволяет повысить электрическую прочность кабеля.

На изготовление 1 км кабеля 35 кВ сечением 3*95 мм 2 требуется 2 т кабельной бумаги. Так как влажность последней составляет около 7-9%, что составляет в примерно 140-180 кг воды, то требуется дополнительное удаление излишней влаги. Для этого кабель с оборудования для общей скрутки поступает в специальные вакуумные котлы. Здесь производится не только сушка, но и удаление излишнего воздуха, что позволяет значительно снизить электрические и физические характеристики изоляционного покрытия из бумаги. Сушка осуществляется при температуре более 100 °С, а через 2-3 часа из котла начинают откачиваться влага и воздух. Общая продолжительность процесса зависит от конструктивных особенностей кабеля и применяемого оборудования. Чтобы ускорить и улучшить качество сушки жилы одновременно подогреваются электротоком.

По окончании сушки осуществляется пропитка специальным составом, что позволяет повысить электрическую прочность изоляционного покрытия из бумаги, а затем следует охлаждение на открытом воздухе.

Печь для сушки изоляции электрического провода содержащая трубку, расположенную в кожухе, и нагреватель, выполненный в виде навитой на внешней поверхности трубки спирали, а полость между трубкой и кожухом заполнена дисперсным каолином, при этом трубка может быть кварцевой или керамической трубкой, а спираль выполнена из нихрома.

Заявленная полезная модель относится к печам для непрерывной обработки длинных заготовок и может быть использована для сушки изоляции электрического провода или вулканизации кремнеорганической резины, используемой для изоляции электрического провода.

Известна, выбранная в качестве ближайшего аналога, печь для сушки покрытия электрического провода после нанесения указанного покрытия на электрический провод, содержащая трубку, расположенную в кожухе, при этом кожух соединен при помощи трубопровода с нагревателями, подающими в полость между трубкой и кожухом продукты сгорания, при этом трубка нагревается до 482°С (патент США на изобретение 4752217, кл. МПК F27D 15/02, опубл. 21.06.1988 г.)

Недостатком данной печи является то, что при ее работе необходимо использовать дополнительные устройства, предотвращающие попадание продуктов сгорания в окружающую среду или производящих их очистку, кроме того, при использовании металлического кожуха в работе печи происходят значительные тепловые потери.

Техническим результатом, который может быть получен в заявленной полезной модели, является создание печи для сушки изоляции электрического провода, при работе которой тепловые потери будут минимальны и не будет необходимости в использовании дополнительных устройств для предотвращения попадания продуктов сгорания в окружающую среду или производящих их очистку.

Заявленный технический результат достигается тем, что в печи для сушки изоляции электрического провода содержащей трубку, расположенную в кожухе, и нагреватель, нагреватель выполнен в виде навитой на внешней поверхности трубки спирали для устранения нагревателя, вырабатывающего продукты сгорания, а для снижения тепловых потерь, полость между трубкой и кожухом заполнена дисперсным каолином.

А также тем, что спираль, заменяющая вырабатывающий нагреватель продукты сгорания, выполнена из нихрома.

А также тем, что для снижения тепловых потерь трубка является кварцевой или керамической трубкой.

А также тем, что, для предотвращения смещения спирали при заполнении полости между трубкой и кожухом дисперсным каолином, спираль крепится к трубке при помощи кремнеземной нити, при этом предпочтительно, чтобы кремнеземная нить была намотана на трубку поверх спирали и была зафиксирована на трубке при помощи крепящего состава.

А также тем, что для снижения тепловых потерь направленных на теплообмен спирали с каолином, крепящий состав является кремнеземным лаком или кремнеземной краской.

А также тем, что для снижения тепловых потерь внутри трубки установлена термопара.

Заявленная полезная модель поясняется при помощи схем представленных на фиг.1 и 2.

На фиг.1 представлена печь для сушки изоляции электрического провода в разрезе, а на фиг.2 представлен вид с торца печи для сушки изоляции электрического провода.

На фиг.1 и 2 приняты следующие обозначения:

Трубка 1;

Спираль 3;

Дисперсный каолин 4:

Кремнеземная нить 5;

Термопара 6.

Заявленная печь для сушки изоляции электрического провода состоит из трубки 1, предпочтительно кварцевой диаметром 70 мм с толщиной стенки не более 3 мм, менее предпочтительно керамической, наименее предпочтительно стальной, расположенной в кожухе 2, причем полость между трубкой 1 и кожухом 2 заполнена дисперсным каолином 4. Каолин является глиной белого цвета, состоящей из минерала каолинита, и обладает низкой теплопроводностью. На внешней поверхности трубки 1 навита спираль 3, предпочтительно выполненная из нихрома. Спираль 3 может крепиться к трубке 1 при помощи кремнеземной нити 5, которая намотана на трубку 1 поверх спирали 3. При этом кремнеземная нить 5 может наматываться на трубку виток к витку, либо витки будут навиваться с шагом 0,3-5 мм. Кремнеземная нить 5 фиксируется на трубке 1 при помощи крепящего состава, который может быть кремнеземным лаком или кремнеземной краской. Внутри трубки 1 установлена термопара 6 для контроля температуры внутри трубки.

Печь для сушки изоляции электрического провода работает следующим образом.

Перед началом процесса сушки печь прогревают до рабочей температуры, составляющей 300-450°С. При этом подают электрическое питание на спираль 3, в результате чего спираль 3 нагревается и обменивается теплом со стенкой трубки 1, которая нагревает воздух внутри трубки 1. После того, как от термопары 6 поступит сигнал о том, что температура внутри трубки 1 достигла рабочего значения (300-450°С) подачу электрического питания на спираль 3 можно прекратить или снизить. Прием сигнала от термопары 6 и выдача команды о прекращении или снижении подачи электрического питания на спираль 3, может осуществляться автоматически блоком управления (на фиг.1 и 2 не показан).

После прогрева печи до рабочей температуры, через внутреннюю полость трубки 1 пропускают электрический провод с нанесенной на него только что изоляцией. Перемещают электрический провод через внутреннюю полость трубки 1 со скоростью приблизительно равной 5-25 см/с. Таким образом, изоляция подвергается сушке при повышенной температуре.

Если в процессе сушки изоляции электрического провода термопара передаст сигнал о приближении температуры внутри трубки 1 к недопустимо низкому значению, то начинают снова подавать электрическое питание на спираль 3 или увеличиваю подачу электрического питания.

Если в процессе сушки изоляции электрического провода термопара передаст сигнал о приближении температуры внутри трубки 1 к недопустимо высокому значению, то подачу электрического питания на спираль 3 прекращают.

При проведении испытаний печи для сушки изоляции электрического провода вышеописанной конструкции было обнаружено, что при минимальном расстоянии от внешней поверхности трубки 1 (кварцевой трубки) до внутренней поверхности кожуха 2, выполненного из стали, составляющем 100 мм и при температуре внутри трубки равной 350°С, тепловые потери не превышают 10%.

Таким образом, за счет того, что нагреватель выполнен в виде навитой на внешней поверхности трубки спирали, а полость между трубкой и кожухом заполнена дисперсным каолином, при этом спираль выполнена из нихрома, а трубка является кварцевой или керамической трубкой, тепловые потери в печи для сушки изоляции электрического провода будут минимальны и не будет необходимости в использовании дополнительных устройств для предотвращения попадания продуктов сгорания в окружающую среду или производящих их очистку.

1. Печь для сушки изоляции электрического провода, содержащая трубку, расположенную в кожухе, и нагреватель, отличающаяся тем, что нагреватель выполнен в виде навитой на внешней поверхности трубки спирали, а полость между трубкой и кожухом заполнена дисперсным каолином.

2. Печь по п.1, отличающаяся тем, что спираль выполнена из нихрома.

3. Печь по п.1, отличающаяся тем, что трубка является кварцевой трубкой.

4. Печь по п.1, отличающаяся тем, что трубка является керамической трубкой.

5. Печь по п.1, отличающаяся тем, что спираль крепится к трубке при помощи кремнеземной нити.

6. Печь по п.5, отличающаяся тем, что кремнеземная нить намотана на трубку поверх спирали.

7. Печь по п.5, отличающаяся тем, что кремнеземная нить фиксируется на трубке при помощи крепящего состава.

8. Печь по п.7, отличающаяся тем, что крепящий состав является кремнеземным лаком.

9. Печь по п.7, отличающаяся тем, что крепящий состав является кремнеземной краской.

10. Печь по п.1, отличающаяся тем, что внутри трубки установлена термопара.

Сушке подвергаются электрические машины при увлажнении изоляции обмоток и других токоведущих частей , например, при транспортировке, хранении, монтаже и ремонте, а также при длительном останове агрегата.

Сушка изоляции обмоток электрических машин без особой необходимости вызывает дополнительные неоправданные расходы, а при неправильном ведении режима сушки, кроме того, происходит порча обмотки.

Назначение сушки - удаление влаги из изоляции обмоток и повышение сопротивления до значения, при котором электрическую машину можно поставить под напряжение. Абсолютное сопротивление, МОм, изоляции для электрических машин, прошедших капитальный ремонт, должно быть не менее 0,5 МОм при температуре 10 - 30° С.

Для вновь установленных электрических машин это значение должно быть не ниже значений, приведенных в табл. 2, а у электродвигателей напряжением выше 2 кВ или более 1000 кВт, кроме того, необходимо определить мегаомметром ka6c или отношение R60/ R15.

Если полученные данные указывают на неудовлетворительное состояние изоляции, электрические машины подвергаются сушке.

Удаление влаги из изоляции обмотки электрической машины происходит за счет диффузии, вызывающей перемещение влаги в направлении потока тепла от более нагретой части обмотки к более холодной.

Перемещение влаги происходит вследствие перепада влажности в разных слоях изоляции, из слоев с большей влажностью влага перемещается в слои с меньшей влажностью. Перепад влажности в свою очередь создается перепадом температуры. Чем больше температурный перепад, тем интенсивнее происходит сушка изоляции. Например, нагревая внутренние части обмотки током, можно создать перепад температуры между внутренними и внешними слоями изоляции и тем ускорить процесс сушки.

Для ускорения сушки обмотки, нагретые до предельной температуры, целесообразно периодически охлаждать до температуры окружающей среды. Пои этом эффективность термической диффузии получается тем большей, чем быстрее охлаждаются поверхностные слои изоляции.

Табл. 1. Ориентировочная продолжительность сушки электрических машин

Электрические машины Минимальное время, ч, для достижения температуры Продолжительность сушки, ч
50 °С 70 °С общая минимальная после достижения установившегося сопротивления изоляции, МОм
Малой и средней мощности 2 - 3 5 - 7 15 - 20

3 - 5

Большой мощности открытого исполнения 10 - 16 15 - 25 40 - 60 5 - 10
Большой мощности закрытого исполнения 20 - 30 25 - 50 70-100

10 - 15

В процессе сушки нагревать обмотки и сталь нужно постепенно, так как при быстром нагревании температура внутренних частей машины может достигнуть опасного значения, в то время как нагревание наружных частей будет еще незначительным.

Скорость подъема температуры обмотки во время сушки не должна превышать 4 - 5°С в час. Согласно ПТЭ электроустановок потребителей измерение сопротивления изоляции относительно корпуса машины и между обмотками производят для обмоток электрических машин напряжением до 660 В включительно на 1000 В, а у электрических машин напряжение выше 660 В - мегаомметром на 2500 В.

Однако согласно ГОСТ 11828 - 75 сопротивление обмоток электрических машин на номинальное напряжение до 500 В включительно измеряют мегаомметром, рассчитанным на 500 В, обмоток электрических машин на номинальное напряжение выше 500 В - мегаомметром на 1000 В. Следовательно, ПТЭ в некоторой степени ужесточают требования по испытанию изоляции мегаомметром.

Производится при температуре обмоток 75°С. Если сопротивление изоляции обмоток было измерено при другой температуре, но не ниже 10 °С, оно может быть пересчитано на температуру 75 °С.

Перед сушкой изоляции обмоток электрических машин помещение должно быть очищено от мусора, пыли и грязи. Электрические машины должны быть тщательно осмотрены и продуты сжатым воздухом. Во время сушки измеряют сопротивление изоляции каждой обмотки электрической машины по отношению к заземленному корпусу машины и между обмотками (рис. 1).

Каждый раз перед измерением необходимо устранять остаточные заряды в изоляции, для этого обмотку заземляют на корпус на 3 - 4 мин. Кроме того, при сушке обмоток электрических машин необходимо измерять температуру обмоток, окружающего воздуха, ток сушки. Практически в результате сушки обмоток электрических машин сопротивление изоляции при температуре 750°С должно быть не ниже данных табл. 2.

Табл. 2. Наименьшие допустимые сопротивления изоляции обмоток электрических машин после сушки

Машины или их части Наименьшее допустимое сопротивление изоляции
Статоры машин переменного тока с рабочим напряжением: выше 1000 В 1 МОм на 1 кВ рабочего напряжения
до 1000 В 0,5 МОм на 1 кВ
Якори машин достоянного тока на пряжением до 750 В включительно 1МОм на 1 кВ
Роторы асинхронных и синхронных электродвигателей (включая всю цепь возбуждения) 1 МОм на 1 кВ, но не менее 0,2 - 0,5 МОм
Электродвигатели напряжением 3000 В и более: статоры 1 МОм на 1 кВ
роторы 0,2 МОм на 1 кВ

Сушка обмоток электрических машин способом индукционных потерь в стали

В последние годы внедрены рациональные способы сушки электродвигателей индукционными потерями в стали статора при неподвижных машинах, не связанные с прохождением тока непосредственно в обмотках. При этом способе сушки имеются две разновидности: потерями в активной стали статора и потерями в корпусе статора.

Нагрев электродвигателей осуществляется потерями на перемагничивание и в активной стали статора электродвигателя переменного тока или индуктора машины постоянного тока от создаваемого в машинах переменного магнитного потока в сердечнике статора и корпусе машины.

Создается специальной намагничивающей обмоткой, наматываемой на корпус машины по наружной поверхности его с протягиванием проводников под станину (рис. 1, а) или на корпус и подшипниковые щиты (рис. 1, б), переменный магнитный поток может быть также создан индукционными потерями в активной стали статора и корпусе электрической машины (рис. 1, в).

Ротор асинхронной или синхронной машины должен быть вынут для возможности намотки на статор намагничивающих витков.

Рис. 1. Сушка электрических машин за счет индукционных потерь в стали: о-в корпусе машины, б - в корпусе и подшипниковых щитах, в - в корпусе и активной стали статора

Намагничивающая обмотка выполняется изолированным проводом, сечение и количество витков определяется соответствующим расчетом.

В процессе сушки сопротивление изоляции обмоток электрических машин в первый период сушки снижается, в дальнейшем возрастает и, достигнув некоторого значения, становится постоянным. В начале сушки сопротивление изоляции измеряют через каждые 30 мин, а при достижении установившейся температуры - через каждый час.

Результаты заносят в журнал сушки и одновременно вычерчивают кривые (рис. 2) зависимости сопротивления изоляции и температуры обмоток от продолжительности сушки. Измерения сопротивления изоляции, температуры обмоток и окружающей среды продолжают до полного охлаждения электрической машины.

Сушку обмоток электрической машины прекращают после того, как сопротивление изоляции будет при постоянной температуре практически неизменным в течение 3 - 5 ч и ka6c будет не ниже 1,3.


Рис. 2. Кривые зависимости сопротивления изоляции 2, коэффициента абсорбции 3 и температуры обмотки 1 электрической машины от продолжительности сушки

Сушка изоляции обмоток электрического двигателя в сушильной печи

* SZ смкрутка: от 2 -100 жил, заготовок небольшого сечения

Виды: 1- вращение приставки всегда в одну сторону – переодическое изменение направления скрутки. 2- попеременное изменение вращения

Минус : измение направления скрутки – необходимо тормозить и разгонять – изменяется шаг скрутки в момент остановки и пкска, невозможно создания необходимой степени обжатия при скрутке.

Плюс : очень высокая производительность.

Используется как приставка.

* Рамочные машины одинарной скрутки

* Комбинированные машины скручивающие пары в пучек. Малое число отдающих барабанов, практическая часть устанавливается как приставка на крутильную часть (до 10 пар)

1
- опорный диск

2- паракрутильная приставка

3- распределительная розетка

5- тяговое устройство(гусеничное)

6-приемное устройство

*
При большом количестве пар применяют агрегаты с вращающимся приемным устройством (скрутка 30-50 пар)

1- паракрутильная приставка

2- распределительная розетка

4- вращающееся приемное устройство

5.1 Сушка бумажной изоляции. Виды влаги. Кинетика процесса сушки.

Назначение операции: Удалить влагу из бумаги, чтобы увеличить долговечность кабеля и исходные параметры.

Влажность, до которой необходимо высушить:0,5 – 0,2 %, до 35 кВ включительно.

Меньше 0,1 %, 110 кВ и выше.

Бумага является каллойдным, волокнистым материалом (95% из целлюлозы)

Влага уменьшает электрические характеристики бумаги,  V уменьшается, tg увеличивается,практически не изменяется. Влага вызывает кристаллизацию канифоли пропиточном составе (изменяется объём и возникают пустоты, в которых может возникнуть поляризация и старение изоляции)

Требования:

    Удалить влагу до необходимой степени.

    Сушку произвести так чтобы не было термического разрушения.

    Время сушки min

Виды влаги:

    химически связанная влага – группа ОН входящая в состав целлюлозы, удалить эту влагу нельзя.

    абсорбционная – мономолекулярный слой воды скапливающийся на поверхности бумаги и капилляров. Удаляют с помощью сушки, но требует большого количества энергии.

    капиллярная влага – непосредственно находится в капиллярах. Удаляют сушкой. Самое простое.

Кинетика процесса сушки : сушка – испарение влаги с поверхности бумаги в окружающую среду.

Необходимо обеспечить:

    пр. влагопереноса (из толщины на поверхность)

    само испарение с поверхности

Испарение с поверхности определяется i = B (Ps - Po )* S , i – кол-во испарения, В – коэф испарения, Ps – давления пара у поверхности изоляции, Po – давление окружающей среды.

Влагоперенос может осуществлятся:

    Влагопроводность.

В
се виды переноса в сторону уменьшения влажности под действием внешних факторов. К - коэффициент влагопроводности, 0 – удельный вес воды. U – градиент влажности.


Оптимальный вариант когда они совпадают i И и i T и направлены к поверхности i = i И + i T



2024 stdpro.ru. Сайт о правильном строительстве.