Балочно-разрезные пролетные строения с фермами. Мосты со сквозными фермами Конструкция пролетных строений со сквозными фермами
В металлических мостах средних и больших пролетов, как правило, применяют пролетные строения со сквозными фермами и массивные опоры. Конструктивно сквозная ферма имеет главные фермы, продольные и поперечные связи. Проезжая часть может располагаться понизу или поверху пролетного строения. Главные фермы из линейных элементов имеют различные очертания. Они изготавливаются из высокопрочных низколегированных сталей с болтосварными соединениями.
Главные фермы стальных пролетных строений представляют собой плоские геометрически неизменяемые стержневые конструкции, состоящие из элементов нижнего и верхнего поясов и элементов решетки: рас-166
косов, стоек, подвесок. Пояса и раскосы являются основными конструктивными элементами фермы; стойки, подвески, шпренгели, работающие только на местную нагрузку, называются дополнительными. Пересечения раскосов, стоек, и подвесок с поясами ферм называются узлами ферм, а горизонтальное расстояние между центрами смежных узлов называется панелью (рис. 7.21).
По очертанию поясов фермы могут быть с параллельными поясами или с полигональным верхним поясом. В мостах наибольшее распространение получили фермы с параллельными поясами и простой треугольной решеткой. Применяются также фермы с полигональным верхним поясом и треугольной решеткой. Для уменьшения длины панели в фермах больших пролетов используются шпренгели (понизу). Для больших пролетов используются двухрешетчатые (ромбические) фермы.
Фермы с параллельными поясами имеют большую на 2-5 % массу стали, чем фермы с полигональными поясами, но меньшую трудоемкость и стоимость изготовления и монтажа. Решетка ферм состоит из наклонных элементов - раскосов, работающих на растяжение и сжатие, вертикальных элементов - стоек, работающих на сжатие, и подвесок, работающих на растяжение; для уменьшения длины элементов применяются стяжки и распорки.
Рис. 7.21. Основные конструктивные элементы фермы: 1 - нижний пояс; 2 - верхний пояс; 3 - сжатый (восходящий) раскос; 4 - растянутый (нисходящий) раскос; 5 - стойка; 6 - подвеска; 7 - панель нижнего пояса; 8 - панель верхнего пояса; А - узел верхнего пояса фермы; Б - узел нижнего пояса фермы; а - длина панели; п - количество панелей; l - длина пролетного строения; h - высота фермы
Главные фермы имеют раскосную, ромбическую, треугольную, шпренгельную и другие решетки (рис. 7.22, 7.23). Раскосные решетки состоят из нисходящих, растянутых раскосов и сжатых стоек или восходящих преимущественно сжатых раскосов и растянутых подвесок, для больших пролетов применяется полураскосная и многораскосная решетки. Ромбическая решетка состоит из перекрещивающихся раскосов и одного горизонтального или вертикального элемента, обеспечивающего геометрическую неизменяемость фермы. Треугольная решетка представляет собой восходящие и нисходящие раскосы со стойками или со стойками и подвесками. Шпренгельная решетка состоит из основной раскосной или треугольной решетки и шпренгелей, расположенных у верхнего или нижнего пояса. Могут применяться фермы безраскосные, имеющие между поясами только вертикальные элементы - стойки. Выбор вида решетки фермы производиться путем сравнения расхода стали, количества элементов и узлов, трудоемкости, стоимости и других технико-экономических показателей.
В старых мостах применялись многорешетчатые и многораскосные фермы, фермы с крестовой решеткой, полураскосные с параболическим верхним поясом, раскосные фермы со шпренгелями поверху.
Под воздействием вертикальной нагрузки в балочных разрезных сквозных фермах верхние пояса работают на сжатие, а нижние на растяжение. Величина этих усилий возрастает с увеличением расчетного пролета и уменьшается с увеличением высоты фермы. Раскосы, восходящие от опор к середине пролета, испытывают сжатие, а нисходящие - растяжение. Величина усилий в раскосе зависит от угла наклона раскоса к вертикали (чем меньше угол, тем меньше усилия в раскосе) и от очер-

Рис. 7.22. Решетка ферм в старых мостах: а - четырехрешетчатая; б - двухраскосная; в - крестовая; г - полураскосная; д - с полигональным верхним поясом и верхними шпренгелями

Рис. 7.23. Схемы решеток ферм: а , б - фермы с раскосными решетками; в - полураскосная решетка; г - многораскосная решетка; д , е , ж - фермы с ромбической решеткой; з - ферма с полигональным верхним поясом и шпренгельной решеткой; и - треугольная решетка; к - треугольная решетка со стойками; л - треугольная решетка со стойками и подвеской; м - многорешетчатая ферма; н - двухрешетчатая ферма; о - крестовая решетка; п - двойная треугольная с полуподвесками и полустойками; р - ферма с параллельными поясами и шпренгельной решеткой
тания поясов. В фермах с полигональным очертанием усилия в раскосах меньше, чем в ферме с параллельными поясам.
Подвески и стойки служат для уменьшения свободной длины панели. Стойками называются элементы, работающие на сжатие, подвесками - элементы, работающие на растяжение.
Для главных ферм малых пролетов наилучшей является простая треугольная решетка.
Для средних пролетов, до 110 м включительно, - треугольная решетка с подвесками и стойками. Для больших пролетов, более 120 м, применяется треугольная решетка с подвесками и шпренгелями у нижнего пояса, позволяющими сохранить оптимальную длину панели и угол наклона раскосов при большой высоте ферм. Для уменьшения свободной длины сжатых панелей верхнего пояса подвески шпренгеля продолжаются до верхнего пояса, а для уменьшения свободной длины стоек и подвесок ставятся горизонтальные стяжки.
Основными расчетными размерами главных ферм являются: расчетный пролет, высота ферм, длина панели.
Расчетным пролетом ферм называется расстояние между центрами опорных узлов по горизонтали. Для пролетных строений железнодорожных мостов он принимается от 33 до 110 м, кратным 11 м, а также 127,4; 144,8; 158,4 см. Для возможности установки пролетных строений на существующие опоры необходимый расчетный пролет получается путем изменения длины крайних панелей ферм.
Высота главных ферм - это расстояние между осями горизонтальных узлов в сечении нижнего и верхнего пояса по вертикали. Высота главной фермы назначается из условия минимального расхода стали, требуемой жесткости фермы и габарита приближения строений. Высота фермы обычно составляет 1/5-1/7 расчетного пролета. В железнодорожных мостах с ездой понизу высота главных ферм принимается не менее 8,5 м для беспрепятственного прохождения подвижного состава.
Длина панели фермы - это расстояние между центрами соседних узлов поясов. Длина панели влияет на расход стали для главных ферм, балок проезжей части и связей между главными фермами. Увеличение длины панели уменьшает количество элементов и узлов фермы, но увеличивает пролеты продольных балок, массу стали проезжей части. Длина панелей принимается 5,5-11 м.
Угол наклона раскосов влияет на конструкцию узлов фермы. Наивыгоднейшим углом наклона раскосов к горизонтали является 40-50°. При
значительном отклонении угла наклона от 45° увеличиваются размеры узловых фасонных листов и расход стали.
Высота ферм, длина панели, угол наклона раскосов взаимно связаны. Расстояние между осями ферм диктуется требованиями горизонтальной жесткости и устойчивости против опрокидывания пролетного строения, а при езде понизу и габаритом приближения строений. По условию горизонтальной жесткости расстояние между осями ферм должно быть не менее 1/20-1/25 пролета при езде понизу и не менее 1/16- 1/20 при езде поверху, при этом горизонтальные колебания пролетных строений под проходящими поездами не опасны. По условию габарита, для однопутных железнодорожных пролетных строений с ездой понизу расстояние между осями ферм должно быть не менее 5,5 м, а для двухпутных - не менее 9,6 м. Для повышения уровня унификации, улучшения технологии изготовления и монтажа, снижения трудоемкости и стоимости главные фермы близких пролетов принимаются одинаковых систем, высоты ферм и длины панели.
Так, например, типовые главные фермы пролетами 88 и 110 м имеют параллельные пояса, треугольную решетку с подвесками и стойками, одинаковую высоту 15 м, длину панели 11 м и расстояние между фермами 5,8 м.
Элементы ферм представляют собой прямолинейные стержни, воспринимающие большие продольные усилия и поэтому имеющие значительные площади поперечных сечений. В современных пролетных строениях наиболее применимыми являются сечения коробчатой и Н-образ-ной формы (рис. 7.24, 7.25).
Коробчатые сечения состоят из двух вертикальных и двух горизонтальных листов, жестко соединенных сварными швами, вертикальные листы являются основными и более толстыми, чем горизонтальные. Коробчатые сечения имеют рациональное распределение металла, большую жесткость при изгибе и кручении. Они экономичны по расходу стали, менее подвержены коррозии, но сложны в изготовлении. Коробчатые сечения применяются как для поясов ферм, так и для сжатых раскосов.
Коробчатые элементы из сплошных листов герметизируются установкой по их концам сплошных поперечных диафрагм, препятствующих проникновению внутрь коробок влаги, снега и грязи. Применение герметичных элементов сокращает площадь окраски и замедляет коррозию, что снижает эксплуатационные расходы и увеличивает срок службы фермы.
![]() |
Рис. 7.24. Сечение поясов сквозных ферм: а - швеллерное; б - коробчатое; в - П-образное и швеллерное; г - двутавровое Н-образное; д - одностенчатое; е - коробчатое
Н-образные сечения состоят из двух вертикальных и одного горизонтального листа, соединенных сваркой. Преимуществом их является простая открытая конструкция, удобная для изготовления: трудоемкость их изготовления примерно в 1,5 раза меньше, чем коробчатых.
Недостатки Н-образных сечений состоят в: возможности загрязнения и необходимости частой очистки и окраски горизонтальных элементов; опасности быстрой коррозии стали из-за скапливающихся в них
Размеры сечения элементов назначаются в соответствии с действующими усилиями, маркой стали, требовани-
ями технологии изготовления, монтажа и эксплуатации. Высота сечения элементов принимается не более 1/15 их длин. Все элементы должны иметь одинаковую ширину для простоты соединения их в узлах.
Внутренние размеры коробчатых сечений должны быть не менее 440×460 мм для возможности прохода двухдугового сварочного аппарата. Толщина вертикальных листов из углеродистой стали должна быть не более 50 мм, а из низколегированной - не более 40 мм. Горизонтальные листы должны иметь толщину не менее 10 мм.
Узлы главных ферм представляют собой соединения концов элементов, оси которых сходятся в одной точке - центре узла (рис. 7.26). К узлам ферм прикрепляются поперечные балки и элементы связей. Концы элементов ферм соединяются при помощи фасонных листов: фа-сонок-накладок, фасонок-вставок, фасонок-приставок. Фасонки должны быть простой формы, минимальных размеров и толщиной не менее 12 мм. Для снижения трудоемкости и повышения качества работ форма

Рис. 7.26. Конструкция узла ферм на высокопрочных болтах: 1 - нижний пояс фермы П-образного сечения; 2 - стойка двутаврового сечения; 3 - раскос коробчатого сечения; 4 - раскос двутаврового сечения;
5 - фасонка
и размеры узловых фасонных листов и стыковых накладок, а также расположение отверстий для монтажных болтов унифицируются, что дает возможность обеспечивать высокую точность сборки и взаимозаменяемость деталей.
Конструкция узлов ферм должна быть простой и удобной для монтажа, предотвращать возможность скапливания воды и грязи.
Связи между фермами. Главные фермы стальных пролетных строений соединяются в плоскостях верхних и нижних поясов продольными связями, а в плоскостях раскосов, подвесок или стоек - поперечными связями. Продольные связи представляют собой фермы, поясами которых являются пояса главных ферм. Решетка связей может быть треугольной, ромбической, крестовой, полураскосной и других систем. Элементы связей устраиваются из прокатных или сварных уголков, тавров, двутавров, или швеллеров. Форма и размеры сечений элементов связей принимаются в зависимости от усилий и свободной длины элементов. При небольших усилиях и длине сечения принимают уголковые или тавровые, при больших усилиях и длине сечения двутавровые.
Тормозные рамы, устраиваемые в железнодорожных пролетных строениях, передают продольные тормозные усилия от балок проезжей части на пояса ферм и далее на неподвижные опорные части. Тормозные рамы располагаются посередине пролета. Рамы образуются из диагональных связей и распорок между продольными балками или из диагональных продольных связей и дополнительных раскосов.
Поперечные связи между главными фермами располагаются в вертикальных плоскостях стоек и подвесок ферм или в наклонных плоскостях промежуточных раскосов через 11-12 м.
Портальные рамы передают ветровую и другие поперечные нагрузки с верхних продольных связей на опоры. Они располагаются по концам пролетных строений в плоскостях опорных раскосов или стоек или первых подвесок главных ферм.
Для перекрытия пролетов, превышающих 50…80 м, применяют мосты со сквозными фермами.
Наиболее часто в мостах устраивают сквозные фермы простой разрезной или неразрезной системы. Реже встречаются консольные пролетные строения. Как правило, эти мосты имеют пролетные строения с ездой поверху. Главные фермы городских мостов с разрезными пролетными строениями почти всегда делают с параллельными поясами и треугольной решеткой. Неразрезные пролетные строения устраивают в основном двух- или трехпролетными. Большее число неразрезных пролетов применяют редко из-за больших температурных перемещений на их концах.При небольших пролетах неразрезные фермы делают постоянной высоты.
При больших пролетах фермам придают очертание с увеличением высоты ферм над средними опорами. Довольно часто применяют систему в виде жесткой балки, усиленной полигональным верхним поясом. Эту систему называют гибкой аркой с жесткой затяжкой. По затрате металла эта система неэкономична по сравнению с простыми решетчатыми фермами. Но зато в таких пролетных строениях основная несущая конструкция располагается ниже уровня проезжей части, а выше ее выступают лишь арочные пояса и подвески. Для перекрытия больших пролетов целесообразно применять систему, образованную из неразрезной балки, усиленной снизу дополнительными поясами (рис.27, б). Эти пояса увеличивают высоту несущей конструкции над промежуточными опорами, где возникают большие отрицательные изгибающие моменты, и уменьшают положительные изгибающие моменты в пролетах. В этой системе можно еще уменьшить положительные моменты, применив во время сборки начальный выгиб балки вверх с помощью домкратов, установленных на временных промежуточных опорах разновидностью комбинированных систем является система,образованная из консольной или неразрезной балки и дополнительных подкосов (рис.27, в ). При последующих нагрузках система благодаря поставленным раскосам работает как более жесткая рамная конструкция
Рис.27. Системы пролетных строений комбинированных систем
Так как система работает после первой стадии монтажа как балочная, а после постановки подкосов - как рамная, ее называют балочно-рамной системой.Мосты балочно-рамной системы имеют Хорошие экономические характеристики по затрате металла. Кроме того, в них удается существенно снизить высоту балок в середине пролета, доведя ее до 1/40 и даже 1/60 пролета.В городских мостах, построенных за последние годы, встречается также комбинированная система, состоящая из балки, усиленной снизу полигональной подпружной аркой (рис.27, г). Пролетные строения этого типа имеют хорошие экономические показатели благодаря использованию балок как в работе основной несущей конструкции, так и для непосредственного поддержания плиты проезжей части, а также простоте конструкции подпружных арок.
арочные мосты в зависимости от статической схемы арок могут быть бесшарнирными, двухшарнирными и трехшарнирными. Наиболее часто применяют двухшарнирные металлические арки (рис.28, а), имеющие достаточную жесткость, мало реагирующие на колебания температуры и удобные в сборке.арочные мосты чаще всего устраивают с ездой поверху (рис.28, а и б ). Если по местным условиям не удается расположить арку под проезжей частью, то устраивают арочные мосты с пониженной ездой (рис.28, в ) или реже – с ездой понизу (рис.28, г ).

Рис.28.Основные системы металлических арочных мостов
Арочные мосты с ездой понизу часто устраивают с затяжкой (рис.28, г). В этом случае пролетное строение по реакциям, передаваемым опорам, ничем не отличается от простых балочных систем.Арки металлических мостов по своей конструкции могут быть со сплошной стенкой или сквозные, в виде решетчатых арочных ферм.
Арки со сплошной стенкой (рис.28, а, б, г), простые по конструкции и удобные для сборки, очень часто применяют в городских мостах. Арки со сплошной стенкой в архитектурном отношении дают хороший силуэт моста. Последние годы вместо простых арочных систем стали находить применение комбинированные системы в виде балки, усиленной гибкой аркой (рис.27, г).Сквозные арочные фермы (рис.28, в) сложнее по конструкции, чем арки сплошного сечения, и применяются преимущественно при больших пролетах и тяжелой временной нагрузке (например, при пропуске железнодорожных поездов).
В арочных мостах с ездой поверху чаще всего применяют подъем 1/7…1/8 пролета. Высота сплошных арок в замке обычно составляет 1/50…1/70 пролета.Очертание оси арок должно приближаться к кривой давления от расчетных нагрузок. Так как в городских мостах постоянная нагрузка составляет большую долю от полной расчетной нагрузки, то очертание оси их арок часто делают параболическими.
Сечение арок при пролетах до 40…50 м делают двутавровым; при пролетах более 60…70 м аркам придают двухстенчатое сечение коробчатого типа или сечение из спаренных двутавров.
В и с я ч им и (рис. 29) называют мосты, в которых главными несущими элементами служат цепи, кабели или ванты из стали высокого качества, работающие на растяжение. В современных висячих мостах применяют проволочные кабели и канаты из стали с пределом прочности до 15000-18000 кг1см 2 .

Рис. 29. Основные системы висячих мостов.
Благодаря высокому расчетному сопротивлению канатов вес висячих мостов получается минимальным, и этой системой удается легко перекрывать очень большие пролеты.Цепь, кабель или система вантов проходят над вершинами пилонов и удерживаются оттяжками, закрепленными в грунте, в кладке устоев или на концах балок жесткости пролетного строения.К цепи, кабелю или узлам вант с помощью подвесок подвешивают проезжую часть моста.Применение висячих систем для мостов целесообразно для перекрытия пролетов более 200…300 м. Однако благодаря красивому внешнему виду их иногда применяют и при сравнительно небольших пролетах.Висячие мосты в зависимости от системы несущей конструкции могут быть разделены на две основные разновидности: 1) висячие мосты с кабелем или цепью; 2) вантовые мосты.
В висячих мостах первого вида главными несущими элементами являются криволинейные кабели или цепи (рис.29, а ).В вантовых мостах основная несущая конструкция образуется из системы прямолинейных элементов-вант, выполненных из стальных крученых канатов (рис.29, б и в).
В городских мостах наиболее часто применяют висячие системы с проволочными кабелями. Сами по себе кабель или цепь имеют малую жесткость вследствие того, что при движении временной нагрузки они меняют свою геометрическую форму, вызывая большие прогибы пролетного строения.
Для увеличения жесткости висячих мостов в уровне проезжей части устраивают специальные продольные балки или фермы (рис.29, а). Такие балки или фермы жесткости, участвуя в работе висячей конструкции на временную нагрузку, выравнивают и уменьшают деформации кабеля.
34 . В Китае около 3000 лет тому назад начали строить висячие мосты, настил на которых укладывался непосредственно на туго натянутых цепях или канатах, закрепляемых в скалах на берегах. Первый висячий мост, описанный в литературе, конструктивная схема которого близка к современным схемам висячих мостов, был построен в 1741 г. в Англии через реку Тисс. Характерной особенностью этого моста являлось наличие самостоятельной проезжей части, соединенной с цепью подвесками. Этот мост имел пролет 21 м и служил для прохода горнорабочих. За истекшие 266 лет с момента открытия указанного выше моста во всех странах мира было построено большое количество висячих мостов, конструкция которых постоянно совершенствовалась, а пролеты увеличивались. Уже в начале XIX века выявились их экономические преимущества перед каменными. К концу XIX века мосты имели уже значительные пролеты. Пролетные строения стали опирать не на цепные, а на кабельные подвесы из высокопрочных материалов Переход от примитивных конструкций висячих мостов к современным системам относится к XVII-XVIII вв,где указывалась конструкция с отделением полотна моста от поддерживающих цепей.
Рис. 1. Стальной путепровод с ездой понизу, пролетами 10,2 + 31,1 + 10,2 м
Современные стальные железнодорожные мосты могут быть разделены на следующие шесть групп: балочные со сплошными стенками (рис. 1), балочные со сквозными фермами (рис. 2), виадуки, консольные мосты, висячие мосты, разводные мосты.
Материал для стальных мостов.
Легированные стали, наиболее часто применяемые для строительных работ, содержат небольшие примеси кремния и никеля. Добавление этих элементов, повышающих предел прочности и предел упругости стали, дает возможность использовать при проектировании повышенные допускаемые напряжения, что приводит к соответствующему уменьшению постоянной нагрузки. Цена легированных сталей и стоимость их обработки несколько выше, чем обычных углеродистых сталей; их применение оказывается выгодным лишь при больших пролетах, когда собственный вес составляет значительную часть общей величины нагрузки. Но и в этих случаях для проезжей части, связей, элементов решетки и др. обычно применяют углеродистую сталь.
Удовлетворительных заклепок из легированных сталей пока нет. При проектировании заклепочных соединений следует исходить из низших напряжений по срезу и смятию для углеродистой стали.
Иногда специальные стали приходится применять независимо от экономических соображений. Это имеет место при многопутных пролетных строениях со сквозными главными фермами большого пролета, когда из углеродистой стали подобрать сечения потребной величины невозможно.
Следует напомнить, что величины прогиба и деформаций возрастают пропорционально росту допускаемых напряжений. Часто это не имеет значения, но в клепаных пролетных строениях со сквозными фермами увеличение прогибов может привести к возрастанию дополнительных напряжений, если в проекте не предусмотрены специальные меры к тому, чтобы, по возможности, устранить причины появления таких напряжений.
Современные исследования показывают что в высокопрочных сталях предел выносливости наступает после очень большого количества циклов перемен нагрузки или в результате значительной разницы в величине максимальных напряжений цикла. Подвергнуться достаточному для появления усталости количеству загружений в течение срока своей службы может сравнительно малое количество элементов пролетных строений.
Единственное исключение представляют собой подвески, для которых циклом загружения является проход каждого вагона в каждом поезде.
В определенных частях конструкций, подверженных особенно суровому воздействию корродирующих факторов, применяют такие материалы, как сварочное железо и медистая сталь.
Алюминий также применяется в железнодорожном мостостроении. На одной из железных дорог установлено пролетное строение со сплошными главными балками, изготовленное из алюминиевого сплава. Длина этого пролетного строения, запроектированного под расчетную нагрузку Е60, составляет 30,5 м.
Балочные сплошные пролетные строения.
Главные балки этих пролетных строений могут быть или осуществлены из прокатных двутавров или иметь составное сечение.
В пролетных строениях из прокатных двутавров последние должны быть расположены на таком взаимном расстоянии, которое облегчает окраску. Можно рекомендовать расстояние около 20 см между краями поясных полок. 
Рис. 2. Замена пролетных строений новыми (слева)

Рис. 3. Четырехпролетный косой мост со сплошными пролетными строениями с ездой понизу, пролетами по 42 м, высотой балок 3,3 м
Если применяют широкополочные тяжелые двутавры, то с учетом необходимости соблюдения определенного расстояния между полками число балок под один путь при езде поверху ограничивают четырьмя. Большее количество балок с более узкими полками можно применять при меньших пролетах.
Во всех случаях половину всех балок следует располагать симметрично относительно поддерживаемого ими рельса и соединять их диафрагмами, а в случае необходимости, особенно на кривых, - продольными связями. 
Рис. 4. Металлическое двухпутное балочное пролетное строение с ездой понизу:
а- фасад; б - элементы; в- разрез; 1 - стенка; 2- верхний поясной уголок:, 3 - нижний поясной уголок: 8- стыковые накладки; опорная рама поперечных связей; 24 - диагонали продольных связей:25- фасонка продольных связей; 28 - главные балки; 29 - поперечные балки; 30 - промежуточные продольные балки; 31 - концевые продольные балки; 32 - консоль поперечной балки; 33- опора продольной балки; 34 - конец распорки; 35 - уголок прикрепления; 36 - столик
В обычных условиях для пролетов от 15,2 до 38 м наиболее желательны пролетные строения со сплошными главными балками составного сечения. Иногда их применяют для значительно больших пролетов (рис. 3).
Балочные пролетные строения бывают с ездой понизу и поверху, причем в первом случае путь проходит между балками (рис. 4), а во втором - покоится на верхних поясах.
Конструкция с ездой поверху не ограничивает габарита проезда и с точки зрения железной дороги более желательна.
Проезжую часть балочных сплошных пролетных строений с ездой понизу прикрепляют к главным балкам. Если строительная высота ограничена, то проезжая часть может быть составлена лишь из одних прикрепленных к главным балкам поперечных балок.
Такая конструкция является обычной для мостов с ездой на балласте. При необходимости получения минимальной строительной высоты иногда рельсы прикрепляют непосредственно к поперечным балкам.
В двухпутных пролетных строениях, имеющих две главные балки, где требуется большая высота поперечных балок, можно следующим образом осуществить целесообразную и экономичную конструкцию проезжей части.
Поперечные балки располагают на взаимном расстоянии, которое позволяет уложить между ними мостовые брусья. Под каждым путем устраивают две линии диафрагм, работающих как короткие продольные балки. Верхние полки диафрагм располагают на такой высоте, чтобы под подошвами рельсов над поперечными балками оставался зазор около 25 мм.
Для прикрепления рельсов к поперечинам могут служить стандартные скрепления; для токов, протекающих в рельсовых цепях, нет необходимости прибегать к особым мерам изоляции.
В пролетных строениях с ездой понизу применяют также балочную клетку, состоящую из продольных балок, прикрепленных к поперечным, которые в свою очередь присоединены к главным фермам. Такая система проезжей части обладает большей строительной высотой.
Обычно продольные или поперечные балки, либо те и другие, осуществляют из прокатных двутавров.
Пролетные строения со сквозными фермами.
Ниже дается краткое описание главных типов сквозных ферм (рис. 5), применяемых в мостостроении.
Ферма Гау (рис. 6) является самым ранним типом сквозной фермы; она запатентована в США в 1840 г. В этой конструкции диагональные элементы решетки (раскосы) сжаты, а вертикальные растянуты. Пояса и раскосы делаются из дерева, а вертикальные элементы представляют собой металлические тяжи.
Ферма Пратта (рис. 7) впервые введена в 1844 г. как видоизменение фермы Гау. В фермах этого типа вертикальные элементы решетки растянуты, а диагональные сжаты. Первоначально предполагалось осуществлять сжатые элементы из дерева, но лишь немногие сооружения были построены таким образом. После 1850 г. этот тип вошел во всеобщее употребление в виде цельнометаллической фермы, причем сначала для сжатых элементов применяли чугун, а впоследствии всю ферму стали делать из сварочного железа. Соединение элементов в узлах обычно осуществлялось на болтах-шарнирах.

Рис. 5. Двухпутный, трехпролетный мост со сквозными пролетными строениями пролетами по 4 7,1 м.
Высота главных ферм-10,05 и 11,3 м; расстояние между осями
ферм - 10,05 м 
Рис. 7. Схема фермы Пратта
Ферма Уиппла (с двухраскосной решеткой) (рис. 8) впервые была введена в 1847 г. Фермы этого типа, осуществленные из сварочного железа, широко применялись для пролетов большей длины, чем фермы Пратта.
В фермах Варрена (с треугольной решеткой) (рис. 9 и 10) наклонные элементы попеременно испытывают растяжение и сжатие. Эта система никогда не находила широкого применения для мостов с шарнирными соединениями в узлах вследствие износа болтов-шарниров, вызываемого действием знакопеременных усилий.
С усовершенствованием методов клепки эта система ферм с дополнительными стойками и подвесками (рис. 12), с клепаными соединениями в узлах пришла на смену фермам Пратта для средних пролетов. Для ферм больших пролетов часто применяется эта система с дополнительными шпренгелями.
Пенсильванская ферма (рис. 11), представляющая собой развитие фермы Пратта, имеет один криволинейный пояс и раскосную решетку с дополнительными шпренгелями. Эту систему применяют для больших пролетов, где фермы Пратта или Варрена не могут дать экономичных решений. В узлах обычно применялись шарнирно-болтовые соединения, но в некоторых случаях условия работы заставляли широко применять заклепочные соединения.
Конструкция ферм. Задачи, которые ставятся при проектировании пролетных строений, заключаются в требованиях простоты конструкции и экономии в материалах в совокупности с достаточной сопротивляемостью силам, которым будет подвергаться сооружение. Действующие технические условия обычно распространяются на фермы пролетами не более 122 м. 
Рис. 6. Схема фермы Гау.

Рис. 8. Схема фермы Уиппла
Рис. 9. Схема фермы Варрена Рис. 10. Схема фермы Варрена

Рис. 11. Схема пенсильванской фермы
Примечание. Жирными линиями показаны сжатые элементы, тонкими - растянутые, пунктиром - обратиые раскосы.
Пролеты большей длины представляют собой исключение, и каждый такой случай вследствие своей важности заслуживает индивидуального изучения.
Узлы ферм осуществляются на болтах-шарнирах или на заклепках. Прежде, как правило, применяли шарнирные соединения, но в настоящее время заклепкам отдается предпочтение.
Схемы и наименование элементов пролетных строений приведены на рис.
Все металлические пролетные строения подвергаются продольным деформациям за счет изменения температуры и воздействия подвижной нагрузки. Для обеспечения свободы деформаций под одним из концов пролетного строения устраивают подвижные опорные части. При большой длине пролетов устраивают катковые опорные части, для более коротких пролетов эти опорные части заменяют одиночными катками. В малых пролетных строениях устраивают опорные части скользящего типа.

Рис. 12. Реконструированный мост через р. Огайо.

Рис. 13. Элементы пролетного строения со сквозными фермами
с ездой понизу:
1 - опjрный раскос; 2 - верхний пояс; 3 - нижний пояс; 4 - подвеска; 5- стойка; 6 - раскос; 7- обратный раскос; 8 - портал; 9 - кронштейн портала; 10 - распорка верхних связей; 11 - диагонали верхних связей; 12 - концевая распорка; 13 - концевая поперечная рама; 14 - опорная поперечная балка; /5 - промежуточная поперечная балка; 16 - концевая продольная балка: 17-промежуточная продольная балка; 18 - консоли продольных балок; 19 - диагонали нижних связей; 20- связи продольных балок; 21 - подвижные опорные части; 22-неподвижные опорные части.
Примечание. В пролетных строениях со сквозными главными фермами при езде поверху элементы аналогичны указанным здесь. Названия отдельных деталей см. на рис. 
Рис. 14. Элементы пролетного строения со сквозными фермами с шарнирными узлами:
- - верхний пояс; 3 - нижний пояс; 5 -стойка; 6 - раскос; 7-обратный раскос; 10 - распорка верхних связей; 15 - поперечная балка; 23 - вертикальная накладка; 24 - лист шарнира; 25 - прокладка; 26 - шарнир; 27 - гайка шарнира; 28 - уплотняющее кольцо; 29 - ниппель; 30 - затяжная муфта; 32 - фасонка верхних связей; 33 - фасонка нижних связей; 34 - горизонтальный лист; 35 -уголки пояса; 36 - вертикальный лист; 37 - соединительная решетка; 38 - диафрагма; 39 - стыковая накладка; 40 - концевая соединительная планка; 41 - стержень с проушиной; 42 - стержень с петлей; 46- подкос поперечной рамы

Рис. 15. Элементы клепаного пролетного строения со сквозным фермами с ездой понизу:
1 - верхний пояс; 3 - нижний пояс; 4 - подвеска; 5 -стойка6 -раскос; 10 - распорка верхних связей; 15- поперечная балка’ 17 - продольная балка; 38 -диафрагма; 40 - концевые соединительные планки; 43 - уголок-столик; 44- фасонка; 45-консоль поперечной балки; 46- подкос поперечной рамы; 47 - уголок прикрепления.
Примечание. Расположение элементов 1 - 17 см. на рис. 13 и 14.
Учитывая, что проход поездной нагрузки приводит к некоторому прогибу пролетных строений, рекомендуется придавать им строительный подъем в виде выпуклой кверху кривой. Иногда этого достигают некоторым увеличением длины элементов верхнего пояса. Чаще же изменяют длину всех элементов фермы в соответствии с проведенными расчетами.
Виадуки.
Виадуками пользуются для проведения железнодорожной линии или автодороги над долиной, ущельем и др. Подобные сооружения обычно состоят из ряда пролетных строений, балочных или арочных, опирающихся на металлические башенные опоры (рис. 16).
Стальные железнодорожные виадуки отличаются большой высотой и обычно имеют значительную длину. Они состоят из ряда пролетных строений, обычно со сплошными главными балками с ездой поверху, покоящихся на металлических башенных опорах.
Величина пролетов в виадуке обычно чередуется. Короткие надбашенные пролетные строения обычно имеют длину от 9,1 до 15,2 м, а длинные промежуточные - от 18 до 30,5 м.
Иногда вместо башенной опоры рядом с устоем ставят рамную опору, на которой покоятся концы двух соседних длинных пролетных строений.
Величина пролета зависит от высоты всего сооружения и общей его длины, а также от величины расчетной нагрузки. Критерием для выбора пролета являются баланс стоимостей опор и пролетных строений, обеспеченность устойчивости сооружения в продольном и поперечном направлениях.
Обычно наибольшие величины пролетов применяются при наибольших высотах виадуков.

Рис. 16. Стальной виадук длиной 457,2 м, высотой 39,6 м над
уровнем реки 
Рис. 17. Схема пролетного строения с ездой поверху со сквозными главными фермами, с шарнирными узлами 
Рис. 18. Схема клепаного открытого пролетного строения с ездой понизу
В тех случаях, когда железнодорожная линия пересекает долину с протекающей по ней рекой или когда этого требуют другие местные условия, в состав виадука включают одно или несколько длинных пролетных строений со сквозными фермами.
Консольные мосты.
Консольным называется мост, имеющий выступающие за опоры части пролетных строений (консоли). Сооружения этого рода обычно состоят из двух консолей в пролете, перекрывающем главное русло, и двух анкерных пролетов, при посредстве которых реакции передаются опорам. Между концами консолей устраивают подвесной пролет.
Консольные конструкции целесообразны для перекрытия больших пролетов над судоходными широкими реками и другими водными путями, если их устройство допускается условиями подмостового габарита.
Применение промежуточных двухконсольных пролетов позволяет перекрывать исключительно широкие водные преграды. Эта конструкция обладает еще и тем преимуществом, что консольные и подвесные пролеты не требуют подмостей для своего сооружения и могут быть собраны навесным способом. Средний пролет подвешивается между двумя консолями посредством шарнирного соединения, передающего в законченном сооружении лишь поперечные силы. Закрепление анкерного пролета играет весьма важную роль в обеспечении устойчивости сооружения и требует соответствующего внимания со стороны проектировщика.
Висячие мосты. Висячим называется мост, проезжая часть которого поддерживается кабелями, протянутыми между пилонами и надежно закрепленными для обеспечения устойчивости всего сооружения в целом.
Главные несущие кабели можно изготовлять из стальных проволок или собирать из тяг с проушинами. Американские проектировщики, по-видимому, предпочитают первый способ.
Для равномерного распределения нагрузки вдоль кабелей к ним при помощи параллельных подвесок присоединяются фермы жесткости. Они целиком или частично располагаются ниже кабелей и обеспечивают сохранение последними параболической формы при любых условиях загружения.
В качестве средства для перекрытия больших отверстий висячий мост предшествовал консольному типу. Консольные мосты в значительной мере заменили в железнодорожном строительстве висячие мосты вследствие своей большей жесткости и устойчивости.
Висячие мосты наиболее удобны и экономичны в качестве автодорожных или пешеходных мостов, перекрывающих большие отверстия.
Для закрепления кабеля, как и для заанкеривания консольных мостов, обычно устраивается ростверк из двутавровых балок, заделанный в каменной или бетонной кладке, которая глубоко закладывается в грунт.
Лекция №9.
Балочные пролетные строения с решетчатыми фермами.
Различают фермы по роду езды – поверху и понизу. Фермы в основном применяются при строительстве железнодорожных мостов, гораздо реже – при строительстве автодорожных.
Границы рационального применения ферм установить сложно, т.к. это зависит от многих факторов (строительная высота, архитектурные требования, способ монтажа и т.п.). Однако в малых пролетах (до 30…40 м) решетчатые фермы нецелесообразны, т.к. трудоемкость и стоимость их изготовления существенно выше, чем балок со сплошной стенкой.
Для балочных ж.д. мостов от 44 до 132 м существуют типовые проекты пролетных строений в виде ферм с ездой понизу.
Для балочных автодорожных мостов фермы целесообразны при пролетах более 150…200 м, т.к. до этих длин решетчатые пролетные строения почти полностью вытеснены сплошностенчатыми балками.
В решетчатых пролетных строениях вместо листа стенки устроена дискретная решетка, элементы которой вместе с поясами должны образовывать геометрически-неизменяемую конструкцию
Конструктивные элементы фермы представлены на рисунке.
В фермах при узловой передаче нагрузки все элементы работают преимущественно на осевые силы, что позволяет полнее использовать прочностные свойства материала. В этом их основное достоинство.
В мостах всех назначений балочные решетчатые пролетные строения могут быть разрезными, неразрезными и балочно-консольными.
Основными параметрами решетчатого пролетного строения являются:
Расчетный пролет lр (расстояние между точками опирания);
Высота фермы h1 (расстояние между геометрическими осями поясов);
Панель фермы d (расстояние между центрами смежных узлов ездового пояса);
Угол наклона раскосов к вертикали α (tg α=d/h1);
Расстояние между осями главных ферм В.

В нашей стране длину расчетного пролета фермы lр назначают, как правило, кратной длине панели d. При этом d=11 м в железнодорожных мостах и d=21 (10,5) м – в автодорожных мостах.
Длина панели d может быть выбрана произвольной, желательно иметь только регулярную решетку. Необходимо учитывать, что компоновочные параметры фермы (d и h1) взаимосвязаны и при заданной высоте фермы длина панели должна быть такой, чтобы обеспечить угол α в пределах 30⁰…50⁰.
Высота фермы при езде поверху определяется требованиями обеспечения вертикальной жесткости и экономичности. Наименьшая металлоемкость фермы в ж.д. мостах достигается при высоте ферм h1=(1/5…1/7)lр, однако при езде поверху фермы обычно делают более низкими – h1=(1/7…1/9)lр.
В автодорожных мостах принимают высоту ферм h1=(1/8…1/12)lp для разрезных пролетных строений. Для неразрезных ферм h1=(1/10…1/14)lp.
В городских условиях высота и конфигурация ферм подчиняются архитектурным требованиям. Назначение высоты ферм также должно учитывать унификацию, стандартизацию при заводском изготовлении, а также условия транспортировки и монтажа конструкций.
Расстояние В между осями главных ферм поперек моста, подобно сплошностенчатым конструкциям, определяется конструкцией мостового полотна, поперечной устойчивостью пролетного строения, его горизонтальной жесткостью и экономическими соображениями.
Поперечная устойчивость может быть увеличена снижением высоты фермы над опорами, или устройством опорных частей, воспринимающих отрицательные опорные реакции.
По требованиям горизонтальной жесткости рекомендуется назначать расстояние между фермами с ездой поверху не менее (1/16…1/20)lp. Как правило, для однопутных пролетных строений с ездой поверху назначается расстояние между фермами 2…2,2 м. При безбалластном мостовом полотне устраивают балочную клетку проезжей части. В этом случае нагрузка от подвижного состава передается через мостовое полотно на продольные балки, которые передают нагрузку через поперечные балки на узлы ездового пояса.

Пролетное строение с ездой поверху без балочной клетки проще и легче, чем с клеткой, но его верхние ездовые пояса работают на осевое сжатие с местным изгибом при внеузловом приложении нагрузки, что требует увеличить сечения верхних поясов и массу главных ферм, либо снизить длину панели.
При езде поверху существенно снижается объем кладки опор, но большая строительная высота при перекрытии судоходных пролетов является существенным недостатком. Поэтому в судоходных пролетах чаще всего используют пролетные строения с ездой понизу.
В пролетных строениях с ездой понизу обычно исключают концевые стойки и примыкающие к ним элементы верхних поясов, т.к. они не работают на вертикальную нагрузку. Очертание контура фермы с ездой понизу по фасаду имеет форму трапеции.

Расстояние между осями ферм с ездой понизу приходится увеличивать. Для однопутных мостов оно составляет 5,6…5,8 м, чтобы фермы располагались вне габарита приближения строений. При больших пролетах это расстояние также определяется поперечной устойчивостью и горизонтальной жесткостью, которые в большинстве случаев удовлетворяются при расстоянии между фермами (1/20…1/25)lр.
Экономически выгодная высота ферм данного типа (1/5…1/7)lр в железнодорожных мостах и (1/6…1/10)lр в автодорожных.
По условиям расположения поперечных связей и верхних продольных связей за пределами габарита приближения строений минимальная высота ферм составляет 8…8,5 м.

Высота может быть увеличена, исходя из условий обеспечения вертикальной жесткости, унификации размеров серии пролетных строений и эстетических соображений.
В случае, когда экономически выгодная высота главных ферм оказывается недостаточной для установки верхних продольных связей, применяют пролетные строения открытого типа, подобные сплошностенчатым пролетным строениям с ездой понизу (ТП 563). В них отсутствующие продольные связи заменяются жесткими полурамами, формируемыми из поперечных балок, стоек и подвесок главных ферм.
Верхние пояса открытых пролетных строений работают в неблагоприятных условиях – как сжатые стержни, закрепленные от поперечных смещений упруго-податливыми связями в местах установки полурам.
При недостаточной жесткости полурам случались обрушения пролетных строений в результате потери устойчивости сжатыми поясами ферм.
В пролетных строениях с ездой понизу увеличиваются длины элементов продольных связей, т.к. больше расстояние между фермами, и усложняется устройство поперечных связей, выполняемых в виде рам со сквозными или сплошностенчатыми ригелями. Горизонтальную нагрузку ферма верхних продольных связей передает через опорные поперечные связи (портальные рамы) на опорные части. Поэтому портальные рамы несут значительно большую нагрузку, чем промежуточные поперечные связи и выполняются достаточно жесткими. Портальные рамы размещаются в плоскости опорных раскосов.
Поперечная нагрузка с нижних продольных связей передается непосредственно на опорные части.
При езде понизу также устраивается проезжая часть в виде балочной клетки, в которой продольные балки объединяют в пространственную конструкцию собственной системой связей. Поперечные балки прикрепляют в узлах нижних поясов ферм.
Расположение балок проезжей части возможно выполнить как в одном уровне, так и в разном уровне, так называемое этажное расположение.

