Расчет массы готв. Методика расчета массы газового огнетушащего вещества для установок газового пожаротушения при тушении объемным способом. Газовое пожаротушение и его неоспоримые преимущества

Заполните поля формы чтобы узнать стоимость системы газового пожаротушения.

Предпочтение отечественных потребителей в пользу эффективного пожаротушения, при котором для ликвидации возгораний электрооборудования и пожаров класса А, В, С (согласно ГОСТ 27331) используются газовые огнетушащие вещества, объясняется преимуществами данной технологии. Пожаротушение с применением газа, в сравнении с использованием иных огнетушащих веществ, является одним из самых неагрессивных способов устранения очагов возгораний.

При расчете системы пожаротушения учитывают требования нормативных документов, специфику объекта, а также определяют вид газовой установки – модульная или централизованная (возможность тушения пожара в нескольких помещениях).
Автоматическая установка газового пожаротушения состоит из:

  • баллонов или иных резервуаров, предназначенных для хранения газового огнетушащего вещества,
  • трубопроводов и клапанов направления, которые обеспечивают подачу огнетушащего вещества, газа (хладон, азот, СО2, аргон, элегаз, пр.) в сжатом или сжиженном состоянии к очагу возгорания,
  • приборов обнаружения и управления.

При оформлении заявки на поставку, монтаж оборудования или полностью весь комплекс услуг, клиентов нашей компании «КомпаС» интересует смета на газовое пожаротушение. Действительно, информация о том, что данный вид относится к числу «дорогих» способов тушения пожара, справедлива. Однако, точный расчет системы пожаротушения, произведенный нашими специалистами с учетом всех условий, демонстрирует, что автоматическая установка газового пожаротушения на практике может оказаться самой эффективной и выгодной для потребителя.

Расчет пожаротушения – первый этап проектирования установки

Основная задача для тех, кто заказывает газовое пожаротушение – расчет стоимости массы газа, которая потребуется для ликвидации огня в помещении. Как правило, производится расчет пожаротушения по площади (длина, высота, ширина помещения), в определенных условиях могут потребоваться и другие параметры объекта:

  • тип помещения (серверная, архив, датацентр);
  • наличие открытых проемов;
  • при наличии фальшпола и фальшпотолка указать их высоты;
  • минимальная температура в помещении;
  • виды горючих материалов;
  • тип огнетушащего вещества (по желанию);
  • класс по взрывопожарной и пожарной опасности;
  • удаленность диспетчерской/пульта охраны от защищаемого помещения.

Клиенты нашей компании могут предварительно .

Не надо торопиться с выводами!
Эти формулы показывают всего лишь расход в цифрах.
Давайте отвлечемся от «фантиков» и обратим внимание на «конфетку» и ее «начинку». А «конфетка» – это формула А.16. Что она описывает? Потери на участке трубопровода с учетом расхода насадков. Вот ее давайте и рассмотрим, точнее то, что в скобках. В левой части описывается разводка магистральной части трубопровода и процессы в баллоне или станции газового пожаротушения, она нас сейчас мало интересует, как некая константа для разводки, правая же представляет особый интерес! Это вся изюминка со знаком суммы! Давайте для упрощения записи, преобразуем самую правую часть внутри скобочного пространства: (n^2*L)/D^5,25 в такой вид: n^2*X. Допустим, что на участке трубопровода у Вас шесть насадков. По первому участку к первому насадку (считая со стороны баллона) у Вас течет ГОТВ ко всем шести насадкам, тогда потери на участке составят потери до насадка плюс то что утечет дальше по трубопроводу, давление ведь будет меньше, чем если бы после насадка стояла заглушка. Тогда правая часть будет иметь вид: 6^2*Х1 и мы получим параметр «А» для первого насадка. Далее, мы подходим ко второму насадку и что видим? А то, что часть газа расходуется первым насадком плюс то, что потеряли в трубе на подходе к насадку, и что утечет далее (с учетом расхода на этом насадке). Теперь правая часть уже примет вид: 6^2*X1+5^2*Х2 и мы получим параметр «А» на втором насадке. И так далее. Вот Вы и имеете расходы на каждом насадке. Просуммировав эти расходы, Вы и получите расход своей установки и время выпуска ГОТВ. За чем так все сложно? Очень просто. Допустим, что разводка имеет те же шесть насадков и разветвление (допустим что правое плечо имеет два насадка, а левое - 4), тогда опишем участки:
1) по нему течет ГОТВ ко всем насадкам: 6^2*Х1;
2) по нему течет к двум насадкам на правом плече 6^2*X1+2^2*X2 – Параметр «А» для первого насадка;
3) Параметр «А» для второго насадка на правом плече 6^2*X1+2^2*X2+1^2*X3;
4) Параметр «А» для третьего насадка трубной разводки или первого насадка на левом плече: 6^2*X1+4^2*X4;
5) и так далее «по тексту».
Я сознательно «оторвал кусочек» магистрально трубопровода на первый участок для большей удобочитаемости. На первом участке расход для всех насадков, а на втором и четвертом только для двух на правом плече и четырех на левом соответственно.
Теперь вы видите на цифрах, что расход на 20 насадках всегда больше чем на одном с такими же параметрами, что и у 20.
Кроме того, не вооруженным взглядом видно, какая разница между расходами между «диктующими» насадками, то есть насадками, находящимися в самом выгодном месте трубной разводки (где наименьшие потери и наибольший расход) и на оборот.
Вот и все!

Методика расчета массы газового огнетушащего вещества для уст ановок газового пожаротушения при тушении объемным способом

1. Расчетная масса ГОТВ , которая должна храниться в установке, определяется по формуле

где
- масса ГОТВ, предназначенная для создания в объеме помещения огнетушащей концентрации при отсутствии искусственной вентиляции воздуха, определяется по формулам:

для ГОТВ - сжиженных газов, за исключением двуокиси углерода


; (2)

для ГОТВ - сжатых газов и двуокиси углерода

, (3)

где - расчетный объем защищаемого помещения, м 3 .

В расчетный объем помещения включается его внутренний геометрический объем, в том числе объем системы вентиляции, кондиционирования, воздушного отопления (до герметичных клапанов или заслонок). Объем оборудования, находящегося в помещении, из него не вычитается, за исключением объема сплошных (непроницаемых) строительных элементов (колонны, балки, фундаменты под оборудование и т. д.);

- коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов;
- коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения; - плотность газового огнетушащего вещества с учетом высоты защищаемого объекта относительно уровня моря для минимальной температуры в помещении , кг  м -3 , определяется по формуле

, (4)

где - плотность паров газового огнетушащего вещества при температуре = 293 К (20 С) и атмосферном давлении 101,3 кПа;
- минимальная температура воздуха в защищаемом помещении, К; - поправочный коэффициент, учитывающий высоту расположения объекта относительно уровня моря, значения которого приведены в таблице 11 приложения 5;
- нормативная объемная концентрация, % (об.).

Значения нормативных огнетушащих концентраций () приведены в приложении 5.

Масса остатка ГОТВ в трубопроводах
, кг, определяется по формуле

, (5)

где - объем всей трубопроводной разводки установки, м 3 ;
- плотность остатка ГОТВ при давлении, которое имеется в трубопроводе после окончания истечения массы газового огнетушащего вещества в защищаемое помещение.

- произведение остатка ГОТВ в модуле (М б ), который принимается по ТД на модуль, кг, на количество модулей в установке .

Примечание. Для жидких горючих веществ, не приведенных в приложении 5, нормативная объемная огнетушащая концентрация ГОТВ, все компоненты которых при нормальных условиях находятся в газовой фазе, может быть определена как произведение минимальной объемной огнетушащей концентрации на коэффициент безопасности, равный 1,2 для всех ГОТВ, за исключением двуокиси углерода. Для СО 2 коэффициент безопасности равен 1,7.

Для ГОТВ, находящихся при нормальных условиях в жидкой фазе, а также смесей ГОТВ, хотя бы один из компонентов которых при нормальных условиях находится в жидкой фазе, нормативную огнетушащую концентрацию определяют умножением объемной огнетушащей концентрации на коэффициент безопасности 1,2.

Методики определения минимальной объемной огнетушащей концентрации и огнетушащей концентрации изложены в НПБ 51-96 * .

1.1. Коэффициенты уравнения (1) определяются следующим образом.

1.1.1. Коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов:

.

1.1.2. Коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения:

, (6)

где
- параметр, учитывающий расположение проемов по высоте защищаемого помещения, м 0,5  с -1 .

Численные значения параметра выбираются следующим образом:

0, 65 - при расположении проемов одновременно в нижней (0 - 0,2)
и верхней зоне помещения (0, 8 - 1,0) или одновременно на потолке и на полу помещения, причем площади проемов в нижней и верхней части примерно равны и составляют половину суммарной площади проемов; = 0,1 - при расположении проемов только в верхней зоне (0,8 - 1,0) защищаемого помещения (или на потолке); = 0,25 - при расположении проемов только в нижней зоне (0 - 0,2) защищаемого помещения (или на полу); = 0,4 - при примерно равномерном распределении площади проемов по всей высоте защищаемого помещения и во всех остальных случаях.

- параметр негерметичности помещения, м -1 ,

где
- суммарная площадь проемов, м 2 .

Высота помещения, м;
- нормативное время подачи ГОТВ в защищаемое помещение.

1.1.3. Тушение пожаров подкласса А 1 (кроме тлеющих материалов, указанных в п. 7.1) следует осуществлять в помещениях с параметром негерметичности не более 0,001 м -1 .

Значение массы М р для тушения пожаров подкласса А 1 определяется по формуле

М р = К 4 . М р-гепт,

где М р-гепт - значение массы М р для нормативной объемной концентрации С Н при тушении н-гептана, вычисляется по формулам 2 или 3;

К 4 - коэффициент, учитывающий вид горючего материала. Значения коэффициента К 4 принимается равными: 1,3 – для тушения бумаги, гофрированной бумаги, картона, тканей и т.п. в кипах, рулонах или папках; 2,25 – для помещений с этими же материалами, в которые исключен доступ пожарных после окончания работы АУГП, при этом резервный запас рассчитывается при значении К 4 , равном 1,3.

Время подачи основного запаса ГОТВ при значении К 4 , равном 2,25, может быть увеличено в 2,25 раза. Для других пожаров подкласса А 1 значение К 4 принимается равным 1,2.

Не следует вскрывать защищаемое помещение или нарушать его герметичность другим способом в течение не менее 20 минут (или до приезда подразделений пожарной охраны).

При вскрытии помещений должны быть в наличии первичные средства пожаротушения.

Для помещений, в которые исключен доступ пожарных подразделений после окончания работы АУГП, следует использовать в качестве огнетушащего вещества СО 2 с коэффициентом 2,25.

1. Среднее за время подачи двуокиси углерода давление в изотермическом резервуаре ,МПа, определяется по формуле

, (1)

где - давление в резервуаре при хранении двуокиси углерода, МПа; - давление в резервуаре в конце выпуска расчетного количества двуокиси углерода, МПа, определяется по рисунку 1.

2. Средний расход двуокиси углерода

, (2)

где
- расчетное количество двуокиси углерода, кг; - нормативное время подачи двуокиси углерода, с.

3. Внутренний диаметр питающего (магистрального) трубопровода , м, определяется по формуле

где k 4 - множитель, определяется по таблице 1; l 1 - длина питающего (магистрального) трубопровода по проекту, м.

Таблица 1

Множитель k 4

4. Среднее давление в питающем (магистральном) трубопроводе в точке ввода его в защищаемое помещение

, (4)

где l 2 - эквивалентная длина трубопроводов от изотермического резервуара до точки, в которой определяется давление, м:

, (5)

где - сумма коэффициентов сопротивления фасонных частей трубопроводов.

5. Среднее давление

, (6)

где р 3 - давление в точке ввода питающего (магистрального) трубопровода в защищаемое помещение, МПа; р 4 - давление в конце питающего (магистрального) трубопровода, МПа.

6. Средний расход через насадок Q m , кг  с -1 , определяется по формуле

где - коэффициент расхода через насадок; A 3 - площадь выпускного отверстия насадка, м 2 ; k 5 - коэффициент, определяемый по формуле

. (8)

7. Количество насадков определяется по формуле

.

8. Внутренний диаметр распределительного трубопровода , м, рассчитывается из условия

, (9)

где - диаметр выпускного отверстия насадка, м.

Р

Р 1 =2,4



исунок 1. График для определения давления в изотермическом

резервуаре в конце выпуска расчетного количества двуокиси углерода

Примечание. Относительная масса двуокиси углерода определяется по формуле

,

где - начальная масса двуокиси углерода, кг.

Приложение 7

Методика расчета площади проема для сброса избыточного давления в помещениях, защищаемых установками газового пожаротушения

Площадь проема для сброса избыточного давления , м 2 , определяется по формуле

,

где - предельно-допустимое избыточное давление, которое определяется из условия сохранения прочности строительных конструкций защищаемого помещения или размещенного в нем оборудования, МПа; - атмосферное давление, МПа; - плотность воздуха в условиях эксплуатации защищаемого помещения, кг  м -3 ; - коэффициент запаса, принимаемый равным 1,2; - коэффициент, учитывающий изменение давления при его подаче;
- время подачи ГОТВ, определяемое из гидравлического расчета, с;
- площадь постоянно открытых проемов (кроме сбросного проема) в ограждающих конструкциях помещения, м 2 .

Значения величин
, , определяются в соответствии с приложением 6.

Для ГОТВ - сжиженных газов коэффициент К 3 =1.

Для ГОТВ - сжатых газов коэффициент К 3 принимается равным:

для азота - 2,4;

для аргона - 2,66;

для состава “Инерген” - 2,44.

Если значение выражения в правой части неравенства меньше или равно нулю, то проем (устройство) для сброса избыточного давления не требуется.

Примечание. Значение площади проема рассчитано без учета охлаждающего воздействия ГОТВ-сжиженного газа, которое может привести к некоторому уменьшению площади проема.

Общие положения по расчету установок порошкового пожаротушения модульного типа.

1. Исходными данными для расчета и проектирования установок являются:

геометрические размеры помещения (объем, площадь ограждающих конструкций, высота);

площадь открытых проемов в ограждающих конструкциях;

рабочая температура, давление и влажность в защищаемом помещении;

перечень веществ, материалов, находящихся в помещении, и показатели их пожарной опасности, соответствующий им класс пожара по ГОСТ 27331;

тип, величина и схема распределения пожарной нагрузки;

наличие и характеристика систем вентиляции, кондиционирования воздуха, воздушного отопления;

характеристика и расстановка технологического оборудования;

наличие людей и пути их эвакуации.

техническая документация на модули.

2. Расчет установки включает определение:

количества модулей, предназначенных для тушения пожара;

времени эвакуации, при их наличии;

времени работы установки;

необходимого запаса порошка, модулей, комплектующих;

типа и необходимого количества извещателей (при необходимости) для обеспечения срабатывания установки, сигнально-пусковых устройств, источников питания для запуска установки (для случаев по п. 8.5).

Методика расчета количества модулей для модульных установок порошкового пожаротушения

1. Тушение защищаемого объема

1.1. Тушение всего защищаемого объема

Количество модулей для защиты объема помещения определяется по формуле

, (1)

где
- количество модулей, необходимое для защиты помещения, шт.; - объем защищаемого помещения, м 3 ; - объем, защищаемый одним модулем выбранного типа, определяется по технической документации(далее по тексту приложения-документация) на модуль, м 3 (с учетом геометрии распыла - формы и размеров защищаемого объема, заявленного производителем); = 11,2 - коэффициент неравномерности распыления порошка. При размещении насадков-распылителей на границе максимально допустимой (по документации на модуль) высоты к= 1,2 или определяется по документации на модуль.

- коэффициент запаса, учитывающий затененность возможного очага загорания, зависящий от отношения площади, затененной оборудованием , к защищаемой площади S y , и определяется как:

при
,

Площадь затенения - определяется как площадь части защищаемого участка, где возможно образование очага возгорания, к которому движение порошка от насадка-распылителя по прямой линии преграждается непроницаемыми для порошка элементами конструкции.

При
рекомендуется установка дополнительных модулей непосредственно в затененной зоне или в положении, устраняющем затенение; при выполнении этого условия kпринимается равным 1.

- коэффициент, учитывающий изменение огнетушащей эффективности используемого порошка по отношению к горючему веществу в защищаемой зоне по сравнении с бензином А-76. Определяется по таблице 1. При отсутствии данных определяется экспериментально по методикам ВНИИПО.

- коэффициент, учитывающий степень негерметичности помещения. = 1 + В F нег , где F нег = F/ F пом - отношение суммарной площади негерметичности (проемов, щелей) F к общей поверхности помещения F пом , коэффициент В определяется по рисунку 1.

В

20

Fн/ F , Fв/ F

Рисунок 1 График для определения коэффициента В при расчете коэффициента .

F н - площадь негерметичности в нижней части помещения; F в - площадь негерметичности в верхней части помещения, F-суммарная площадь негерметичностей (проемов, щелей).

Для установок импульсного пожаротушения коэффициент В может определяться по документации на модули.

1.2. Локальное пожаротушение по объему

Расчет ведется аналогично, как и при тушении по всему объему с учетом пп. 8.12-8.14. Локальный объем V н , защищаемый одним модулем, определяется по документации на модули (с учетом геометрии распыла - формы и размеров локального защищаемого объема, заявленного производителем), а защищаемый объем V з определяется как объем объекта, увеличенный на 15 %.

При локальном тушении по объему принимается =1,3, допускается принимать другие значения , приведенные в документации на модуль.

2. Пожаротушение по площади

2.1. Тушение по всей площади

Количество модулей, необходимое для пожаротушения по площади защищаемого помещения, определяется по формуле

- локальная площадь, защищаемая одним модулем, определяется по документации на модуль (с учетом геометрии распыла - формы и размеров локальной защищаемой площади, заявленной производителем), а защищаемая площадь определяется как площадь объекта, увеличенная на 10 %.

При локальном тушении по площади принимается =1,3, допускается принимать другие значения к 4 , приведенные в документации на модуль или обоснованные в проекте.

В качестве S н может приниматься площадь максимального ранга очага класса В, тушение которого обеспечивается данным модулем (определяется по документации на модуль, м 2).

Примечание. В случае получения при расчете количества модулей дробных чисел за окончательное число принимается следующее по порядку большее целое число.

При защите по площади, с учетом конструктивных и технологических особенностей защищаемого объекта (с обоснованием в проекте), допускается запуск модулей по алгоритмам, обеспечивающим позонную защиту. В этом случае, за защищаемую зону принимается часть площади, выделенной проектными(проезды и т.п) или конструктивными негорючими (стены, перегородки и т.п.) решениями. Работа установки при этом должна обеспечивать не распространение пожара за пределы защищаемой зоны, рассчитываемой с учетом инерционности установки и скоростей распространения пожара(для конкретного вида горючих материалов).

Таблица 1.

Коэффициент сравнительной эффективности огнетушащих


  1. Чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (1)

    Документ

    ...) Группы помещений (производств и технологических процессов ) по степени опасности развития пожара в зависимости от их функционального назначения и пожарной нагрузки сгораемых материалов Группа помещений Перечень характерных помещений , производств ...

  2. Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб сп 42-101-2003 зао «полимергаз» Москва

    Реферат

    ... по предотвращению их развития . ... помещениях категорий А, Б, В1 повзрывопожарной и пожарной опасности , в зданиях категорий ниже III степени ... материалов . 9.7 На территории складов баллонов(СБ) в зависимости от технологического процесса ...

  3. Техническое задание на оказание услуг по организации экспозиции в период XXII олимпийских зимних игр и XI паралимпийских зимних игр 2014 года в городе Сочи Общая информация

    Техническое задание

    ... от их функциональных ... материалы с показателями пожарной опасности помещений . Все сгораемые материалы ... технологическом процессе пожарной ...

  4. На оказание услуг по организации выставочной экспозиции и презентации проектов ОАО «нк «Роснефть» в период работы XXII олимпийских и XI паралимпийских зимних игр 2014 года в городе Сочи

    Документ

    ... от их функциональных ... материалы с показателями пожарной опасности , разрешенными к применению в данных типах помещений . Все сгораемые материалы ... технологическом процессе . Все сотрудники Партнера должны знать и соблюдать требования правил пожарной ...

Е.1 Расчетная масса ГОТВ , которая должна храниться в установке, определяется по формуле

где - масса ГОТВ, предназначенная для создания в объеме помещения огнетушащей концентрации при отсутствии искусственной вентиляции воздуха, определяется по формулам:

Для ГОТВ - сжиженных газов, за исключением двуокиси углерода:

Для ГОТВ - сжатых газов и двуокиси углерода

здесь - расчетный объем защищаемого помещения, м. В расчетный объем помещения включается его внутренний геометрический объем, в том числе объем системы вентиляции, кондиционирования, воздушного отопления (до герметичных клапанов или заслонок). Объем оборудования, находящегося в помещении, из него не вычитается, за исключением объема сплошных (непроницаемых) строительных элементов (колонны, балки, фундаменты под оборудование и т.д.);

Коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов;

Коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения;

Плотность газового огнетушащего вещества с учетом высоты защищаемого объекта относительно уровня моря для минимальной температуры в помещении , кг/м, определяется по формуле

здесь - плотность паров газового огнетушащего вещества при температуре293 К (20 °С) и атмосферном давлении 101,3 кПа;

Минимальная температура воздуха в защищаемом помещении, К;

Поправочный коэффициент, учитывающий высоту расположения объекта относительно уровня моря, значения которого приведены в таблице Д.11 приложения Д;

Нормативная объемная концентрация, % (об.).

Значения нормативных огнетушащих концентраций приведены в приложении Д.

Масса остатка ГОТВ в трубопроводах , кг, определяется по формуле

где - объем всей трубопроводной разводки установки, м;

Плотность остатка ГОТВ при давлении, которое имеется в трубопроводе после окончания истечения массы газового огнетушащего вещества в защищаемое помещение;

Произведение остатка ГОТВ в модуле , который принимается по ТД на модуль, кг, на количество модулей в установке.

Примечание - Для жидких горючих веществ, не приведенных в приложении Д, нормативная объемная огнетушащая концентрация ГОТВ, все компоненты которых при нормальных условиях находятся в газовой фазе, может быть определена как произведение минимальной объемной огнетушащей концентрации на коэффициент безопасности, равный 1,2 для всех ГОТВ, за исключением двуокиси углерода. Для СОкоэффициент безопасности равен 1,7.

Для ГОТВ, находящихся при нормальных условиях в жидкой фазе, а также смесей ГОТВ, хотя бы один из компонентов которых при нормальных условиях находится в жидкой фазе, нормативную огнетушащую концентрацию определяют умножением объемной огнетушащей концентрации на коэффициент безопасности 1,2.

Методики определения минимальной объемной огнетушащей концентрации и огнетушащей концентрации изложены в ГОСТ Р 53280.3.

Е.2 Коэффициенты уравнения (Е.1) определяются следующим образом.

Е.2.1 Коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов 1,05.

Е.2.2 Коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения:

где - параметр, учитывающий расположение проемов по высоте защищаемого помещения, м·с.

Численные значения параметра выбираются следующим образом:

0,65 - при расположении проемов одновременно в нижней (0-0,2) и верхней зоне помещения (0,8-1,0)или одновременно на потолке и на полу помещения, причем площади проемов в нижней и верхней части примерно равны и составляют половину суммарной площади проемов;0,1 - при расположении проемов только в верхней зоне (0,8-1,0)защищаемого помещения (или на потолке);0,25 - при расположении проемов только в нижней зоне (0-0,2)защищаемого помещения (или на полу);0,4 - при примерно равномерном распределении площади проемов по всей высоте защищаемого помещения и во всех остальных случаях;

Параметр негерметичности помещения, м,

где - суммарная площадь проемов, м;

Высота помещения, м;

Нормативное время подачи ГОТВ в защищаемое помещение, с.

Е.3 Тушение пожаров подкласса A(кроме тлеющих материалов, указанных в 8.1.1) следует осуществлять в помещениях с параметром негерметичности не более 0,001 м.

Значение массы для тушения пожаров подкласса Aопределяется по формуле

где - значение массыдля нормативной объемной концентрациипри тушении н-гептана, вычисляется по формулам (2) или (3);

Коэффициент, учитывающий вид горючего материала.

Значения коэффициента принимаются равными: 1,3 - для тушения бумаги, гофрированной бумаги, картона, тканей и т.п. в кипах, рулонах или папках; 2,25 - для помещений с этими же материалами, в которые доступ пожарных после окончания работы АУГП исключен. Для остальных пожаров подкласса A, кроме указанных в 8.1.1, значениепринимается равным 1,2.

При этом допускается увеличивать нормативное время подачи ГОТВ в раз.

В случае, если расчетное количество ГОТВ определено с использованием коэффициента 2,25, резерв ГОТВ может быть уменьшен и определен расчетом с применением коэффициента1,3.

Не следует вскрывать защищаемое помещение, в которое разрешен доступ, или нарушать его герметичность другим способом в течение 20 минут после срабатывания АУГП (или до приезда подразделений пожарной охраны).

Приложение Ж

Гидравлический расчет является наиболее сложным этапом при создании АУГПТ. Необходимо подобрать диаметры трубопроводов , количество насадок и площадь выходного сечения, рассчитать реальное время выхода ГОТВ .

Как будем считать?

Для начала нужно определиться где взять методику и формулы для гидравлического расчета. Открываем свод правил СП 5.13130.2009, приложение Ж и видим там только методику расчета углекислотного пожаротушения низкого давления, а где методика для других газовых огнетушащих веществ? Смотрим пункт 8.4.2 и видим: «Для остальных установок расчет рекомендуется производить по методикам, согласованным в установленном порядке».

Программы для расчета

Обратимся за помощью к производителям оборудования газового пожаротушения. В России существуют две методики для гидравлических расчетов. Одна разработана и много раз скопирована ведущими Российскими производителями оборудования и утверждена ВНИИПО, на ее основе создано программное обеспечение «ЗАЛП», «Салют». Другая разработана компанией «ТАКТ» и согласована ДНД МЧС, на её основе создано программное обеспечение «ТАКТ-газ».

Методики закрыты для большинства инженеров-проектировщиков и служат для внутреннего использования производителей автоматических установок газового пожаротушения. Если договориться, то вам её покажут, но без специальных знаний и опыта выполнить гидравлический расчёт будет затруднительно.



2024 stdpro.ru. Сайт о правильном строительстве.