Как соорудить на arduino умный дом. «Умный дом» на Arduino: теория и практика. Организация системы «Умный дом»

То, что получилось в итоге, можно назвать, пожалуй, самым дешевым решением для создания Умного дома, которое, тем не менее, умеет:

  • Управлять освещением и силовыми устройствами(Реле, диммеры DMX-512 и Modbus RTU)
  • Управлять теплыми полами (в качестве термодатчиков используются полтора десятка дешевых DS18B20, разведенных по квартире)
  • Управлять задвижками вентиляции/кондиционера
  • Управлять самодельной системой приточной вентиляции.
  • Многое такого, о чем я изначально не задумывался, просто в силу того, что контроллер получился абсолютно открытым, гибко конфигурируемым, и прекрасно дополняющим Опенсорсные решения Openhab+Mosquitto+NodeRed
На вход контроллера подключаются обычные выключатели, кнопки, контактные датчики, датчики протечки и пр. которые могут управлять как локальными нагрузками так и устройствами, подключенными к другим таким же контроллерам или ко всему, что понимает протокол MQTT. У меня, например, подключен геркон, установленный в коробке входной двери. Когда закрываю замок на три оборота - выключаются свет, теплые полы, бойлеры, AV ресивер. Когда возвращаюсь - состояние этих приборов восстанавливается как было до ухода.

Serial CLI при создании нового контроллера надо прописать в NVRAM уникальный MAC адрес. Именно MAC является ключом, по которому изначально загружается конфигурация c http сервера.

В качестве управляющего ПО я взял Openhab 2, имеющий весь нужный мне функционал, плюс, мобильное приложение, плюс «Облако» - роль которого, правда, только в том, чтобы предоставлять доступ к домашней инфраструктуре извне, не прокидывая портов на роутере и не обладая фиксированным IP. Также, Openhab имеет интеграцию с HomeKit от Apple, что позволяет управлять устройствами дома с iPhone, вообще без установки аппликации. (Возможность интересная, но пользуюсь, в основном, «родным» приложением).

Немного скриншотов Openhab



Наличие в проекте квартиры большого кол-ва светодиодного освещения, также, требовало какого-то разумного управления.

Подробности по LED освещению

Решения, обнаруженные на рынке были либо закрытыми «вещами в себе», либо стоили неадекватных денег, поддерживая при этом немного каналов. Часто, производители ограничивались тремя каналами (RGB), хотя, вариант RGBW позволяет использовать светодионые ленты в качестве основного освещения, а не просто для цветовой подсветки.

Подумав, я заказал на АliExpress пару плат , каждая из которых может управлять 30-ю каналами LED с номинальным током до 2А на канал.

Для того, чтобы увеличить максимальную мощность одного канала, я перешел со светодиодных лент на 12В на 24В ленты. При этом, полноценно осветить комнату около 16-18 кв. м оказалось возможным при помощи 4-х ключей. БОльшие по площади помещения пришлось зонировать - в гостиной подключил независимо 4 ленты по 5 м, задействовав при это 16 каналов.

Для синхронного управления всей комнатой, пришлось придумать тип канала «группа»

Вот как выглядит описание гостиной в JSON конфиге:

"kuh":], "kuhwin":, "kuhline":, "kuhfre":, "kuhwork":,
Первый элемент массива - тип канала, второй - параметр канала, который может являться массивом.

Для элемента типа 7 (группа) - аргументом является массив элементов, входящих в группу.
Рекурсия, конечно же, поддерживается.

Для элемента типа 1 (лента RGBW) - аргумент - базовый DMX адрес канала.

Со стандартной библиотекой EasyDMX платы не заработали сразу. Как оказалось, китайский LED контроллер не переваривал 2ms задержку между фреймами DMX (interframe delay). Несложная модификация кода библиотеки (сокращение цикла в два раза) помогла.

Подробности по кондиционированию

К сожалению, не удалось найти приводов воздушных заслонок с ШИМ или каким-то цифровым входом, поэтому на том же AliExpress были приобретены 4 преобразователя ШИМ в стандартный аналоговый сигнал 0..10В.

К сожалению, на Aliexpress этих устройств уже не вижу, но на e-bay - пожалуйста

Преобразователи великолепно заработали сразу, пришлось только перепрограммировать таймер ШИМ выходов для того, чтобы задать подходящую частоту.

Ниже пример перепрограммирования таймеров 3 и 4 (отвечают за pin-ы 2, 3, 5, 6, 7, 8 Arduino Mega на частоту 4000Гц).

PinMode(iaddr,OUTPUT); //timer 0 for pin 13 and 4 //timer 1 for pin 12 and 11 //timer 2 for pin 10 and 9 //timer 3 for pin 5 and 3 and 2 //timer 4 for pin 8 and 7 and 6 int tval = 7; // 111 in binary - used as an eraser TCCR4B &= ~tval; // set the three bits in TCCR2B to 0 TCCR3B &= ~tval; tval=2; //prescaler = 2 ---> PWM frequency is 4000 Hz TCCR4B|=tval; TCCR3B|=tval; analogWrite(iaddr,k=map(Value,0,100,0,255));


Далее, я начал искать WiFi контроллеры теплых полов. Нашел, в целом, неплохое устройство стоимостью около 6 тыс руб от Теплолюкс, но оно имело некоторые существенные для меня недостатки.

Несмотря на наличие мобильного приложения, протокол управления был закрыт. Я провел некоторый реверс-инженеринг, который показал, что, теоретически, протокол можно расшифровать. Возможно, я бы этим и занялся, но обнаружил, что без переустановки подразетников сие устройство не устанавливается в один ряд с выключателями. Это определило судьбу устройства: продав его, я реализовал функционал простого термостата на своем контроллере, сэкономив почти 30 тыс руб на 5-ти теплых полах.

Получилось следующее:

  • Все управление - локально на контроллере и независимо от домашней ИТ инфраструктуры
  • Используются измерения с 1-wire термодатчиков. Если датчик долгое время не может быть опрошен - нагреватель отключается.
  • Через MQTT можно включить/выключить теплый пол и задать его температуру. Соответственно, полы управляемы через интерфейсы и мобильное приложение Openhab
  • Я не стал реализовывать хитрые сценарии и расписания на контроллере. При желании, это легко реализуется правилами Openhab или Node-Red. Я ограничился только отключением устройств, когда люди покидают дом.
Вот пример конфига для одного теплого пола:

"ow":{ "2807FFD503000036":{"emit":"t_bath1","item":"h_bath1"} }, "items":{ "h_bath1":, },
Данные при опросе термометра OneWire с указанным адресом передаются на шину MQTT в топик t_bath1, а также, внутри контроллера, объекту h_bath, имеющему тип №5 (термостат), реле подключено к pin#24 контроллера, уставка - 33 градуса (можно корректировать по MQTT)


Входы устройства

В конфиге для каждого входа можно задать как передачу команды локальному объекту так и выдачу команды в MQTT топик. Причем, отдельно как на условное «нажатие» кнопки так и на «отпускание».

Примеры:

"in":{ "41":{"emit":"/myhome/in/all","scmd":"HALT","rcmd":"REST"}, "38":{"item":"spots_en"}, "37":{"emit":"/myhome/in/light","scmd":"ON","rcmd":"OFF"}, "40":{"emit":"/myhome/in/gstall","scmd":"TOGGLE","rcmd":"TOGGLE"}, "35":{"emit":"/myhome/s_out/water_leak"} }
Pin 41: Геркон на замке входной двери - при запирании - выдаем в топик /myhome/in/all команду HALT, при отпирании - команду REST.

У меня это приводит к полному «засыпанию» и «просыпанию» дома. К слову - команды не входят в стандартный набор OpenHab, но получились крайне удобны - HALT - выключает устройство, REST - восстанавливает параметры устройства до последнего значения (цвет, яркость, температура), но только для того устройства, которое было выключено командой HALT а не OFF. Это позволяет не включать то, что было выключено на момент покидания дома.

Pin 38: Просто обычный выключатель света. При замыкании - выдает (по умолчанию) команду ON, при размыкании - команду OFF. Эти значения передаются объекту «spots_en». Понятно, что состояние обьекта можно изменить с мобильного приложения. В этом случае, выключатель, как бы, остается, например, во включенном положении, но свет выключен.

Для любителей классических проходных выключателей, подойдет синтаксис Pin 40: И при включении и при выключении выдается команда TOGGLE (тоже, кстати, новая, относительно OpenHab), меняющая положение Вкл-Выкл устройства (в данном примере, лампа управляется не локально, а через MQTT другим контроллером).

Если это не перекидной выключатель а кнопка - достаточно просто скорректировать «rcmd»:"" - при этом команда на переключение будет выдаваться только при нажатии.


А, ну и почти забыл описать DMX-IN - вход, ради которого, можно сказать, я и начинал эту разработку.

На рынке масса удачных с дизайнерской точки зрения и, в целом, эргономичных DMX контроллеров светодиодных лент.

Один из таких (сенсорную панель) я и купил в самом начале для экспериментов с DMX. Все хорошо, но архитектура DMX не предусматривает никакого управления из более чем одного места. Существует один Мастер, который постоянно транслирует в шину яркости каналов. Но в этом проекте данная проблема решена. Контроллер LightHub отслеживает изменения каналов DMX на входе, подключенном к сенсорной панели. Если они изменяются - транслирует изменения на выход (с маппингом на сконфигурированные устройства, в том числе, на группы светодиодных лент).

Пока ничего не меняется - устройства нормально управляются удаленно. Стоит сенсорной панели поменять значения яркости каналов - эти изменения транслируются на DMX выходы.

Как не странно, этот костыль получился вполне эргономичным. Хотя, как показал опыт, мы все реже используем сенсорную панель и все чаще смартфоны для управления устройствами.

Заключение

К сожалению, в одной статье невозможно описать все нюансы, заложенные в разработку.
Например, совсем за кадром осталась тема подключения Modbus устройств, их пуллинг и синхронизация локального состояния устройства с системой Умного Дома, интеграция с простой приточной установкой. Ну и, возможно, сравнение с существующими системами близких классов, такими, например, как MegaD-328, AMS и, даже, WirenBoard. Возможно, если будет заинтересованность - продолжу.

Также, пока за кадром то, что с использованием NodeRed удалось проинтегрировать систему с Telegram. Пока работает для получения оповещений, но можно создать полноценный Bot.

Относительно проекта LightHub - при всей дешевизне, контроллеры оказались вполне рабочим решением. Честно говоря, я сам не верил, что на основе Arduino можно создать стабильно работающую систему, но, по-моему, это удалось.

Конечно, надо многое еще доделать: полностью уйти от хардкода (осталось совсем чуть-чуть), немного и местами почистить и рефакторить код, тщательно документировать проект, развести печатную плату (сейчас интерфейсные Шилды спаяны просто на основе макетных плат и содержат три MAX-485 - (DMX-IN, DMX-OUT, Modbus) и 1-Wire мост) - и это станет, по сути, очень бюджетным готовым решением.

Warning: Напоминаю, что проект пока на уровне макетных плат. Открывая следующий спойлер, вы можете нанести урон своим эстетическим чувствам.

Немного картинок


Первый контроллер, управляющий LED (60 каналов DMX-512), Modbus (диммеры, приточка), заслонки ветиляции;


Это DMX-512 декодер, который удобно размещать там, где светодиодные ленты приходят к трансформаторам. У меня - под фальшпотолком в кладовке.

А это-второй контроллер, обслуживающий 1-wire, выключатели/датчики и релейный модуль. (Сам релейный модуль разместился прямо в распаечной коробке, где ему и место вместе с тремя фазами. Соседство 380В и слаботочки я искоренил везде, где возможно, после одного неудачного происшествия)

Понятно, что надо расширять функционал. Как минимум, в направлении беспроводных датчиков/устройств. (Хотя, например, ZWave и так сейчас можно использовать через стандартные биндинги Openhab).

Возможность подключения, например, бюджетного NooLight, вероятно, неплохая идея. Возможно, подумаю над миграцией на ESP-8266 для расширения RAM, хотя, уход на WiFi с проводного подключения к LAN мне не нравится с точки зрения надежности. Да и ESP не обладает такой богатой переферией как Arduino Mega. Еще планирую сделать учет электроэнергии через датчики тока и подключение Rotary Encoder на вход.

Также, полезно было бы сделать конфигурирование и запуск контроллера более User Friendly (визуальные конфигураторы и пр.). При этом, сознательно не хочется превращать контроллер в вебсервер с файлами/картинками, AJAX и пр. На мой взгляд, это уже должно являться прерогативой сервера. Хотя бы на основе Raspberry.

Но поскольку проект абсолютно Опенсорсный - возможны разные варианты, присоединяйтесь.
Также, с нетерпением ожидаю ваших отзывов.

UPDATE:

После публикации статьи, объединив усилия вместе с одним из жителей Хабра и нарисовав принципиальную схему LighthHub Shield, приступили к разводке печатной платы, с учетом всего осмысленного опыта и комментариев
  • Плата будет совместима как с Arduino Mega (5v) так и с Arduino DUE (ARM 3,3В)
  • Встроенный интерфейс Ethernet на базе Wiznet5500
  • 8 опторазвязанных дискретных входов, 8 дискретных входов/выходов с защитой по напряжению/току
  • 8 аналоговых входов с защитой по напряжению/току. В дальнейшем, предполагаю использовать аналоговые входы для контроля потребляемой мощности (датчики тока) и для того, чтобы подключать внешние потенциометры (диммеры)
  • 8 ШИМ выходов, 4 из них с мощными выходными ключами (до 500 мА/50В) + 4 дискретных мощных выхода. Позволят подключить локально к контроллеру, например, несколько пускателей или даже не сильно длинную RGBW LED ленту.
  • Разьем формата UEXT , который позволит, впоследствии, подключить к контроллеру совместимую переферию - например дополнительные радиомодули, для соединения с беспроводными устройствами.
  • Остальные входы/выходы будут выведены без защит на разъемы RJ45 для подключения локальных устройств (релейные платы, ЦАП и пр)
  • 1-wire
  • dmx-512
  • dmx
  • Node-Red
  • modbus
  • iot
Добавить метки

Всем привет! С вами снова Артем Лужецкий и очередной материал в направлении . Чтобы связать наши проекты с интернетом можно использовать 10-ки способов, но мы пока остановимся на модуле, о котором я еще говорил еще в самой первой статье, ESP 8266. не может работать с интернетом. Обычная плата без дополнений и модулей не может передавать информацию на расстоянии.

Но с помощью UART интерфейса на Arduino мы можем получать информацию, обрабатывать ее и отправлять данные обратно. С помощью него, UNO может работать с Bluetooth и Wi-fi модулями, которые уже и дают нашей системе дополнительные функции.

Выход в интернет

Давайте поговорим об интернете поподробнее. Я думаю, вы знаете, что интернет - это не магия и не просто радиоволны, а гигантская сеть между тысячами различных устройств с помощью беспроводной связи.

Сайты, с которыми мы каждый день сталкиваемся - это информация, переданная нам с сервера. Весь тот текст, картинки, анимация - все это хранится на сервере, пока клиент, мы, не захочет, чтобы ему передали эту информацию.

Вы можете узнать, что такое IP, TCP, HTTP, GET - запрос в интернете, если вам в дальнейшем будет не понятно.

Но это все не будет работать без связи нашей платы с сайтами и приложениями. Есть два решения, подключится к другому сайту (серверу), который будет обрабатывать информацию полученную либо от самой платы, либо от пользователя, чтобы управлять приборами на расстоянии или создать свой сервер, где будет лежать лично наш написанный сайт. Мы все это попробуем сделать в будущем.

Передача данных от Ардуино

Сначала мы заставим нашу ардуину передавать данные на отдельный сайт, который будет изображать данные, полученные с датчиков ардуино. Для этого прекрасно подойдет сайт для интернет вещей - dweet.io

Попробуем на него передавать данные изменения температуры нашей комнаты.

Можно обойтись без создания собственного ключа, и в коде (где нужно вставить ключ), можно записать все что угодно и сайт все равно вам выведет на экран график изменения отправленных данных по времени. Но для того, чтобы в дальнейшем создать сеть онлайн устройств, придется более серьезно отнестись к данному сайту.

На главной странице можно посмотреть возможные варианты работы данного сайта

Также создать свой аккаунт и сеть ключей для разных устройств, чтобы вы могли не беспокоится за безопасность данных и могли из любого устройства узнать, что происходит в вашем доме.

Схема подключения

Разберем электрическую схему подключения esp 8266. Нам потребуется только пины Rx, Tx, Gnd и Vcc. Данный модуль питается от 3,3 вольт.

И общую электрическую схему, в которой нам пригодится ардуино, esp и термистор.

Код проекта

Итак, приступим наконец-то к проекту. Основная часть нашего проекта будет в коде. Для библиотеки по использованию нашего модуля предусмотрено пара новых функций (ссылку на библиотеку можно найти в первой статье):

  1. ESP8266 wifi(Serial) - Подключаем esp8266 через Serial соединение.
  2. wifi.joinAP(a,b); - Подключение к wifi, где а - это название точки доступа, а b - пароль к этой точки доступа.
  3. wifi.createTCP(a,b) - Открытие TCP соединения, где "a" - DNC сайта (www.dweet.io), а "b" - сетевой порт (порт 80).
  4. wifi.send(a,b) - отправляем данные, где "a" - данные в массиве (строка с-стиля), а "b" - общее количество отправленных байтов.
  5. wifi.releaseTCP() - Закрытие TCP соединения.
#include "ESP8266.h" // для работы с esp8266 #include // чтобы добавить больше пинов UART #include // чтобы высчитать логарифм #define SSID "Arduino" // имя вашего wi-fi #define PASSWORD "12345678" //пароль вашего wi-fi #define Thermistor_PIN A0 // пин подключения термистора SoftwareSerial mySerial(2, 3); // пины подключения по UART ESP8266 wifi(mySerial); // говорим esp8266, что она будет работать через пины UART String name = "MyEyse"; // ваш ключ от сайта dweet.io void setup() { Serial.begin(9600); // открываем serial соединение if (wifi.joinAP(SSID, PASSWORD)) { // если мы подключились к нашей сети Serial.println("https://dweet.io/follow/" + name); // пишем в мониторе порта адресс сайта } else { Serial.println("Wi-Fi connection error"); // в случае, если мы не подключимся к сети, нам выдадут ошибку } } void loop() { float volt_temp = 1023.0 / analogRead(Thermistor_PIN) - 1.0; // высчитываем температуру float temperatur = 1.0 / (-log(volt_temp) / 3977.0 + 1.0 / 295.0) - 273.0; if (wifi.createTCP("www.dweet.io", 80)) { // если нам удалось создать TCP соединение String data = "GET /dweet/for/" + name + "?"; // создаем переменную data в виде строки (заполняем GET-запрос) data += "temperatur_C=" + String(temperatur) + " HTTP/1.1\r\n"; data += "Host: dweet.io\r\n\r\n"; // закрываем GET-запрос в строке wifi.send(data.c_str(), data.length()); // отправляем данные в массиве (строка с-стиля) и общее количество байтов wifi.releaseTCP(); // закрываем TCP соеденение } else { Serial.println("create TCP error"); // в случае, если мы не создали TCP соеденение, нам выдадут ошибку } delay(1000); // ждем секунду (dweet.io обрабатывает данные 1 секунду, нет смысла отправлять данные раньше) }

Итоговый результат

Если код вы записали правильно, с правильным паролем и именем от вашего wifi, который исправно работает, то в монитор порта будет отправлена ссылка, которую необходимо вставить в адресную строку браузера. Изображение должно выглядеть так

А теперь вы можете подключить ардуино к источнику питания и убрать провод подключения ардуино - компьютер. И узнавать температуру в вашем доме, находясь на другом конце города. Все зависит только от вашей фантазии.

В следующий раз попробуем разобрать еще один проект, который поможет больше раскрыть все возможности интернет модуля. В дальнейшем попробуем создать свой сервер и сайт, а также поговорим о соединении с соцсетями. Увеличить возможности сделать ваш дом умным. Удачи!

Система «Умный дом» на Arduino пользуется большим спросом у людей, стремящихся создать максимальный комфорт дома или в офисе.

Ее особенность - в способности управлять различными системами без участия владельца, а суть заключается в объединении электронных устройств в одну сеть для экономии электроэнергии, управления освещением и электроприборами, оповещения о проникновении в дом посторонних лиц и решении других задач.

Одним из главных элементов системы умный дом в рассматриваемом варианте является Arduino. Что это такое? Как он работает? Какие функции выполняет? Все подробно мы рассмотрим в этой статье.

Что такое Arduino?

Ардуино (Arduino) - специальный инструмент, позволяющий проектировать электронные устройства, имеющие более тесное взаимодействие с физической средой в сравнении с теми же ПК, фактически не выходящими за пределы виртуальной реальности.

В основе платформы лежит открытый код, а само устройство построено на печатной плате с «вшитым» в ней программным обеспечением.

Другими словами, Ардуино - небольшое устройство, обеспечивающее управление различными датчиками, системами освещения, принятия и передачи данных.

В состав Arduino входит микроконтроллер, представляющий собой собранный на одной схеме микропроцессор. Его особенность - способность выполнять простые задачи. В зависимости от модели устройство Ардуино может комплектоваться микроконтроллерами различных типов.

Существует несколько моделей плат, самые распространённые из них – UNO, Mega 2560 R3.

Не менее важная особенность печатной платы заключается в наличии 22 выводов, которые расположены по периметру изделия. Они бывают аналоговыми и цифровыми.

Особенность последних заключается в управлении с помощью только двух параметров - логической единицы или нуля. Что касается аналогового вывода, между 1 и 0 имеется много мелких участков.

Сегодня Arduino используется при создании электронных систем, способных принимать информацию с различных датчиков (цифровых и аналоговых).

Устройства на Ардуино могут работать в комплексе с ПО на компьютере или самостоятельно.

Что касается плат, их можно собрать своими руками или же приобрести готовое изделие. Программирование Arduino производится на языке Wiring.

ЧИТАЙТЕ ПО ТЕМЕ : , обзор, комплектация, подключение и настройка своими руками, сценарии.

Чем управляет Arduino?

Благодаря большому количеству выводов на печатной плате, к Ардуино удается подключить множество различных устройств, а именно:

Кроме того, к Ардуино подключается набор датчиков в зависимости от задач, поставленных перед системой. Как правило, устанавливаются датчики освещенности, дыма и состава воздуха, магнитного поля, влажности, температуры и прочие.

Благодаря этой особенности, Arduino становится универсальным устройством - «мозговым центром» системы «Умный дом» с возможностью конфигурации с учетом поставленных задач.

Принцип работы системы

Устройство Arduino работает следующим образом. Информация, собранная с различных датчиков в доме, направляется по беспроводной сети на планшет или ПК. Далее с помощью специального софта производится обработка данных и выполнение определенной команды.

Главную функцию выполняет центральный датчик, который можно приобрести или собрать самостоятельно. Разъемы на платах являются стандартными, что значительно упрощает выбор комплектующих.

Питание

Питание Arduino производится через USB разъем или от внешнего питающего устройства. Источник напряжения определяется в автоматическом режиме.

Если выбран вариант с внешним питанием не через USB, можно подключать АКБ или блок питания (преобразователь напряжения). В последнем случае подключение производится с помощью 2,1-миллиметровго разъема с «+» на главном контакте.

Провода от АКБ подключаются к различным выводам питающего разъема - Vin и Gnd.

Для нормальной работы платформа нуждается в напряжении от 6 до 20 Вольт. Если параметр падает ниже 7 вольт, на выводе 5V может оказаться меньшее напряжение и появляется риск сбоя.

Если подавать 12 В, возможен перегрев регулятора напряжения и повреждения платы. По этой причине оптимальным уровнем является питание с помощью 7 - 12 В.

В отличие от прошлых типов плат, Arduino Mega 2560 работает без применения USB-микроконтроллера типа FTDI. Для обеспечения обмена информацией по USB применяется запрограммированный под конвертер USB-to-serial конвертер.

ПОПУЛЯРНО У ЧИТАТЕЛЕЙ : .

На Ардуино предусмотрены следующие питающие выводы:

  • 5V - используется для подачи напряжения на микроконтроллер, а также другие элементы печатной платы. Источник питания является регулируемым. Напряжение подается через USB-разъем или от вывода VIN, а также от иного источника питания 5 Вольт с возможностью регулирования.
  • VIN - применяется для подачи напряжения с внешнего источника. Вывод необходим, когда нет возможности подать напряжение через USB-разъем или другой внешний источник. При подаче напряжения на 2,1-миллиметровй разъем применяется этот вход.
  • 3V3 - вывод, напряжение на котором является следствием работы самой микросхемы FTDI. Предельный уровень потребляемого тока для этого элемента составляет 50 мА.
  • GND - заземляющие выводы.

Принципиальную схему платы в pdf формате можно посмотреть .

Связь

Возможности Arduino позволяют подключить группу устройств, обеспечивающих стабильную связь с ПК, а также другими элементами системы - микроконтроллерами или такими же платами Ардуино.

Модель ATmega 2560 отличается наличием 4 портов, через которые можно передавать данные для TTL и UART. Специальная микросхема ATmega 8U2 на плате передает интерфейс (один из них) через USB-разъем. В свою очередь, программы на ПК получают виртуальный COM.

Здесь имеются нюансы, которые зависят от типа операционной системы:

  • Если на ПК установлен Linux, распознавание происходит в автоматическом режиме.
  • Если стоит Windows, потребуется дополнительный файл.inf.

С помощью утилиты мониторинга обеспечивается отправление и получение информации в текстовом формате после подключения к системе.

Мигание светодиодов TX и RX свидетельствует о передаче данных. Для последовательной отправки информации применяется специальная библиотека Software Serial.

К особенностям ATmega 2560 стоит отнести наличие интерфейсов SPI и I2C. Кроме того, в состав Ардуино входит библиотека Wire.

Разработка проекта

На современном рынке представлено множество устройств Arduino, имеющих различную комплектацию. Но универсального решения «на все случаи жизни» не существует. В зависимости от поставленной задачи каждый комплект подбирается в индивидуальном порядке. Чтобы избежать ошибок, требуется разработка проекта.

Какие проекты можно создавать на Arduino?

Ардуино позволяет создавать множество уникальных проектов. Вот лишь некоторые из них:

  • Сборка кубика Рубика (система справляется за 0,887 с);
  • Контроль влажности в подвальном помещении;
  • Создание уникальных картин;
  • Отправка сообщений;
  • Балансирующий робот на двух колесах;
  • Анализатор спектра звука;
  • Лампа оригами с емкостным сенсором;
  • Рука-робот, управляемая с помощью Ардуино;
  • Написание букв в воздухе;
  • Управление фотовспышкой и многое другое.

Составление проекта для умного дома

Рассмотрим ситуацию, когда необходимо сделать автоматику для дома с одной комнатой.

Такое здание состоит из пяти основных зон - прихожей, крыльца, кухни, санузла, а также комнаты для проживания.

При составлении проекта стоит учесть следующее:

  • КРЫЛЬЦО . Включение света производится в двух случая - приближение хозяина к дому в темное время суток и открытие дверей (когда человек выходит из здания).
  • САНУЗЕЛ . В бойлере предусмотрен выключатель питания, который при достижении определенной температуры выключается. Управление бойлером производится в зависимости от наличия соответствующей автоматики. При входе в помещение должна срабатывать вытяжка, и загорается свет.
  • ПРИХОЖАЯ . Здесь требуется включение света при наступлении темноты (автоматическое), а также система обнаружения движения. Ночью включается лампочка небольшой мощности, что исключает дискомфорт для других жильцов дома.
  • КОМНАТА . Включение света производится вручную, но при необходимости и наличии датчика движения эта манипуляция может происходить автоматически.
  • КУХНЯ . Включение и отключение света на кухне осуществляется в ручном режиме. Допускается автоматическое отключение в случае продолжительного отсутствия перемещений по комнате. Если человек начинает готовить пищу, активируется вытяжка.

Отопительные устройства выполняют задачу поддержания необходимой температуры в помещении. Если в доме отсутствуют люди, нижний предел температуры падает до определенного уровня.

После появления людей в здании этот параметр поднимается до прежнего значения. Рекуперация воздуха осуществляется в случае, когда система обнаружила присутствие владельца. Продолжительность процесса - не более 10 минут в час.

Стоит обратить внимание, что если в доме планируется установка , то для управления ими лучше использовать приложения на мобильных устройствах, WIFI или через SMS сообщения.

Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта http://flprog.ru/.

Подбираем комплектацию под проект на примере Arduino Mega 2560 R3

Для создания полноценной системы «Умный дом» и выполнения ею возложенных функций важно правильно подойти к комплектации и выбору оборудования.

Что входит в комплект поставки?

Если ваша цель - «Умный дом» на базе Arduino, требуется подготовить следующее оборудование - саму плату Mega 2560 R3, модуль Ethernet (ENC28J60), датчик движения, а также другие датчики и контроллеры.

Кроме того, стоит подготовить кабель вида «витая пара», резистор, реле, переключатель и кабель для модуля Ethernet.

Необходимы и дополнительные инструменты - отвертки, паяльники и прочее.

Учтите, что покупать наборы для монтажа системы стоит в сертифицированных пунктах. Это объясняется тем, что при реализации проекта применяется электричество, а использование подделки может привести к снижению уровня безопасности.

Все программы для адаптации можно найти в сети на официальном сайте Arduino http://arduino.ru. При выборе датчиков стоит ориентироваться на задачи, которая должен решать «Умный дом».

Как правило, требуются датчики движения, температуры, открытия дверей и освещенности. Роль датчика открытия дверей может выполнять обычный геркон.

Прошивается плата с помощью специального софта, предназначенного для различных операционных систем, в том числе и кабеля USB. При этом в программаторах нет необходимости.

Что касается ПО, которое применяется в Ардуино, оно написано на языке Си. На число байт имеются определенные ограничения, но текущей памяти достаточно для реализации поставленной задачи.

Начало работы

Как только необходимое оборудование подготовлено, а проект разработан, можно приступать к выполнению поставленной задачи.

Этапы

При организации системы «Умный дом» на базе Ардуино, стоит действовать по следующему алгоритму:

  • Инсталляция программного кода;
  • Конфигурация приложения под применяемое устройство;
  • Переадресация портов (для роутера);
  • Проведение тестов;
  • Внесение правок и так далее.

В Сети имеется весь необходимый софт на применяемое оборудование - его достаточно скачать с официального сайта и установить (ссылку смотрите выше).

Приложение позволяет увидеть информацию о датчиках. Если это требуется, настройки IP-адрес могут быть изменены.

Последовательность действий при подключении к компьютеру

Чтобы начать работать с Ардуино в Windows, сделайте следующие шаги:

  • Подготовьте необходимое оборудование - USB-кабель и Arduino.
  • Скачайте программу на странице arduino.cc/en/Main/Software.
  • Подсоедините плату с помощью USB-кабеля. Проследите, чтобы загорелся светодиод PWR.
  • Поставьте необходимый набор драйверов для работы с Ардуино. На этом этапе стоит запустить установку драйвера и дождаться завершения процесса.
    После жмите на кнопку «Пуск» и перейдите в панель управления. Там откройте вкладку «Система и безопасность» и выберите раздел «Система». После открытия окна выберите «Диспетчер устройств», жмите на название Ардуино и с помощью правой кнопки мышки задайте команду обновления драйвера. Найдите строчку «Browse my computer for Driver software!», кликните по ней и выберите соответствующий драйвер для вашего типа платы - ArduinoUNO.inf (находится в папке с драйверами). Это может быть UNO, Mega 2560 или другая.
  • Запустите среду разработки Ардуино, для чего дважды кликните на значок с приложением.
  • Откройте готовый пример (File - Examples - 1.Basics - Blink).
  • Выберите плату. Для этого перейдите в секцию Tools, а дальше в Board Menu.
  • Установите последовательный порт (его можно найти путем отключения и подключения кабеля).
  • Скачайте скетч в Ардуино. Кликните на «Upload» и дождитесь мигания светодиодов TX и RX на плате. В завершение система показывает, что загрузка прошла успешно. Через несколько секунд после завершения работы должен загореться светодиод 13 L (он будет мигать оранжевым). Если это так, система готова к выполнению задач.

Работа с роутером

Для полноценной работы «Умного дома» важно правильно обращаться с роутером. Здесь требуется выполнить следующие действия - открыть конфигурацию, указать адрес Arduino IP, к примеру, 192.168.10.101 и открыть 80-й порт.

После требуется присвоить адресу доменное имя и перейти к процессу тестирования проекта. Учтите, что для такой системы запрещено применение открытого IP-адреса, ведь в этом случае высок риск взлома через Сеть.

Расширение возможности на Ардуино

Одной из возможностей умного дома является визуализация состояния автоматики и проходящих в системе процессов. Для этого рекомендуется применять отдельный сервер, обеспечивающий обработку состояний (может применяться программа Node.js).

Упомянутая программная технология применяется для решения интернет-задач, поэтому для визуализации «Умного дома» используется язык Java Script (именно с его помощью создается обработчик и сервер). Результаты можно увидеть на экране компьютера или ПК.

Для реализации задуманного подойдет ноутбук, обычный ПК или Raspberry Pi. Применение такой системы позволяет увеличить ее возможности. Так, если на плате Ардуино имеется небольшой объем памяти, на сервере такие ограничения отсутствуют. Программа пишется таким образом, чтобы обеспечить полное управление платформой.

При желании можно задать алгоритм, который будет фиксировать факт нахождения человека в доме, и собирать эту информацию. Если владелец ежедневно возвращается где-то к 17.30, за час может быть включен бойлер или отопительные устройства. По приходу домой человек попадает в теплое здание с горячей водой.

Программа может запомнить время, когда владелец ложится отдыхать и отключать нагрев воды. Таких нюансов, которые при необходимости вносятся в программу, множество. Именно наличие внешнего ПК дает большие возможности контроллеру на Ардуино.

Общение с Arduino

Чтобы узнать, какие действия осуществлять, процессор должен получить соответствующую команду. Общение производится с помощью специального языка, который адаптирован под работу с Ардуино и достаточно прост. При желании в нем легко работаться даже при отсутствии навыков программирования.

Оформление и отправка сообщения контроллеру называется программированием. Чтобы упростить процесс, разработана среда Arduino IDE, в состав которой входит множество программ. Их изучение позволяет получить массу полезной информации о работе с Ардуино.

Как можно управлять?

Как отмечалось, сервер Node.js позволяет связать между собой оборудование в доме. Одним из способов управления процессами являются облачные сервисы в Сети. При этом включить отопление или бойлер можно за один-два часа до приезда.

Еще один способ - управление с помощью сообщений (MMS или SMS). Этот вариант актуален в случае, когда нет связи с Интернетом. Одним из преимуществ системы является возможность получения информации о форс-мажорной ситуации (например, протечке). Здесь помогает плата Edison от компании Intel.

В итоге, что мы получим?

Сегодня Arduino востребовано среди людей, которые ничего не знают о программировании.

Причиной этому является простой интерфейс, а также ряд преимуществ - простой язык программирования, возможность создания своего алгоритма, благодаря открытому исходному коду, а также легкость переноса программ с помощью USB-кабеля. Необходимый для Ардуино софт имеется в Интернете, поэтому тут проблем нет.

Как видно, Ардуино - не просто плата, позволяющая подключить различные устройства. Это мощная база, которую можно использовать для создания «Умного дома». При этом нет нужды тратить большие деньги за дорогостоящие устройства, стоимость которых в 5-10 раз больше.

Это и есть основные преимущества системы.

К особенностям платы стоит отнести возможность подключения к компьютеру и получения визуализации процессов на дисплее планшета или ПК.

Управление автоматикой возможно через Интернет или посредством сообщений. Так что Ардуино отлично подходит для создания устройств повышенной сложности.

Умный дом представляет собой специальную систему, которая автоматизирует многие процессы в доме. Например, можно управлять системами отопления, включения освещения в определенные моменты времени, слежение за обстановкой, выполнять контроль состояния инженерных коммуникаций и прочее.

На потребительском рынке предлагается много систем подобного рода, которые имеют широкий набор функций и поддерживают работу с разными и исполнительными приспособлениями. Правда, есть еще возможность самостоятельно создать умный дом своими руками на базе Arduino.

Принцип работы умного дома на базе Ардуино

Система на платформе Ардуино работает аналогично обычной заводской. Она должна включать в свой состав контроллер с процессором, который будет обрабатывать входящие сигналы, и формировать импульсы для управления внешними устройствами.

Схема управления светом с помощью «Умного дома»

В качестве устройств, генерирующих входные сигналы, выступают разного рода датчики, которые контролируют те или иные параметры в помещении. После обработки этих сигналов контроллером, по установленному алгоритму, будет сформирован исполнительный сигнал, передаваемый к внешним устройствам, которые управляют включением электричества, работой отопительной системы, системой безопасности и пр.

Созданный на Arduino умный дом, управляется через Web интерфейс, что позволит удаленно контролировать работу системы с любого устройства, подключенного к интернету. Также поддерживает Arduino GSM управление с помощью обычных мобильных телефонов или смартфонов.

Какие датчики и контролеры можно подключать и как они работают

Основу умного дома на базе Ардуино составляет процессорная плата, представляющая микроконтроллер. Она владеет процессором, который с помощью созданного программного обеспечения обрабатывает данные от датчиков и управляет работой исполнительных устройств.

Чтобы к контроллеру можно было подключить разные функциональные датчики, используются шилды – платы расширения, которые подключают к процессорному модулю, а уже к шилдам подсоединяют требуемое число датчиков. Система из контроллера, расширительных плат и датчиков может функционировать как автономно, так и работать в связке с компьютером посредством проводной или беспроводной связи.

Датчики и компоненты «Умного дома» на базе Arduino

Через шилды к контроллеру можно подключить разные по функциональности датчики.

  1. Сенсоры, которые контролирую параметры и характеристики окружающей среды внутри или вне помещения. Это могут быть , влажности, давления, уровня освещенности наличия осадков.
  2. Сенсоры, которые контролируют пространственную ориентацию объекта, к которому они прикреплены. К ним относятся гироскопы, компасы, акселерометры.
  3. Сенсоры, которые регистрируют наличие подвижных объектов. К ним относятся датчики движения, тепловые датчики УЗ-сенсоры.
  4. Сенсоры контроля аварийных ситуаций. К ним относятся устройства, которые позволяют контролировать целостность инженерных коммуникаций в доме. Датчики выявляют утечку газа, отключения электричества, .

Многие из этих устройств входят в набор Ардуино умный дом, предлагаемый производителями для тех, кто собрался самостоятельно автоматизировать свой дом.

Процесс сборки умного дома

Создание умного дома на базе Arduino чем-то напоминает работу с конструктором Лего. Оно предусматривает подключение нужных датчиков к микропроцессорному контроллеру, программирование созданной системы и подключение ее к средствам управления через глобальную сеть интернет. Рассмотрим более детально каждый из этих процессов.

Подключение всей периферии

Процесс подключения всех модулей и датчиков Arduino очень простой и с ним разберется даже тот человек, который слабо знаком с электроникой. Он представляет собой последовательное подключение к центральному контроллеру датчиков и исполнительных устройств, используя для этого расширительные платы и соединительные проводники.

Прикрепление датчика движения «Умного дома»

Чтобы не запутаться в процессе подключения, нужно предварительно составить детальную схему будущей системы и предусмотреть места, где будет размещен в доме контроллер, функциональные датчики и исполнительные устройства. Наличие такого плана исключит ошибки в подключении и некорректной работы умного дома.

Программирование и отладка

Чтобы умный дом на Ардуино своими руками запрограммировать, нужно знать язык программирования С++ или использовать специальную оболочку Arduino IDE. Первый вариант подходит для продвинутых пользователей, которые знают и могут программировать на этом языке. Второй вариант подойдет для тех, кто только делает первые шаги в программировании алгоритмов для устройств, созданных на платформе Ардуино.

Оболочка Arduino IDE представляет собой упрощенную версию С++. Она имеет встроенный текстовый редактор, менеджер проектов, предпроцессор, компилятор и инструменты, нужные для того, чтобы залить программный код в микропроцессор платы Arduino.

Версии Arduino IDE доступны пользователям для разных операционных систем. Это могут быть Windows, Mac OS X или Linux.

После того, как созданный код залит в микропроцессор можно выполнить отладку системы и проверить насколько эффективно работает взаимодействие между датчиками, контроллером и исполнительными устройствами.

Чтобы система умный дом всегда была под контролем, существуют разные приложения, которые можно установить на свой смартфон. Например, можно закачать и настроить приложение SmartHome.apk. С его помощью можно в любое время получать данные от контроллера умного дома, а также выполнять управление его функциями.

Использование этого приложения позволит контролировать состояние охранной сигнализации, получать от нее уведомления о срабатывании. Настроив частоту опроса датчиков движения, информацию о текущем состоянии помещения можно получать в режиме реального времени.

Сопряжение с интернетом

Умный дом, созданный своими руками на Arduino, может настраиваться и контролироваться через интернет. Для этого сначала следует настроить роутер, который обеспечивает раздачу интернета в доме.

Изначально нужно зайти в раздел настроек роутера и прописать в нем IP-адрес для системы Arduino. Затем выполняется открывание порта 80.

Если есть необходимость в том, чтобы присвоить доменное имя адресу системы умный дом, можно воспользоваться возможностями сервиса https://www.noip.com. После регистрации на этой платформе следует воспользоваться функцией «Add host» и прописать там IP-адрес созданной системы умного дома. После этого доступ можно будет получать, как по IP-адресу, так и по доменному имени.

Схема подключения «Умного дома» на базе Arduino к интернету

Чтобы управлять развернутым на Arduino умным домом можно было с любого места, где есть интернет нужно провести несложную настройку используемого браузера. Для этого в его адресной строке следует набрать следующий код «xxx.xxx.xxx.xxx/all».

Здесь под xxx.xxx.xxx.xxx подразумевают IP-адрес, используемый системой умный дом. После этой процедуры пользователь будет иметь возможность получать информацию от созданной системы автоматизации дома, а также задавать параметры ее работы.

Заключение

На сегодня существует много готовых Ардуино проектов умный дом, которые можно найти в сети интернет. Также можно создать свой собственный проект, который будет максимально подходить под конкретный объект. Системы, построенные на Ардуино, отличаются тем преимуществом, что их всегда можно модернизировать и масштабировать.

Например, можно начать с управления освещением Ардуино, а затем добавлять функциональные датчики, которые будут контролировать движение в помещении, следить за утечкой воды, газа. Чтобы упростить процедуру создания автоматизированной системы в интернет-магазинах можно найти много готовых наборов умный дом Arduino. Они обеспечивают создание базовой конфигурации системы, которую позже можно усовершенствовать под свои требования.

Видео: Умный дом на Arduino

К настоящему времени системы типа «умный дом» из удивительной экзотики, доступной только самым состоятельным лицам, превратились в обыденность, к которой может приобщиться любой желающий. Выбирать есть из чего: выпуск подобных аппаратно-программных комплексов освоили очень многие разработчики. К числу наиболее известных принадлежит компания Arduino, с продукцией которой мы сейчас и познакомимся.

Что такое «умный дом»

У этого термина есть более понятный аналог - «домашняя автоматизация». Суть подобных решений состоит в том, чтобы обеспечить автоматическое выполнение различных процессов, происходящих в жилище, офисе или на специализированных объектах. Простейший пример - автоматическое включение освещения в тот момент, когда кто-то из жильцов входит в комнату.

Система «умный дом» от Arduino представляет собой комплект оборудования для управления работой различных устройств с помощью мобильного телефона на базе ОС Android

В любой системе «умный дом» можно выделить следующие составляющие:

  1. Сенсорная часть. Это набор устройств, основная часть которых представлена всевозможными датчиками, позволяющими системе регистрировать события различного характера. Примерами могут служить датчики температуры и движения. Прочие устройства сенсорной части служат для передачи системе команд пользователя. Это выносные кнопки и пульты дистанционного управления с приёмниками.

    Одним из наиболее часто импользуемых элементов «умного дома» является датчик движения

  2. Исполнительная часть. Это устройства, которыми система может управлять, реагируя таким образом на то или иное событие в соответствии с заданным пользователем сценарием. Прежде всего, это реле, посредством которых контроллер «умного дома» может подавать питание на любой электрический прибор, то есть включать и выключать его. Например, по хлопку в ладони (система «услышит» его при помощи микрофона) можно настроить включение реле, подающего питание на вентилятор. Обратите внимание: в этом примере вентилятор может быть любым. Но можно применить и прибор, специально выпущенный для работы в составе той или иной системы. Например, компания Arduino выпускает для своих систем электромоторчики, при помощи которых можно, допустим, закрывать или открывать форточку, а компания Xiaomi (китайский производитель подобных систем) - устройства управления воздухоочистителем. Такой прибор полностью контролируется системой, то есть она может не только включить его, но и изменить настройки.

    Электромоторчик является исполнительным устройством, которое включается по сигналу контроллера системы и приводит в движение подключённый к нему механизм

  3. Процессор. Может также называться контроллером. Это «мозг» системы, который координирует и согласовывает работу всех её составляющих.

    Плата процессора (или контроллера) управляет исполнительными устройствами на основе встроенной программы и данных, полученных от сенсоров

  4. Программное обеспечение. Это набор инструкций, которыми руководствуется процессор. В системах некоторых производителей, в том числе и от Arduino, пользователь может написать программу самостоятельно, в других - используются готовые решения, в которых пользователю доступны лишь типовые сценарии.

Современные системы «умный дом» делятся на несколько разновидностей:

  1. Оснащённые собственным контроллером.
  2. Использующие в этом качестве процессор пользовательского компьютера (планшета, смартфона).
  3. Обрабатывающие информацию при помощи удалённого сервера, принадлежащего компании-разработчику (облачный сервис).

Система может не только активировать тот или иной прибор, но и проинформировать пользователя о происшедшем событии путём отправки сообщения на телефон или каким-то иным способом. Таким образом, на неё можно возложить функции сигнализации, в том числе и противопожарной.

Сценарии могут быть гораздо более сложными, чем мы описали в примерах. Например, можно научить систему включать бойлер и переводить снабжение горячей водой на него при отключении централизованной подачи, если при этом обнаруживается присутствие кого-то из жильцов в доме (помогают инфракрасные, ультразвуковые датчики, а также датчики движения).

Знакомимся с Arduino

Arduino - итальянская компания, занимающаяся разработкой и производством компонентов и программного обеспечения для простых систем «умный дом», предназначенных для неспециалистов. Примечательным является то, что этот разработчик сделал архитектуру созданных им систем полностью открытой, что дало возможность сторонним производителям разрабатывать новые и копировать уже существующие Arduino-совместимые устройства, а также выпускать ПО для них.

Набор Arduino Uno содержит необходимые компоненты для реализации устройств, описанных в прилагаемой книге

Такой подход обеспечил высокую популярность системам итальянской компании, но у него есть и недостаток: из-за того что за производство компонентов для Arduino-систем берутся, так сказать, все кому не лень, не всегда удаётся с первого раза приобрести качественное изделие. Зачастую приходится сталкиваться и с проблемой совместимости компонентов от разных производителей.

Потенциальному пользователю следует знать, что с 2008 года существуют две компании, выпускающие продукцию под торговой маркой Arduino. У первой, которая начинала это направление, официальный сайт размещён по адресу www.arduino.cc ; у второй, новообразовавшейся - по адресу www.arduino.org. То, что было разработано до раскола, на обоих сайтах представлено одинаково, а вот ассортимент новой продукции уже отличается.

ПО для систем «умный дом» Arduino имеет вид программной оболочки (называется IDE), в которой можно писать и компилировать программы. Распространяется бесплатно. Программы пишутся на языке C++.

Версии программы Arduino IDE, представленные на указанных сайтах, тоже сильно отличаются, хотя имеют одинаковые не только название, но и номера версий. Из-за этого в них довольно легко запутаться. Отличие состоит в том, что каждое ПО поддерживает свои библиотеки и платы.

«Железо» системы состоит из платы с микроконтроллером (процессорная плата) и установленных на ней плат расширения, которые в обиходе называют шилдами. Подключение шилд к процессорной плате позволяет добавлять к «умному дому» новые компоненты. Собранная система может быть как полностью автономной, так и работающей в связке с компьютером через стандартный проводной или беспроводной интерфейс.


На процессорную плату можно устанавливать специальные расширения (шилды), которые увеличивают функциональность системы

Преимущества системы Arduino

Этот аппаратно-программный комплекс привлекает пользователя такими достоинствами:

  • возможность автономной работы, обусловленная наличием собственного контроллера;
  • широкие возможности по настройке работы системы (пользователь сам пишет программу, в которой могут быть предусмотрены сценарии любой сложности);
  • простота процесса загрузки программы в контроллер: программатор для этого не требуется, достаточно иметь USB-кабель (в микроконтроллере имеется прошивка загрузчика Bootloader);
  • доступная стоимость компонентов, обусловленная отсутствием у того или иного производителя монопольных прав (архитектура является открытой).

Если загрузчик Bootloader стал работать со сбоями, либо в приобретённом микроконтроллере его не оказалось, пользователь имеет возможность прошить его самостоятельно. В программной оболочке IDE для этой цели предусмотрена поддержка ряда наиболее доступных и популярных программаторов. Кроме того, почти все процессорные платы Arduino имеют штыревой разъём, позволяющий осуществлять внутрисхемное программирование.

В программе Arduino IDE, представленной на сайте arduino.cc, заложена возможность создания пользовательских аппаратно-программных платформ, в то время как в версии программы на arduino.org такая функция отсутствует.

Какие решения предлагает Arduino

Поскольку производством Arduino-совместимых датчиков и приборов занимается множество компаний, ассортимент этой продукции довольно широк. Вот что применяется чаще всего:

  1. Сенсоры, отслеживающие климатические параметры:
  2. Сенсоры, позволяющие определить пространственное положение объекта, на котором они закреплены:
  3. Сенсоры, позволяющие регистрировать присутствие различных объектов:
  4. Аварийные сенсоры:
  5. Прочие устройства, например:
    • микрофон;
    • часы;
    • датчик открывания двери;
    • пульты дистанционного управления (радиочастотные и инфракрасные) с приёмниками;
    • удалённые кнопки.

Некоторые из этих устройств включены в состав базового набора Arduino Start, который у ряда производителей имеет название StarterKit.


Стартовый набор системы Arduino включает в себя процессорную плату и несколько наиболее часто используемых устройств

Исполнительная часть содержит огромный набор устройств, например:

  • электромоторы;
  • реле и различные переключатели;
  • диммеры (позволяют плавно менять интенсивность освещения);
  • доводчики дверей;
  • вентили и 3-ходовые клапаны с сервоприводами.

Если вы планируете подключить через реле Arduino освещение, то правильнее использовать в качестве светильников светодиодные лампы. Лампы накаливания при подключении через такие реле быстро горят.

Видео: начинаем работать с Arduino - управляем светодиодом через web-интерфейс

Составление проекта на Arduino

Процесс создания и настройки «умного дома» Arduino покажем на примере системы, в которую будут заложены следующие функции:

  • мониторинг температуры на улице и в помещении;
  • отслеживание состояния окна (открыто/закрыто);
  • мониторинг погодных условий (ясно/дождь);
  • генерация звукового сигнала при срабатывании датчика движения, если активирована функция сигнализации.

Систему настроим таким образом, чтобы данные можно было просматривать посредством специального приложения, а также веб-браузера, то есть пользователь сможет сделать это из любого места, где есть доступ в интернет.

Используемые сокращения:

  1. «GND» - заземление.
  2. «VCC» - питание.
  3. «PIR» - датчик движения.

Необходимые компоненты для изготовления системы «умного дома»

Для системы «умного дома» Arduino потребуется следующее:

  • микропроцессорная плата Arduino;
  • модуль Ethernet ENC28J60;
  • два температурных датчика марки DS18B20;
  • микрофон;
  • датчик дождя и снега;
  • датчик движения;
  • переключатель язычковый;
  • реле;
  • резистор сопротивлением 4,7 кОм;
  • кабель «витая пара»;
  • кабель Ethernet.

Стоимость всех компонентов составляет примерно 90 долларов.


Для изготовления системы с необходимыми нам функциями потребуется набор устройств стоимостью около 90 долларов

Сборка «умного дома»: пошаговая инструкция

Вот в какой последовательности необходимо действовать.

Подключение исполнительных и сенсорных устройств

Подключаем все компоненты согласно схеме.


Сборка системы в основном сводится к подключению исполнительных устройств к соответствующим контактам процессорной платы

Разработка программного кода

Пользователь пишет всю программу целиком в оболочке Arduino IDE, для чего последняя оснащена текстовым редактором, менеджером проектов, компилятором, препроцессором и средствами для заливки программного кода в микропроцессор платы Arduino. Разработаны версии IDE для операционных систем Mac OS X, Windows и Linux. Язык программирования - С++ с некоторыми упрощениями. Пользовательские программы для Arduino принято называть скетчами (sketch) или набросками, программа IDE сохраняет их в файлы с расширением «.ino».

Функцию main(), которая в С++ является обязательной, оболочка IDE создаёт автоматически, прописывая в ней ряд стандартных действий. Пользователь должен написать функции setup() (выполняется единоразово во время старта) и loop() (выполняется в бесконечном цикле). Обе эти функции для Arduino являются обязательными.

Заголовочные файлы стандартных библиотек вставлять в программу не нужно - IDE делает это автоматически. К пользовательским библиотекам это не относится - они должны быть указаны.

Добавление библиотек в «Менеджер проекта» IDE осуществляется несколько необычным способом. В виде исходных текстов, написанных на С++, они добавляются в особую папку в рабочем каталоге оболочки IDE. После этого названия этих библиотек появятся в соответствующем меню IDE. Те, что отметит пользователь, будут внесены в список компиляции.

В IDE предусмотрен минимум настроек, а возможность настройки компилятора отсутствует вовсе. Таким образом, начинающий программист застрахован от ошибок.

Вот пример самой простой программы, заставляющей каждые 2 секунды мигать подключённый к 13-му выводу платы светодиод:

void setup () { pinMode (13, OUTPUT); // Назначение 13 вывода Arduino выходом}

void loop () { digitalWrite (13, HIGH); // Включение 13 вывода, параметр вызова функции digitalWrite HIGH - признак высокого логического уровня

delay (1000); // Цикл задержки на 1000 мс - 1 секунду

digitalWrite (13, LOW); // Выключение 13 вывода, параметр вызова LOW - признак низкого логического уровня

delay (1000); // Цикл задержки на 1 секунду}

Однако в настоящий момент перед пользователем далеко не всегда встаёт необходимость лично писать программу: в сети выложено множество готовых библиотек и скетчей (загляните сюда: http://arduino.ru/Reference). Имеется готовая программа и для системы, рассматриваемой в этом примере. Её нужно загрузить, распаковать и импортировать в IDE. Текст программы снабжён комментариями, поясняющими принцип её работы.


Все программы на Arduino работают по одному принципу: пользователь посылает запрос процессору, а тот загружает необходимый код на экран компьютера или смартфона

Когда пользователь нажимает в браузере или установленном на смартфоне приложении кнопку «Refresh» (Обновление), микроконтроллер Arduino осуществляет отсылку данных этому клиенту. С каждой из страниц, обозначенных как «/tempin», «/tempout», «/rain», «/window», «/alarm», поступает программный код, который и отображается на экране.

Установка клиентского приложения на смартфон (для ОС Android)

Для получения данных от системы «умный дом» в сети можно скачать готовое приложение.

Вот что необходимо сделать владельцу гаджета:


С помощью этого приложения можно не только получать информацию от системы «умный дом», но и управлять ею - включать и отключать сигнализацию. Если она включена, то при срабатывании датчика движения приложению будет отправлено уведомление. Опрос системы Arduino на предмет срабатывания датчика движения приложение выполняет с периодичностью раз в минуту.

Активировав иконку «Настройки», можно отредактировать свой IP-адрес.

Настройка браузера на работу с «умным домом»

В адресной строке браузера следует ввести XXX.XXX.XXX.XXX/all, где «XXX.XXX.XXX.XXX» - ваш IP-адрес. После этого появится возможность получать данные от системы и осуществлять управление ею.

Представленный здесь программный код позволяет через браузер включать и выключать свет, тогда как в приложении для Android-смартфона такая функция не реализована.

Работа с роутером


Настройка учётной записи на noip.com

Этот этап не является обязательным, но он необходим, если вы хотите присвоить адресу доменное имя. Для этого надо зарегистрироваться на сайте https://www.noip.com/ , перейти в раздел «Add host» и ввести IP-адрес системы.


После регистрации на сайте noip.com доступ к системе можно получать не только по IP-адресу, но и по полному доменному имени

Создание проекта завершено, можно проверять работоспособность системы.

Видео: умный дом на «Ардуино»

Особенности работы некоторых аппаратных средств Arduino

Ввиду того что Arduino-совместимые компоненты выпускаются множеством сторонних компаний, качество продукции которых сама компания Arduino никак не контролирует, пользователь с большой вероятностью может приобрести компонент, работающий не совсем корректно.

Похожая ситуация сложилась в сфере разработки персональных компьютеров. В своё время компания IBM сделала архитектуру своих компьютеров открытой, вследствие чего IBM-совместимые компьютеры и отдельные компоненты стали выпускать многие компании. В итоге «персоналки» этого типа широко распространились по всему миру, однако, качество комплектующих и степень их совместимости во многих случаях оказывались не на самом высоком уровне. Противоположной тактики придерживалась компания Apple. Она ограничила круг разработчиков, имеющих доступ к архитектуре, и такую же политику провела в сфере разработки ПО. В итоге компьютеры Apple оказались менее распространёнными и более дорогими, но зато по качеству они на порядок превосходят IBM-совместимые устройства, работающие под Windows.

В отношении некоторых комплектующих для систем Arduino пользователи заметили следующее:

  1. Датчик температуры DHT11, поставляемый с базовым набором (StarterKit), даёт значительную погрешность в 2–3 градуса. В помещении рекомендуют применять температурный датчик DHT22, дающий более точные показания, а для установки на улицу - DHT21, способный работать при отрицательных температурах и имеющий защиту от механических повреждений.
  2. На некоторых микропроцессорных платах Arduino при замыкании подключённых к ним реле выходит из строя COM-порт. Из-за этого на микроконтроллер не удаётся загрузить скетч: как только начинается заливка, процессор перезагружается. Реле при этом щёлкает, COM-порт отключается и процесс загрузки скетча прекращается.
  3. Датчик закрытия окна/двери иногда преподносит сюрпризы в виде ложных срабатываний. С учётом этого скетч пишут так, чтобы система производила необходимое действие только по получении нескольких сигналов подряд.
  4. Для настройки управления процессами при помощи хлопков некоторые пользователи по неопытности вместо микрофона заказывают детектор звука с ручной настройкой порога. Для подобных целей этот компонент не подходит, так как имеет слишком малый радиус действия: хлопать приходится не далее 10 см от детектора. Кроме того, этот датчик передаёт сигналы импульсами малой продолжительности, так что при наличии большого скетча, на обработку которого уходит сравнительно много времени, микроконтроллер просто не успевает их зафиксировать.
  5. Для устройства противопожарной сигнализации следует использовать датчик дыма, а не датчик огня. Последний регистрирует пламя не далее 30 см от себя.
  6. На случай сбоя в работе микроконтроллера или ошибки в коде лучше применять нормально замкнутые реле с последовательно подключёнными ручными выключателями.

Чтобы избежать покупки низкокачественных комплектующих, бывалые пользователи рекомендуют предварительно изучать отзывы о них, опубликованные в Сети. Недорогие датчики можно покупать в нескольких вариантах, чтобы лично проверить, какой из них работает лучше.

Возможно, система «умный дом» от компании Arduino является не самой качественной, но зато широчайший выбор компонентов и их доступная стоимость точно сделали её одной из самых популярных. Воспользовавшись нашими советами, вы быстро научитесь создавать проекты Arduino, автоматизируя различные домашние процессы.



2024 stdpro.ru. Сайт о правильном строительстве.