Кислоты общая характеристика классификация свойства. Важнейшие классы неорганических веществ. Оксиды. Гидроксиды. Соли. Кислоты, основания, амфотерные вещества. Важнейшие кислоты и их соли. Генетическая связь важнейших классов неорганических веществ

Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.

Классификация

Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

  • кислородные, содержащие кислород;
  • бескислородные, состоящие только из водорода и неметалла.

Основной список неорганических кислот в соответствии с типом представлен в таблице.

Тип

Название

Формула

Кислородные

Азотистая

Дихромовая

Йодноватая

Кремниевые - метакремниевая и ортокремниевая

H 2 SiO 3 и H 4 SiO 4

Марганцовая

Марганцовистая

Метафосфорная

Мышьяковая

Ортофосфорная

Сернистая

Тиосерная

Тетратионовая

Угольная

Фосфористая

Фосфорноватистая

Хлорноватая

Хлористая

Хлорноватистая

Хромовая

Циановая

Бескислородные

Фтороводородная (плавиковая)

Хлороводородная (соляная)

Бромоводородная

Йодоводородная

Сероводородная

Циановодородная

Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

  • растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
  • летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
  • степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).

Рис. 1. Схема классификации кислот.

Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

Получение

Основные методы получения кислот представлены в таблице.

Свойства

Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

Рис. 2. Хромовая кислота.

Кислоты - активные вещества, реагирующие:

  • с металлами:

    Ca + 2HCl = CaCl 2 + H 2 ;

  • с оксидами:

    CaO + 2HCl = CaCl 2 + H 2 O;

  • с основанием:

    H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;

  • с солями:

    Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.

Все реакции сопровождаются образованием солей.

Возможна качественная реакция с изменением цвета индикатора:

  • лакмус окрашивается в красный;
  • метил оранж - в розовый;
  • фенолфталеин не меняется.

Рис. 3. Цвета индикаторов при взаимодействии кислоты.

Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

Что мы узнали?

Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 120.

Классификация неорганических веществ с примерами соединений

Теперь проанализируем представленную выше классификационную схему более детально.

Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные :

Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H 2 , кислород O 2 , железо Fe, углерод С и т.д.

Среди простых веществ различают металлы , неметаллы и благородные газы:

Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.

Благородные газы образованы химическими элементами VIIIA группы.

Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:

Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O 2 и O 3 . Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O 3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.

Сложные вещества

Сложными веществами называют вещества, образованные атомами двух или более химических элементов.

Так, например, сложными веществами являются аммиак NH 3 , серная кислота H 2 SO 4 , гашеная известь Ca(OH) 2 и бесчисленное множество других.

Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:

Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.

Общая формула оксидов может быть записана как Э x O y , где Э — символ какого-либо химического элемента.

Номенклатура оксидов

Название оксида химического элемента строится по принципу:

Например:

Fe 2 O 3 — оксид железа (III); CuO — оксид меди (II); N 2 O 5 — оксид азота (V)

Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N 2 O 5 равна +5, а валентность, как это ни странно, равна четырем.

В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:

Na 2 O — оксид натрия; H 2 O — оксид водорода; ZnO — оксид цинка.

Классификация оксидов

Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие .

Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N 2 O, NO.

Солеобразующие оксиды в свою очередь подразделяются на основные , кислотные и амфотерные .

Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.

Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N 2 O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).

Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.

Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr 2 O 3 и кислотный оксид CrO 3 .

Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.

Основания

Основания — соединения с формулой вида Me(OH) x , где x чаще всего равен 1 или 2.

Классификация оснований

Основания классифицируют по количеству гидроксогрупп в одной структурной единице.

Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH) 2 , соответственно, двухкислотными и т.д.

Также основания подразделяют на растворимые (щелочи) и нерастворимые.

К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.

Номенклатура оснований

Название основания строится по нижеследующему принципу:

Например:

Fe(OH) 2 — гидроксид железа (II),

Cu(OH) 2 — гидроксид меди (II).

В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:

NaOH — гидроксид натрия,

Ca(OH) 2 — гидроксид кальция и т.д.

Кислоты

Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.

Общая формула кислот может быть записана как H x A, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.

Например, к кислотам относятся такие соединения, как H 2 SO 4 , HCl, HNO 3 , HNO 2 и т.д.

Классификация кислот

По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:

— одноосновные кислоты : HF, HCl, HBr, HI, HNO 3 ;

— двухосновные кислоты : H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;

— трехосновные кислоты : H 3 PO 4 , H 3 BO 3 .

Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH 3 COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.

Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H 2 SO 4 , HNO 3 , H 3 PO 4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами .

Более детально про классификацию кислот можно почитать .

Номенклатура кислот и кислотных остатков

Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.

В некоторых случаях облегчить запоминание может ряд следующих правил.

Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:

Например:

HF — фтороводородная кислота;

HCl — хлороводородная кислота;

H 2 S — сероводородная кислота.

Названия кислотных остатков бескислородных кислот строятся по принципу:

Например, Cl — — хлорид, Br — — бромид.

Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:

Например, серная кислота H 2 S +6 O 4 , хромовая кислота H 2 Cr +6 O 4 .

Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:

Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.

Амфотерные гидроксиды

Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.

Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).

Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 , несмотря на степень окисления металла в них +2.

Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH) 3 или мета-форме AlO(OH) (метагидроксид).

Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:

Соли

Так, например, к солям относятся такие соединения как KCl, Ca(NO 3) 2 , NaHCO 3 и т.д.

Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH 4) 2 SO 4 (сульфат аммония), + Cl — (хлорид метиламмония) и т.д.

Классификация солей

С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.

При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na 2 SO 4 , а при полном замещении гидроксид-ионов в основании Ca(OH) 2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO 3) 2 .

Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO 4 .

Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют осно вными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH) 2 на нитрат-ионы образуется осно вная соль Ca(OH)NO 3 .

Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями . Так, например, двойными солями являются KNaCO 3 , KMgCl 3 и т.д.

Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.

Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na 2 и Na соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H 2 не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение OH, т.к. данное соединение состоит из катионов + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.

Номенклатура солей

Номенклатура средних и кислых солей

Название средних и кислых солей строится по принципу:

Если степень окисления металла в сложных веществах постоянная, то ее не указывают.

Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.

Например,

Na 2 SO 4 — сульфат натрия;

NaHSO 4 — гидросульфат натрия;

CaCO 3 — карбонат кальция;

Ca(HCO 3) 2 — гидрокарбонат кальция и т.д.

Номенклатура основных солей

Названия основных солей строятся по принципу:

Например:

(CuOH) 2 CO 3 — гидроксокарбонат меди (II);

Fe(OH) 2 NO 3 — дигидроксонитрат железа (III).

Номенклатура комплексных солей

Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.

Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:

*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Na 3 криолит
SiO 2 кварц, кремнезем
FeS 2 пирит, железный колчедан
CaSO 4 ∙2H 2 O гипс
CaC2 карбид кальция
Al 4 C 3 карбид алюминия
KOH едкое кали
NaOH едкий натр, каустическая сода
H 2 O 2 перекись водорода
CuSO 4 ∙5H 2 O медный купорос
NH 4 Cl нашатырь
CaCO 3 мел, мрамор, известняк
N 2 O веселящий газ
NO 2 бурый газ
NaHCO 3 пищевая (питьевая) сода
Fe 3 O 4 железная окалина
NH 3 ∙H 2 O (NH 4 OH) нашатырный спирт
CO угарный газ
CO 2 углекислый газ
SiC карборунд (карбид кремния)
PH 3 фосфин
NH 3 аммиак
KClO 3 бертолетова соль (хлорат калия)
(CuOH) 2 CO 3 малахит
CaO негашеная известь
Ca(OH) 2 гашеная известь
прозрачный водный раствор Ca(OH) 2 известковая вода
взвесь твердого Ca(OH) 2 в его водном растворе известковое молоко
K 2 CO 3 поташ
Na 2 CO 3 кальцинированная сода
Na 2 CO 3 ∙10H 2 O кристаллическая сода
MgO жженая магнезия

Рассмотрим наиболее часто встречающиеся в учебной литературе формулы кислот:

Легко заметить, что объединяет все формулы кислот наличие атомов водорода (H), стоящего на первом месте в формуле.

Определение валентности кислотного остатка

Из приведённого списка видно, что количество этих атомов может отличаться. Кислоты, в составе которых есть всего один атом водорода, называют одноосновными (азотная, соляная и другие). Серная, угольная, кремниевая кислоты — двухосновные, так как в их формулах по два атома H. Молекула трёхосновной фосфорной кислоты содержит три водородных атома.

Таким образом, количество H в формуле характеризует основность кислоты.

Тот атом, или группа атомов, которые записаны после водорода, называют кислотными остатками. Например, в сероводородной кислоте остаток состоит из одного атома — S, а в фосфорной, сернистой и многих других — из двух, причём один из них обязательно кислород (O). По этому признаку все кислоты делят на кислородсодержащие и бескислородные.

Каждый кислотный остаток обладает определённой валентностью. Она равна количеству атомов Н в молекуле этой кислоты. Валентность остатка HCl равна единице, так как это одноосновная кислота. Такую же валентность имеют остатки азотной, хлорной, азотистой кислот. Валентность остатка серной кислоты (SO 4) равна двум, так как атомов водорода в ее формуле два. Трехвалентен остаток фосфорной кислоты.

Кислотные остатки — анионы

Помимо валентности, кислотные остатки обладают зарядами и являются анионами. Их заряды указаны в таблице растворимости: CO 3 2− , S 2− , Cl − и так далее. Обратите внимание: заряд кислотного остатка численно совпадает с его валентностью. Например, в кремниевой кислоте, формула которой H 2 SiO 3 , кислотный остаток SiO 3 имеет валентность, равную II, и заряд 2-. Таким образом, зная заряд кислотного остатка, легко определить его валентность и наоборот.

Подведём итог. Кислотами — соединения, образованные атомами водорода и кислотными остатками. С точки зрения теории электролитической диссоциации можно дать другое определение: кислоты — электролиты, в растворах и расплавах которых присутствуют катионы водорода и анионы кислотных остатков.

Подсказки

Химические формулы кислот, как правило, заучивают наизусть, как и их названия. Если вы забыли, сколько атомов водорода в той или иной формуле, но знаете, как выглядит ее кислотный остаток, на помощь вам придёт таблица растворимости. Заряд остатка совпадает по модулю с валентностью, а та — с количеством H. К примеру, вы помните, что остаток угольной кислоты — CO 3 . По таблице растворимости определяете, что его заряд 2-, значит, он двухвалентен, то есть угольная кислота имеет формулу H 2 CO 3 .

Часто возникает путаница с формулами серной и сернистой, а также азотной и азотистой кислот. Здесь тоже есть один момент, облегчающий запоминание: название той кислоты из пары, в которой атомов кислорода больше, заканчивается на -ная (серная, азотная). Кислота с меньшим количеством атомов кислорода в формуле, имеет название, заканчивающееся на -истая (сернистая, азотистая).

Однако эти подсказки помогут лишь в том случае, если формулы кислот вам знакомы. Повторим их ещё раз.

Кислоты - электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :

HNO 3 ↔ H + + NO 3 — ;

CH 3 COOH↔ H + +CH 3 COO — .

Все кислоты классифицируют на неорганические и органические (карбоновые), которые также имеют свои собственные (внутренние) классификации.

При нормальных условияхзначительное количество неорганических кислот существуют в жидком состоянии, некоторые - в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).

Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода — маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода— твёрдые вещества, нерастворимые в воде.

Химические формулы кислот

Химические формулы кислот рассмотрим на примере нескольких представителей (как неорганических, так и органических): хлороводородной кислоте -HCl, серной кислоте - H 2 SO 4 , фосфорной кислоте — H 3 PO 4 , уксусной кислоте - CH 3 COOH и бензойной кислоте - C 6 H 5 COOH. Химическая формула показывает качественный и количественный состав молекулы (сколько и каких атомов входит в конкретное соединение) По химической формуле можно вычислить молекулярную массу кислот (Ar(H) = 1 а.е.м., Ar(Cl) = 35,5 а.е.м., Ar(P) = 31 а.е.м., Ar(O) = 16 а.е.м., Ar(S) = 32 а.е.м., Ar(C) = 12 а.е.м.):

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);

Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.

Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);

Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.

Mr(CH 3 COOH) = 3×Ar(С) + 4×Ar(H) + 2×Ar(O);

Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.

Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);

Mr(C 6 H 5 COOH) = 7×12 + 6×1 + 2×16 = 84 + 6 + 32 = 122.

Структурные (графические) формулы кислот

Структурная (графическая) формула вещества является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы. Укажем структурные формулы каждого из вышеуказанных соединений:

Рис. 1. Структурная формула хлороводородной кислоты.

Рис. 2. Структурная формула серной кислоты.

Рис. 3. Структурная формула фосфорной кислоты.

Рис. 4. Структурная формула уксусной кислоты.

Рис. 5. Структурная формула бензойной кислоты.

Ионные формулы

Все неорганические кислоты являются электролитами, т.е. способны диссоциировать в водном растворе на ионы:

HCl ↔ H + + Cl — ;

H 2 SO 4 ↔ 2H + + SO 4 2- ;

H 3 PO 4 ↔ 3H + + PO 4 3- .

Примеры решения задач

ПРИМЕР 1

Задание При полном сгорании 6 г органического вещества образовалось 8,8 г оксида углерода (IV) и 3,6 г воды. Определите молекулярную формулу сожженного вещества, если известно, что его молярная масса равна 180 г/моль.
Решение Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у»и «z» соответственно:

C x H y O z + O z →CO 2 + H 2 O.

Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м.

m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C);

m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H);

Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m(C) = ×12 = 2,4 г;

m(H) = 2×3,6 / 18 ×1= 0,4 г.

m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2,4 - 0,4 = 3,2 г.

Определим химическую формулу соединения:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z= 2,4/12:0,4/1:3,2/16;

x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1.

Значит простейшая формула соединения CH 2 Oи молярную массу 30 г/моль .

Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс:

M substance / M(CH 2 O) = 180 / 30 = 6.

Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C 6 H 12 O 6 . Это глюкоза или фруктоза.

Ответ C 6 H 12 O 6

ПРИМЕР 2

Задание Выведите простейшую формулу соединения, в котором массовая доля фосфора составляет 43,66%, а массовая доля кислорода - 56,34%.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов фосфора в молекуле через «х», а число атомов кислорода через «у»

Найдем соответствующие относительные атомные массы элементов фосфора и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(P) = 31; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = ω(P)/Ar(P) : ω (O)/Ar(O);

x:y = 43,66/31: 56,34/16;

x:y: = 1,4: 3,5 = 1: 2,5 = 2: 5.

Значит простейшая формула соединения фосфора и кислорода имеет вид P 2 O 5 . Это оксид фосфора (V).

Ответ P 2 O 5

Кислоты - это такие химические соединения, которые способны отдавать электрически заряженный ион (катион) водорода, а также принимать два взаимодействущих электрона, вследствие чего образуется ковалентная связь.

В данной статье мы рассмотрим основные кислоты, которые изучают в средних классах общеобразовательных школ, а также узнаем множество интересных фактов о самых разных кислотах. Приступим.

Кислоты: виды

В химии существует множество самых разнообразных кислот, которые имеют самые разные свойства. Химики различают кислоты по содержанию в составе кислорода, по летучести, по растворимости в воде, силе, устойчивости, принадлежности к органическому или неорганическому классу химических соединений. В данной статье мы рассмотрим таблицу, в которой представлены самые известные кислоты. Таблица поможет запомнить название кислоты и ее химическую формулу.

Итак, все наглядно видно. В данной таблице представлены самые известные в химической промышленности кислоты. Таблица поможет намного быстрее запомнить названия и формулы.

Сероводородная кислота

H 2 S - это сероводородная кислота. Ее особенность заключается в том, что она еще и является газом. Сероводород очень плохо растоворяется в воде, а также взаимодействует с очень многими металлами. Сероводородная кислота относится к группе "слабые кислоты", примеры которых мы рассмотрим в данной статье.

H 2 S имеет немного сладковатый вкус, а также очень резкий запах тухлых яиц. В природе ее можно встретить в природном или вулканическом газах, а также она выделяется при гниении белка.

Свойства кислот очень разнообразны, даже если кислота незаменима в промышленности, то может быть очень неполезна для здоровья человека. Данная кислота очень токсична для человека. При вдыхании небольшого количество сероводорода у человека пробуждается головная боль, начинается сильная тошнота и головокружение. Если же человек вдохнет большое количество H 2 S, то это может привести к судорогам, коме или даже мгновенной смерти.

Серная кислота

H 2 SO 4 - это сильная серная кислота, с которой дети знакомятся на уроках химии еще в 8-м классе. Химические кислоты, такие как серная, являются очень сильными окислителями. H 2 SO 4 действует как окислитель на очень многие металлы, а также основные оксиды.

H 2 SO 4 при попадании на кожу или одежду вызывает химические ожоги, однако она не так токсична, как сероводород.

Азотная кислота

В нашем мире очень важны сильные кислоты. Примеры таких кислот: HCl, H 2 SO 4 , HBr, HNO 3 . HNO 3 - это всем известная азотная кислота. Она нашла широкое применение в промышленности, а также в сельском хозяйстве. Ее используют для изготовления различных удобрений, в ювелирном деле, при печати фотографий, в производстве лекарственных препаратов и красителей, а также в военной промышленности.

Такие химические кислоты, как азотная, являются очень вредными для организма. Пары HNO 3 оставляют язвы, вызывают острые воспаления и раздражения дыхательных путей.

Азотистая кислота

Азотистую кислоту очень часто путают с азотной, но разница между ними есть. Дело в том, что намного слабее азотной, у нее совершенно другие свойства и действие на организм человека.

HNO 2 нашла широкое применение в химической промышленности.

Плавиковая кислота

Плавиковая кислота (или фтороводород) - это раствор H 2 O c HF. Формула кислоты - HF. Плавиковая кислота очень активно используется в алюминиевой промышленности. Ею растворяют силикаты, травят кремний, силикатное стекло.

Фтороводород является очень вредным для организма человека, в зависимости от его концентрации может быть легким наркотиком. При попадании на кожу сначала никаких изменений, но уже через несколько минут может появиться резкая боль и химический ожог. Плавиковая кислота очень вредна для окружающего мира.

Соляная кислота

HCl - это хлористый водород, является сильной кислотой. Хлористый водород сохраняет свойства кислот, относящихся к группе сильных. На вид кислота прозрачна и бесцветна, а на воздухе дымится. Хлористый водород широко применяется в металлургической и пищевой промышленностях.

Данная кислота вызывает химические ожоги, но особо опасно ее попадание в глаза.

Фосфорная кислота

Фосфорная кислота (H 3 PO 4) - это по своим свойствам слабая кислота. Но даже слабые кислоты могут иметь свойства сильных. Например, H 3 PO 4 используют в промышленности для восстановления железа из ржавчины. Помимо этого, форсфорная (или ортофосфорная) кислота широко используется в сельском хозяйстве - из нее изготавливают множество разнообразных удобрений.

Свойства кислот очень схожи - практически каждая из них очень вредна для организма человека, H 3 PO 4 не является исключением. Например, эта кислота также вызывает сильные химические ожоги, кровотечения из носа, а также крошение зубов.

Угольная кислота

H 2 CO 3 - слабая кислота. Ее получают при растворении CO 2 (углекислый газ) в H 2 O (вода). Угольную кислоту используют в биологии и биохимии.

Плотность различных кислот

Плотность кислот занимает важное место в теоретической и практической частях химии. Благодаря знанию плотности можно определить концентрацию той или иной кислоты, решить расчетные химические задачи и добавить правильное количество кислоты для совершения реакции. Плотность любой кислоты меняется в зависимости от концентрации. Например, чем больше процент концентрации, тем больше и плотность.

Общие свойства кислот

Абсолютно все кислоты являются (то есть состоят из нескольких элементов таблицы Менделеева), при этом обязательно включают в свой состав H (водород). Далее мы рассмотрим которые являются общими:

  1. Все кислородсодержащие кислоты (в формуле которых присутствует O) при разложении образуют воду, а также А бескислородные при этом разлагаются на простые вещества (например, 2HF разлагается на F 2 и H 2).
  2. Кислоты-окислители взаимодействуют со всеми металлами в ряду активности металлов (только с теми, которые расположены слева от H).
  3. Взаимодействуют с различными солями, но только с теми, которые были образованы еще более слабой кислотой.

По своим физическим свойствам кислоты резко отличаются друг от друга. Ведь они могут иметь запах и не иметь его, а также быть в самых разных агрегатных состояниях: жидких, газообразных и даже твердых. Очень интересны для изучения твердые кислоты. Примеры таких кислот: C 2 H 2 0 4 и H 3 BO 3 .

Концентрация

Концентрацией называют величину, которая определяет количественный состав любого раствора. Например, химикам часто необходимо определить то, сколько в разбавленной кислоте H 2 SO 4 находится чистой серной кислоты. Для этого они наливают небольшое количество разбавленной кислоты в мерный стакан, взвешивают и определяют концентрацию по таблице плотности. Концентрация кислот узко взаимосвязана с плотностью, часто на определение концетрации встречаются расчетные задачи, где нужно определить процентное количество чистой кислоты в растворе.

Классификация всех кислот по количеству атомов H в их химической формуле

Одной из самых популярных классификаций является разделение всех кислот на одноосновные, двухосновные и, соответственно, трехосновные кислоты. Примеры одноосновных кислот: HNO 3 (азотная), HCl (хлороводородная), HF (фтороводородная) и другие. Данные кислоты называются одноосновными, так как в их составе присутствует всего лишь один атом H. Таких кислот множество, абсолютно каждую запомнить невозможно. Нужно лишь запомнить, что кислоты классифицируют и по количеству атомов H в их составе. Аналогично определяются и двухосновные кислоты. Примеры: H 2 SO 4 (серная), H 2 S (сероводородная), H 2 CO 3 (угольная) и другие. Трехосновные: H 3 PO 4 (фосфорная).

Основная классификация кислот

Одной из самых популярных классификаций кислот является разделение их на кислородосодержащие и бескислородные. Как запомнить, не зная химической формулы вещества, что это кислота кислородосодержащая?

У всех бескислородных кислот в составе отсутствует важный элемент O - кислород, но зато в составе есть H. Поэтому к их названию всегда приписывается слово "водородная". HCl - это a H 2 S - сероводородная.

Но и по названиям кислосодержащих кислот можно написать формулу. Например, если число атомов O в веществе - 4 или 3, то к названию всегда прибавляется суффикс -н-, а также окончание -ая-:

  • H 2 SO 4 - серная (число атомов - 4);
  • H 2 SiO 3 - кремниевая (число атомов - 3).

Если же в веществе меньше трех атомов кислорода или три, то в названии используется суффикс -ист-:

  • HNO 2 - азотистая;
  • H 2 SO 3 - сернистая.

Общие свойства

Все кислоты имеют вкус кислый и часто немного металлический. Но есть и другие схожие свойства, которые мы сейчас рассмотрим.

Есть такие вещества, которые называются индикаторами. Индикаторы изменяют свой цвет, или же цвет остается, но меняется его оттенок. Это происходит в то время, когда на индикаторы действуют какие-то другие вещества, например кислоты.

Примером изменения цвета может служить такой привычный многим продукт, как чай, и лимонная кислота. Когда в чай бросают лимон, то чай постепенно начинает заметно светлеть. Это происходит из-за того, что в лимоне содержится лимонная кислота.

Существуют и другие примеры. Лакмус, который в нейтральной среде имеет сиреневый цвет, при добавлении соляной кислоты становится красным.

При находящимися в ряду напряженности до водорода, выделяются пузырьки газа - H. Однако если в пробирку с кислотой поместить металл, который находится в ряду напряженности после H, то никакой реакции не произойдет, выделения газа не будет. Так, медь, серебро, ртуть, платина и золото с кислотами реагировать не будут.

В данной статье мы рассмотрели самые известные химические кислоты, а также их главные свойства и различия.



2024 stdpro.ru. Сайт о правильном строительстве.