Примеры по отрицательным числам. Отрицательные числа

Правило сложения отрицательных чисел

Если вспомнить урок математики и тему «Сложение и вычитание чисел с разными знаками», то для сложения двух отрицательных чисел необходимо:

  • выполнить сложение их модулей;
  • дописать к полученной сумме знак «–».

Согласно правилу сложения можно записать:

$(−a)+(−b)=−(a+b)$.

Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.

Пример 1

Сложить отрицательные числа $−185$ и $−23 \ 789.$

Решение .

Воспользуемся правилом сложения отрицательных чисел.

Найдем модули данных чисел:

$|-23 \ 789|=23 \ 789$.

Выполним сложение полученных чисел:

$185+23 \ 789=23 \ 974$.

Поставим знак $«–»$ перед найденным числом и получим $−23 \ 974$.

Краткая запись решения: $(−185)+(−23 \ 789)=−(185+23 \ 789)=−23 \ 974$.

Ответ : $−23 \ 974$.

При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.

Пример 2

Сложить отрицательные числа $-\frac{1}{4}$ и $−7,15$.

Решение.

Согласно правилу сложения отрицательных чисел, сначала необходимо найти сумму модулей:

$|-\frac{1}{4}|=\frac{1}{4}$;

Полученные значения удобно свести к десятичным дробям и выполнить их сложение:

$\frac{1}{4}=0,25$;

$0,25+7,15=7,40$.

Поставим перед полученным значением знак $«–»$ и получим $–7,4$.

Краткая запись решения:

$(-\frac{1}{4})+(−7,15)=−(\frac{1}{4}+7,15)=–(0,25+7,15)=−7,4$.

Для сложения положительного и отрицательного числа необходимо:

  1. вычислить модули чисел;
  2. выполнить сравнение полученных чисел:

    • если они равны, то исходные числа являются противоположными и их сумма равна нулю;
    • если они не равны, то нужно запомнить знак числа, у которого модуль больше;
  3. из большего модуля вычесть меньший;

  4. перед полученным значением поставить знак того числа, у которого модуль больше.

Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.

Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.

Пример 3

Сложить числа $4$ и $−8$.

Решение.

Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.

Найдем модули данных чисел:

Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.

Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$

Краткая запись решения:

$4+(–8) = –(8–4) = –4$.

Ответ : $4+(−8)=−4$.

Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.

Вычитание чисел с разными и отрицательными знаками

Правило вычитания отрицательных чисел:

Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.

Согласно правилу вычитания можно записать:

$a−b=a+(−b)$.

Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.

Пример 4

Вычесть из отрицательного числа $−28$ отрицательное число $−5$.

Решение.

Противоположное число для числа $–5$ – это число $5$.

Согласно правилу вычитания отрицательных чисел получим:

$(−28)−(−5)=(−28)+5$.

Выполним сложение чисел с противоположными знаками:

$(−28)+5=−(28−5)=−23$.

Ответ : $(−28)−(−5)=−23$.

При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.

Сложение и вычитание чисел с разными знаками

Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.

Пример 5

Вычесть положительное число $7$ из отрицательного числа $−11$.

Решение.

Противоположное число для числа $7$ – это число $–7$.

Согласно правилу вычитания чисел с противоположными знаками получим:

$(−11)−7=(–11)+(−7)$.

Выполним сложение отрицательных чисел:

$(−11)+(–7)=−(11+7)=−18$.

Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

Ответ : $(−11)−7=−18$.

При вычитании дробных чисел с разными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.

Повторяем! -7 + (-9). -7 + (-9) = - 16. Чтобы сложить два отрицательных числа, надо: 1. Найти модули этих чисел. 2. Перед полученным результатом поставить знак «минус». I-7I + I-9I = 7+9 =16.

Слайд 3 из презентации «Сложение и вычитание чисел с разными знаками» . Размер архива с презентацией 333 КБ.

Математика 6 класс

краткое содержание других презентаций

«Сложение и вычитание чисел с разными знаками» - Выполните сложение. Учебный материал. Верное равенство. Самостоятельная работа. Сложить два отрицательных числа. Вычитаемое. Найдите соответствующие части утверждений. Найти модули. Выполните вычитание. Cложение и вычитание чисел с разными знаками.

«Прямая и обратная пропорциональные зависимости» - Частное величин. Пропорциональные зависимости. Зависимости. Условие постоянства. Определение обратно пропорциональных величин. Прямая и обратная пропорциональные зависимости. Два значения величины. Прямоугольные треугольники. Возьмём конкретное значение a. Свойство прямо пропорциональных величин. Произведения. Прямо пропорциональные величины. Пропорциональные величины. Примеры обратно пропорциональных величин.

«Нахождение наибольшего общего делителя» - Найдите ошибку. Наибольший общий делитель чисел. Разложение на простые множители. Простое число. Общее число. Задача. Что неверно. Самостоятельная работа. Проверка самостоятельной работы. Наибольший общий делитель.

«Сложение с разными знаками» - Решение. Какие числа называются отрицательными. Правила сложения чисел с разными знаками. Игра в кости. Как сравнить десятичные дроби. Рассмотрим следующие задачи. Сложение чисел с разными знаками. Устная работа. Прибыль. Когда возникли отрицательные числа. Вычислить устно.

««Устный счёт» 6 класс математика» - Проверочная работа. Самостоятельная работа. Среди чисел найдите, которые делятся на 2 и 5. Устный счет. Найдите НОД. Математический лабиринт. Устный счет (по цепочке). НОД. Вычислите. Найдите среднее арифметическое. Счет. Упростите. Равны ли дроби. Делители числа 45.

««Распределительное свойство умножения» 6 класс» - Алгоритм умножения. Сложение и вычитание дробей. Проверка домашнего задания. Решить уравнение. Нахождение дроби от числа. Квадрат. Сокращение дроби. Проверочная работа. Сегодня на уроке. Решение. Смешанное число. Распределительное свойство. Задача. Умножение обыкновенных дробей. Основание. Распределительное свойство умножения. Перевод обыкновенной дроби в десятичную. Нахождение процентов от числа.

В рамках этого материала мы затронем такую важную тему, как сложение отрицательных чисел. В первом параграфе мы расскажем основное правило для этого действия, а во втором – разберем конкретные примеры решения подобных задач.

Yandex.RTB R-A-339285-1

Основное правило сложения натуральных чисел

Перед тем, как вывести правило, вспомним, что мы вообще знаем о положительных и отрицательных числах. Ранее мы условились, что отрицательные числа нужно воспринимать как долг, убыток. Модуль отрицательного числа выражает точные размеры этого убытка. Тогда сложение отрицательных чисел можно представить как сложение двух убытков.

Воспользовавшись этим рассуждением, сформулируем основное правило сложения отрицательных чисел.

Определение 1

Для того чтобы выполнить сложение отрицательных чисел , нужно сложить значения их модулей и поставить минус перед полученным результатом. В буквенном виде формула выглядит как (− a) + (− b) = − (a + b) .

Исходя из этого правила, можно сделать вывод, что сложение отрицательных чисел аналогично сложению положительных, только в итоге у нас обязательно должно получиться отрицательное число, ведь перед суммой модулей надо ставить знак минус.

Какие можно привести доказательства этого правила? Для этого нам потребуется вспомнить основные свойства действий с действительными числами (или с целыми, или с рациональными –они одинаковы для всех этих типов чисел). Для доказательства нам нужно всего лишь продемонстрировать, что разность левой и правой части равенства (− a) + (− b) = − (a + b) будет равна 0 .

Вычесть одно число из другого – это то же самое, что и прибавить к нему такое же противоположное число. Следовательно, (− a) + (− b) − (− (a + b)) = (− a) + (− b) + (a + b) . Вспомним, что числовые выражения со сложением обладают двумя основными свойствами – сочетательным и переместительным. Тогда мы можем сделать вывод, что (− a) + (− b) + (a + b) = (− a + a) + (− b + b) . Поскольку, сложив противоположные числа, мы всегда получаем 0 , то (− a + a) + (− b + b) = 0 + 0 , а 0 + 0 = 0 .Наше равенство можно считать доказанным, значит, и правило сложения отрицательных чисел мы тоже доказали.

Во втором параграфе мы возьмем конкретные задачи, где нужно складывать отрицательные числа, и попробуем применить в них изученное правило.

Пример 1

Найдите сумму двух отрицательных чисел - 304 и - 18 007 .

Решение

Выполним действия пошагово. Сначала нам надо найти модули складываемых чисел: - 304 = 304 , - 180007 = 180007 . Далее нам нужно выполнить действие сложения, для чего мы используем метод подсчета столбиком:

Все, что нам осталось, – это поставить минус перед результатом и получить - 18 311 .

Ответ: - - 18 311 .

От того, какие у нас числа, зависит, к чему мы можем свести действие сложения: к нахождению суммы натуральных чисел, к сложению обыкновенных или десятичных дробей. Разберем задачу с такими числами.

Пример N

Найдите сумму двух отрицательных чисел - 2 5 и − 4 , (12) .

Решение

Находим модули искомых чисел и получаем 2 5 и 4 , (12) . У нас получились две разные дроби. Сведем задачу к сложению двух обыкновенных дробей, для чего представим периодическую дробь в виде обыкновенной:

4 , (12) = 4 + (0 , 12 + 0 , 0012 + . . .) = 4 + 0 , 12 1 - 0 , 01 = 4 + 0 , 12 0 , 99 = 4 + 12 99 = 4 + 4 33 = 136 33

В итоге мы получили дробь, которую будет легко сложить с первым исходным слагаемым (если вы забыли, как правильно складывать дроби с разными знаменателями, повторите соответствующий материал).

2 5 + 136 33 = 2 · 33 5 · 33 + 136 · 5 33 · 5 = 66 165 + 680 165 = 764 165 = 4 86 105

В итоге мы получили смешанное число, перед которым нам осталось только поставить минус. На этом расчеты завершены.

Ответ: - 4 86 105 .

Действительные отрицательные числа складываются аналогичным образом. Результат такого действия принято записывать числовым выражением. Его значение можно и не вычислять или ограничиться примерными расчетами. Так, к примеру, если нам надо найти сумму - 3 + (− 5) , то ответ мы записываем как - 3 − 5 . Сложению действительных чисел мы посвятили отдельный материал, в котором можно найти и другие примеры.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



2025 stdpro.ru. Сайт о правильном строительстве.