Русские нобелевские лауреаты по физике. Реферат: «Российские физики лауреаты Нобелевской премии. Лирическое введение в физику конденсированных сред

Райнер Вайсс, Барри Бэриш и Кип Торн

Шведская королевская академия наук объявила лауреатов Нобелевской премии по физике 2017 года. Премия будет вручена Райнеру Вайссу (половина премии), Барри Бэришу и Кипу Торну с формулировкой «за решающий вклад в детектор LIGO и за наблюдение гравитационных волн». Официальное вручение премий и медалей состоится в декабре, после прочтения традиционных лекций. Прямая трансляция объявления победителя велась на сайте Нобелевского комитета.

Вайсс, Торн и Бэриш считались одними из самых вероятных кандидатов на Нобелевскую премию по физике с 2016 года, когда коллаборации LIGO и VIRGO об обнаружении гравитационных волн от слияния двух черных дыр.

Райнер Вайсс сыграл ключевую роль в разработке детектора - огромного интерферометра с чрезвычайно низким уровнем шумов. Соответствующие работы физик начал еще в 1970-х годах, создав небольшие прототипы систем на базе Массачусетского технологического института. Несколькими годами позже прототипы интерферометров были созданы и в Калтехе - под руководством Кипа Торна. Позднее физики объединили свои усилия.


Схема гравитационной обсерватории LIGO

Барри Бэриш превратил небольшую коллаборацию между MIT и Калтехом в огромный международный проект - LIGO. Ученый руководил развитием проекта и созданием детекторов с середины 1990-х годов.

LIGO представляет собой две гравитационные обсерватории, расположенные в 3000 километров друг от друга. Каждый из них представляет собой Г-образный интерферометр Майкельсона. Он состоит из двух 4-километровых вакуумированных оптических плеч. Луч лазера расщепляют на две составляющие, которые проходят по трубам, отражаются от их концов и объединяются вновь. В случае если длина плеча изменилась, изменяется характер интерференции между лучами, что фиксируется детекторами. Большое расстояние между обсерваториями позволяет увидеть разность во времени прибытия гравитационных волн - из предположения о том, что последние распространяются со скоростью света, разница времени прибытия достигает 10 миллисекунд.


Два детектора LIGO

Подробнее о гравитационно-волновой астрономии и ее будущем можно прочитать в нашем материале « ».

В 2017 году размер Нобелевской премии был увеличен на один миллион шведских крон - сразу на 12,5 процентов. Теперь он составляет 9 миллионов крон или 64 миллиона рублей.

Лауреатами Нобелевской премии по физике в 2016 году стали теоретики Дункан Халдейн, Дэвид Таулесс и Майкл Костерлиц . К этим явлениям относится, например, целочисленный эффект Холла: тонкий слой вещества изменяет свое сопротивление ступенчато с ростом индукции приложенного к нему магнитного поля. Кроме того, теория помогает описывать сверхпроводимость, сверхтекучесть и магнитное упорядочение в тонких слоях материалов. Интересно, что основа теории была заложена еще советским физиком Вадимом Березинским, но до вручения премии он, увы, не дожил. Подробнее об этом можно прочитать в нашем материале « ».

Владимир Королёв

Нобелевские лауреаты в области физики - реферат

ВВЕДЕНИЕ 2

1. НОБЕЛЕВСКИЕ ЛАУРЕАТЫ 4

Альфред Нобель 4

Жорес Алферов 5

Генрих Рудольф Герц 16

Петр Капица 18

Мария Кюри 28

Лев Ландау 32

Вильгельм Конрад Рентген 38

Альберт Энштейн 41

ЗАКЛЮЧЕНИЕ 50

СПИСОК ЛИТЕРАТУРЫ 51

В науке нет откровения, нет постоянных догматов; всё в ней, напротив того, движется и совершенствуется.

А. И. Герцен

ВВЕДЕНИЕ

В наше время знание основ физики необходимо каждому., чтобы иметь правильное представление об окружающем мире – от свойств элементарных частиц до эволюции Вселенной. Тем же, кто решил связать свою будущую профессию с физикой, изучение этой науки поможет сделать первые шаги на пути к овладению профессией. Мы можем узнать, как даже абстрактные на первый взгляд физические исследования рождали новые области техники, давали толчок развитию промышленности и привели к тому, что принято называть НТР.
Успехи ядерной физики, теории твердого тела, электродинамики, статистической физики, квантовой механики определили облик техники конца ХХ века, такие ее направления, как лазерная техника, ядерная энергетика, электроника. Разве можно представить себе в наше время какие-нибудь области науки и техники без электронных вычислительных машин? Многим из нас после окончания школы доведется работать в одной из этих областей, и кем бы мы ни стали – квалифицированными рабочими, лаборантами, техниками, инженерами, врачами, космонавтами, биологами, археологами, - знание физики поможет нам лучше овладеть своей профессией.

Физические явления исследуются двумя способами: теоретически и эксперимен-тально. В первом случае (теоретическая физика) выводят новые соотношения, пользуясь математическим аппаратом и основываясь на известных ранее законах физики. Здесь главные инструменты – бумага и карандаш. Во втором случае (экспериментальная физика) получают новые связи между явлениями с помощью физических измерений. Здесь инструменты гораздо разнообразнее – многочисленные измерительные приборы, ускорители, пузырьковые камеры и т.п.

Какую из многочисленных областей физики предпочесть? Все они тесно связаны между собой. Нельзя быть хорошим экспериментатором или теоретиком в области, скажем, физики высоких энергий, не зная физики низких температур или физики твердого тела. Новые методы и соотношения, появившиеся в одной области, часто дают толчок в понимании другого, на первый взгляд далекого раздела физики. Так, теоретические методы, развитые в квантовой теории поля, произвели революцию в теории фазовых переходов, и наоборот, например, явление спонтанного нарушения симметрии, хорошо известное в классической физике, было заново «открыто» в теории элементарных частиц и совершенно изменен даже сам подход к этой теории. И разумеется, прежде чем окончательно выбрать какое-либо направление, нужно достаточно хорошо изучить все области физики. Кроме того, время от времени по разным причинам приходится переходить из одной области в другую. Особенно это относится к физикам – теоретикам, которые не связаны в своей работе с громоздкой аппаратурой.

Большинству физиков-теоретиков приходится работать в различных областях науки: атомная физика, космические лучи, теория металлов, атомное ядро, квантовая теория поля, астрофизика – все разделы физики интересны.
Сейчас наиболее принципиальные проблемы решаются в теории элементарных частиц и в квантовой теории поля. Но и в других областях физики есть много интересных нерешенных задач. И конечно, их очень много в прикладной физике.
Поэтому необходимо не только поближе познакомиться с различными разделами физики, но, главное, почувствовать их взаимосвязь.

Я не случайно выбрала тему «Нобелевские лауреаты», ведь, чтобы познавать новые области физики, чтобы понимать суть современных открытий, необходимо хорошо усвоить уже устоявшиеся истины. Мне было очень интересно в процессе моей работы над рефератом узнавать что-то новое не только о великих открытиях, но и о самих ученых, об их жизни, рабочем пути, судьбе. На самом деле это так интересно и увлекательно узнавать, как же произошли открытия. И я еще раз убедилась, что многие открытия происходят совершенно случайно, под час даже в процессе совсем иной работы. Но, не смотря на это, открытия не становятся менее интересными. Мне кажется, я вполне достигла своей цели – приоткрыть для себя некоторые тайны из области физики. И, как я думаю, изучение открытий через жизненный путь великих ученых, лауреатов Нобелевской премии, является оптимальным вариантом. Ведь всегда лучше усваиваешь материал, когда знаешь, какие цели перед собой ставил ученый, чего он хотел и чего же он, наконец, добился.

1. НОБЕЛЕВСКИЕ ЛАУРЕАТЫ

Альфред Нобель

АЛЬФРЕД НОБЕЛЬ, шведский химик-экспериментатор и бизнесмен, изобретатель динамита и других взрывчатых веществ, пожелавший основать благотворительный фонд для награждения премией своего имени, принесшего ему посмертную известность, отличался невероятной противоречивостью и парадоксальностью поведения. Современники считали, что он не соответствовал образу преуспевающего капиталиста эпохи бурного промышленного развития второй половины ХIХв. Нобель тяготел к уединению, покою, не мог терпеть городской суматохи, хотя большую часть жизни ему довелось прожить именно в городских условиях, да и путешествовал он тоже довольно часто. В отличие от многих современных ему воротил делового мира Нобеля можно назвать скорее
«спартанцем», так как он никогда не курил, не употреблял спиртного, избегал карт и других азартных игр.

На своей вилле в Сан-Ремо, возвышающейся над Средиземным морем, утопающей в апельсиновых деревьях, Нобель построил маленькую химическую лабораторию, где работал, как только позволяло время. Среди прочего он экспериментировал в области получения синтетического каучука и искусственного шелка. Нобель любил Сан-Ремо за его удивительный климат, но хранил также и теплые воспоминания о земле предков. В 1894г. он приобрел железоделательный завод в Вермланде, где одновременно выстроил поместье и обзавелся новой лабораторией. Два его последних летних сезона своей жизни он провел в Вермланде. Летом 1896г. скончался его брат Роберт. В это же время Нобеля начали мучить боли в сердце.

На консультации у специалистов в Париже он был предупрежден о развитии грудной жабы, связанной с недостаточным снабжением сердечной мышцы кислородом. Ему было рекомендовано отправится на отдых. Нобель вновь переехал в Сан-Ремо. Он постарался завершить неоконченные дела и оставил собственноручную запись предсмертного пожелания. После полуночи 10 декабря
1896г. от кровоизлияния в мозг он скончался. Кроме слуг-итальянцев, которые не понимали его, с Нобелем не оказалось никого из близких в момент ухода из жизни, и его последние слова остались неизвестными.

Истоки завещания Нобеля с формулировкой положения о присуждении наград за достижения в различных областях человеческой деятельности оставляют много неясностей. Документ в окончательном виде представляет собой одну из редакций прежних его завещаний. Его предсмертный дар для присуждения премий в области литературы и области науки и техники логически вытекает из интересов самого Нобеля, соприкасавшегося с указанными сторонами человеческой деятельности: физикой, физиологией, химией, литературой.
Имеются также основания предположить, что установление премий за миротворческую деятельность связано с желанием изобретателя отмечать людей, которые, подобно ему, стойко противостояли насилию. В 1886 году он, например, сказал своему английскому знакомому, что имеет «все более и более серьезное намерение увидеть мирные побеги красной розы в этом раскалывающемся мире».

Итак, изобретение динамита принесло Нобелю огромное состояние. 27 ноября 1895 года за год до смерти Нобель завещал свое состояние в 31 миллион долларов для поощрения научных исследований во всем мире и для поддержания наиболее талантливых ученых. Согласно завещанию Нобеля, шведская академия наук каждый год осенью называет имена лауреатов после внимательного рассмотрения предложенных крупными учеными и национальными академиями кандидатур и тщательной проверки их работ. Вручение премий происходит 10 декабря в день смерти Нобеля.

Жорес Алферов

Я не уверен даже, что в ХХI веке удастся освоить

«термояд» или, скажем, победить рак

Борис Стругацкий,

писатель

ЖОРЕС АЛФЕРОВ родился 15 марта 1930 года в Витебске. В 1952 году с отличием окончил Ленинградский электротехнический институт имени В. И.
Ульянова (Ленина) по специальности «электровакуумная техника».

В Физико-техническом институте имени А. Ф. Иоффе АН СССР работал инженером, младшим, старшим научным сотрудником, заведующим сектором, заведующим отделом. В 1961 году защитил кандидатскую диссертацию по исследованию мощных германиевых и кремниевых выпрямителей В 1970 году защитил по результатам исследований гетеропереходов в полупроводниках диссертацию на соискание ученой степени доктора физико-математических наук.
В 1972 году был избран членом-корреспондентом, в 1979-м – действительным членом Академии наук СССР. С 1987 года – директор Физико-технического института АН СССР. Главный редактор журнала «Физика и техника полупроводников».

Ж. Алферов – автор фундаментальных работ в области физики полупроводников, полупроводниковых приборов, полупроводниковой и квантовой электроники. При его активном участии были созданы первые отечественные транзисторы и мощные германиевые выпрямители. Основоположник нового направления в физике полупроводников полупроводниковой электронике – полупроводниковые гетероструктуры и приборы на их основе. На счету ученого
50 изобретений, три монографии, более 350 научных статей в отечественных и международных журналах. Он – лауреат Ленинской (1972) и Государственной
(1984) премий СССР.

Франклиновский институт (США) присудил Ж. Алферову золотую медаль С.
Баллантайна, Европейское физическое общество удостоило его премии «Хьюлетт-
Паккард». Физику присуждены также премия имени А. П. Карпинского, золотая медаль Х. Велькера (ФРГ) и Международная премия Симпозиума по арсениду галлия.

С 1989 года Алферов – председатель президиума Ленинградского – Санкт-
Петербургского научного центра РАН. С 1990 года – вице-президент Академии наук СССР (РАН). Ж. Алферов – депутат Государственной Думы Российской
Федерации (фракция КПРФ), член комитета по образованию и науке.

Ж. Алферов разделил премию с двумя зарубежными коллегами – Гербертом
Кремером из Калифорнийского университета в Санта-Барбарее и Джеком С.Килби из фирмы Texas Instruments в Далласе. Ученые удостоены награды за открытие и разработку опто- и микроэлектронных элементов, на основе которых впоследствии разрабатывались детали современных электронных устройств. Эти элементы были созданы на базе так называемых полупроводниковых гетероструктур – многослойных компонентов быстродействующих диодов и транзисторов.

Один из «соратников» Ж. Алферова, американец немецкого происхождения
Г. Кремер, в далеком 1957 году разработал гетероструктурный транзистор.
Шестью годами позже он и Ж. Алферов независимо друг от друга предложили принципы, которые были положены в основу конструкции гетероструктурного лазера. В том же году Жорес Иванович запатентовал свой знаменитый оптический инжекционный квантовый генератор. Третий физик-лауреат – Джек
С.килби внес огромный вклад в создание интегральных схем.

Фундаментальные работы этих ученых сделали принципиально возможным создание волоконно-оптических коммуникаций, в том числе Интернета. Лазерные диоды, основанные на гетероструктурной технологии, можно обнаружить в проигрывателях CD-дисков, устройстве для прочтения штрих-кодов.
Быстродействующие транзисторы используются в спутниковой связи и мобильных телефонах.

Размер премии составляет 9млн. шведских крон (около девятисот тысяч долларов). Половину этой суммы получил Джек С.Килби, другую поделили Жорес
Алферов и Герберт Кремер.

Каковы же прогнозы нобелевского лауреата на будущее? Он убежден, что
ХХI век будет веком атомной энергетики. Углеводородные источники энергии исчерпаемы, атомная же энергия пределов не знает. Безопасная атомная энергитика, как говорит Алферов, возможна.

Квантовая физика, физика твердого тела – вот, по его мнению, основа прогресса.. Ученые научились укладывать атомы один к одному, в буквальном смысле строить новые материалы для уникальных приборов. Уже появились потрясающие лазеры на квантовых точках.

Чем полезно и опасно нобелевское открытие Алферова?

Исследования нашего ученого и его коллег-лауреатов из Германии и США являются крупным шагом на пути освоения нанотехнологии. Именно ей, по убеждению мировых авторитетов, будет принадлежать ХХI век. В нанотехнологию ежегодно инвестируются сотни миллионов долларов, исследованиями заняты десятки фирм.

Нанороботы – гипотетические механизмы размером в десятки нанометров
(это миллионные доли миллиметра), разработка которых начата не так давно.
Наноробот собирается не из привычных нам деталей и узлов, а из отдельных молекул и атомов. Как и обычные роботы, нанороботы смогут двигаться, производить различные операции, они будут управляться извне или встроенным компьютером.

Основные задачи нанороботов – собирать механизмы и создавать новые вещества. Такие устройства называются ассемблер (сборщик) или репликатор.
Венцом станут нанороботы, самостоятельно собирающие свои копии, то есть способные к размножению. Сырьем для размножения послужат самые дешевые, буквально валяющиеся под ногами материалы – опавшие листья или морская вода, из которых нанороботы будут выбирать нужные им молекулы, как лисица отыскивает себе пропитание в лесу.

Идея этого направления принадлежит нобелевскому лауреату Ричарду
Фейнману и была высказана в 1959 году. Уже появились приборы, способные оперировать с отдельным атомом, например, переставить его в другое место.
Созданы отдельные элементы нанороботов: механизм шарнирного типа на основе нескольких цепочек ДНК, способный сгибаться и разгибаться по химическому сигналу, образцы нанотранзисторов и электронных переключателей, состоящие из считанного числа атомов.

Нанороботы, введенные в организм человека, смогут очистить его от микробов или зарождающихся раковых клеток, кровеносную систему – от отложений холестерина. Они смогут исправить характеристики тканей и клеток.
Так же как молекулы ДНК при росте и размножении организмов складывают свои копии из простых молекул, нанороботы смогут создавать различные объекты и новые виды материи – как «мертвой», так и «живой». Трудно представить все возможности, которые откроются перед человечеством, если оно научится оперировать с атомами, как с винтами и гайками. Изготовление вечных деталей механизмов из атомов углерода, выстроенных в алмазную решетку, создание молекул, редко встречаю-щихся в природе, новых, сконструированных соединений, новых лекарств…

Но что если в устройстве, предназначенном для очистки промышленных отходов, произойдет сбой и оно начнет уничтожать полезные вещества биосферы? Самым неприятным окажется то, что нанороботы способны к самовоспроизводству. И тогда они окажутся принципиально новым оружием массового поражения. Нетрудно представить себе нанороботы, запрограммированные на изготовление уже известного оружия. Овладев секретом создания робота или каким-то образом достав его, даже террорист-одиночка сможет штамповать их в неимоверном количестве. К неприятным последствиям нанотехнологии относится создание устройств, селективно разрушительных, например, воздействующих на определенные этнические группы или географические районы.

Некоторые считают Алферова мечтателем. Что ж, он любит мечтать, но его мечты строго научны. Потому что Жорес Алферов – настоящий ученый. И нобелевский лауреат.

В 2000 году лауреатами Нобелевской премии по химии стали американцы
Алан Хигер (Калифорнийский университет в Санта – Барбаре) и Алан
Макдайармид (Пенсильванский университет), а также японский ученый Хидэки
Сиракава (Университет Цукубы). Они удостоились высшей научной награды за открытие электропроводимости пластмасс и разработку электропроводящих полимеров, получивших широкое применение в производстве фотопленки, компьютерных мониторов, телеэкранов, отражающих свет окон и прочих высокотехнологичных продуктов.

Из всех теоретических троп, тропа Бора была самой значительной.

П. Капица

НИЛЬС БОР (1885-1962) - крупнейший физик современности, создатель первоначальной квантовой теории атома, личность поистине своеобразная и неотразимая. Он не только стремился познать законы природы, расширяя пределы человеческого познания, не только чувствовал пути развития физики, но и старался всеми доступными ему средствами заставить науку служить миру и прогрессу. Личные качества этого человека - глубокий ум, величайшая скромность, честность, справедливость, доброта, дар предвидения, исключительное упорство в поисках истины и ее отстаивании - не менее притягательны, чем его научная и общественная деятельность.

Эти качества сделали его лучшим учеником и соратником Резерфорда, уважаемым и незаменимым оппонентом Эйнштейна, противником Черчилля и смертельным врагом немецкого фашизма. Благодаря этим качествам, он стал учителем и наставником большого числа выдающихся физиков.

Яркая биография, история гениальных открытий, полная драматизма борьба против нацизма, борьба за мир и мирное использование атомной энергии - все это привлекало и будет привлекать внимание к великому ученому и прекраснейшему человеку.

Н. Бор родился 7 октября 1885 г. Он был вторым ребенком в семье профессора физиологии Копенгагенского университета Христиана Бора.

Семи лет Нильс пошел в школу. Учился он легко, был любознательным, трудолюбивым и вдумчивым учеником, талантливым в области физики и математики. Не ладилось только у него с сочинениями по родному языку: они были у него слишком короткими.

Бор с детства любил что-нибудь конструировать, собирать и разбирать.
Его всегда интересовала работа больших башенных часов; он готов был подолгу наблюдать за работой их колес и шестерен. Дома Нильс чинил все, что нуждалось в ремонте. Но прежде чем разобрать что-либо, тщательно изучал функции всех частей.

В 1903 г. Нильс поступил в Копенгагенский университет, годом позже туда поступил и его брат Харальд. Вскоре за братьями укрепилась репутация очень способных студентов.

В 1905 г. Датская академия наук объявила конкурс на тему:
«Использование вибрации струи для определения поверхностного натяжения жидкостей». Работа, рассчитанная на полтора года, была очень сложной и требовала хорошего лабораторного оборудования. Нильс принял участие в конкурсе. В результате напряженной работы была одержана первая победа: он стал обладателем золотой медали. В 1907 г. Бор закончил университет, а в
1909 г. его работа «Определение поверхностного натяжения воды методом колебания струи» была напечатана в трудах Лондонского Королевского общества.

В этот период Н. Бор начал готовиться к сдаче магистерского экзамена.
Свою магистерскую диссертацию он решил посвятить физическим свойствам металлов. На основе электронной теории он анализирует электро- и теплопроводность металлов, их магнитные и термоэлектрические свойства. В середине лета 1909 г. магистерская диссертация в 50 страниц рукописного текста готова. Но Бор не очень ею доволен: в электронной теории он обнаружил слабые места. Однако защита прошла успешно, и Бор получил степень магистра.

После короткого отдыха Бор вновь берется за работу, решив написать докторскую диссертацию по анализу электронной теории металлов. В мае 1911 г. он успешно ее защищает и в этом же году едет на годичную стажировку в
Кембридж к Дж. Томсону. Так как в электронной теории у Бора возник ряд неясных вопросов, то он решил свою диссертацию перевести на английский язык, чтобы Томсон мог ее прочитать. «Меня очень волнует мнение Томсона о работе в целом, а также его отношение к моей критике»,- писал Бор.

Знаменитый английский физик любезно принял молодого стажера из Дании.
Он предложил Бору заняться положительными лучами, и тот принялся за сборку экспериментальной установки. Установка вскоре была собрана, но дело дальше не пошло. И Нильс решает оставить данную работу и заняться подготовкой к изданию своей докторской диссертации.

Однако Томсон не спешил прочитать диссертацию Бора. Не только потому, что вообще не любил читать и был страшно занят. Но и потому, что, будучи ревностным приверженцем классической физики, почувствовал в молодом Боре
«инакомыслящего». Докторская диссертация Бора так и осталась ненапечатанной.

Трудно сказать, чем бы все это кончилось для Бора и какой оказалась бы его дальнейшая судьба, не будь рядом молодого, но уже ставшего лауреатом
Нобелевской премии профессора Эрнеста Резерфорда, которого Бор увидел впервые в октябре 1911 г. на ежегодном Кавендишском обеде. «Хотя в этот раз мне не удалось познакомиться с Резерфордом, на меня произвели глубокое впечатление его обаяние и энергия - качества, с помощью которых ему удавалось достичь почти невероятных вещей, где бы он ни работал»,- вспоминал Бор. Он принимает решение работать вместе с этим удивительным человеком, обладающим почти сверхъестественной способностью безошибочно проникать в суть научных проблем. В ноябре 1911 г. Бор побывал в
Манчестере, встретился с Резерфордом, побеседовал с ним. Резерфорд согласился принять Бора в свою лабораторию, но вопрос необходимо было отрегулировать с Томсоном. Томсон без колебаний дал свое согласие. Он не мог понять физических воззрений Бора, но, видимо, и не хотел ему мешать.
Это было, несомненно, мудро и дальновидно,со стороны знаменитого
«классика».

В апреле 1912 г. Н. Бор приехал в Манчестер, в лабораторию Резерфорда.
Свою главную задачу он видел в разрешении противоречий планетарной модели атома Резерфорда. Своими мыслями он охотно делился с учителем, который советовал ему более осторожно производить теоретическое построение на таком фундаменте, каким он считал свою атомную модель. Близилось время отъезда, а Бор работал все с большим энтузиазмом. Он понял, что разрешить противоречия атомной модели Резерфорда в рамках чисто классической физики не удастся. И он решил применить к планетарной модели атома квантовые представления Планка и Эйнштейна. Первая часть работы вместе с письмом, в котором Бор спрашивал Резерфорда, как ему удалось одновременно использовать классическую механику и квантовую теорию излучения, была отправлена в
Манчестер 6 марта с просьбой ее опубликования в журнале. Суть теории Бора была выражена в трех постулатах:

1. Существуют некоторые стационарные состояния атома, находясь в которых он не излучает и не поглощает энергии. Этим стационарным состояниям соответствуют вполне определенные (стационарные) орбиты.

2. Орбита является стационарной, если момент количества движения электрона (L=m v r) кратен Ь/2(= h. т. е. L=m v r = n h, где n=1. 2, 3, ...
- целые числа.

3. При переходе атома из одного стационарного состояния в другое испускается или поглощается один квант энергии hvnm==Wn-Wm, где Wn, Wm - энергия атома в двух стационарных состояниях, h - постоянная Планка, vnm - частота излучения.При Wп>Wт происходит излучение кванта, при Wn

Сегодня, 2 октября 2018 года, в Стокгольме прошла церемония объявления лауреатов Нобелевской премии по физике. Премию вручили «за прорывные открытия в области лазерной физики». В формулировке отмечено, что половина приза уходит Артуру Эшкину (Arthur Ashkin) за «оптические пинцеты и их использование в биологических системах» и другая половина - Жерару Муру (Gérard Mourou) и Донне Стрикленд (Donna Strickland) «за их метод генерирования высокоинтенсивных ультракоротких оптических импульсов».

Артур Эшкин изобрел оптический пинцет, способный захватывать и перемещать отдельные атомы, вирусы и живые клетки, причем не повреждая их. Делает он это за счет фокусировки лазерного излучения и использования градиентных сил, втягивающих частицы в область с более высокой интенсивностью электромагнитного поля. Впервые захватить живую клетку таким образом удалось в 1987 году как раз группе Эшкина. В настоящий момент этот метод широко используется для изучения вирусов, бактерий, клеток человеческих тканей, а также в манипуляциях отдельными атомами (для создания наноразмерных систем).

Жерару Муру и Донне Стрикленд впервые удалось создать источник ультракоротких лазерных импульсов высокой интенсивности без уничтожения рабочей среды лазера в 1985 году. До их исследований значительное усиление короткоимпульсных лазеров было невозможно: однократный проход импульса через усилитель приводил к разрушению системы из-за слишком большой интенсивности.

Разработанный Муром и Стрикленд метод генерации импульсов сегодня называют усилением чирпированных импульсов: чем короче лазерный импульс, тем шире его спектр, и все спектральные компоненты распространяются вместе. Однако с помощью пары призм (или дифракционных решеток) спектральные компоненты импульса можно задержать относительно друг друга перед попаданием в усилитель и тем самым уменьшить интенсивность излучения в каждый момент времени. После этого такой чирпированный импульс усиливают оптической системой, а затем снова сжимают до короткого импульса - с помощью оптической системы с обратной дисперсией (как правило, дифракционных решеток).

Усиление чирпированных импульсов позволило добиться создания работоспособных фемтосекундных лазеров заметной мощности. Они способны давать мощные импульсы, длительностью в квадрилионные доли секунды. На их основе сегодня создан целый ряд перспективных систем как в электронике, так и в лабораторных установках, важных для целого ряда областей физики. При этом они постоянно находят себе новые, часто неожиданные области практического применения.

Например, метод фемтосекундной лазерной коррекции зрения (SMall Incision Lenticula Extraction) позволяет удалять часть роговицы глаза человека и тем самым корректировать близорукость. Хотя сам подход лазерной коррекции был предложен еще в 1960-х, до появления фемтосекундных лазеров мощности и краткости импульсов не хватало для эффективной и безопасной работы с глазом: длительные импульсы перегревали ткани глаз и повреждали их, а короткие были слишком слабыми для получения нужного надреза в роговице. Сегодня миллионы людей по всему миру прооперированы с использованием подобных лазеров.

Кроме этого, фемтосекундные лазеры благодаря малой длительности своих импульсов позволили создать приборы, отслеживающие и контролирующие сверхбыстрые процессы как в физике твердого тела, так и в оптических системах. Это чрезвычайно важно, потому что до получения средства фиксации процессов, идущих на таких скоростях, было практически невозможно изучать поведение целого ряда систем, на основе которых, как предполагается, можно будет создать перспективную электронику будущего.

Алексей Щербаков , старший научный сотрудник Лаборатории нанооптики и плазмоники МФТИ, дал комментарий «Чердаку»: «Нобелевская премия для Жерара Муру за вклад в разработку фемтосекундных лазеров назревала очень давно, десять лет или, может быть, больше. Роль соответствующих работ поистине фундаментальная, и лазеры такого рода находят все больше применений по всему миру. Сегодня уже трудно даже перечислить все области, где их используют. Правда, я затрудняюсь сказать, чем вызвано решение Нобелевского комитета объединить в одной премии и Муру, и Ашкина, разработки которых напрямую не связаны. Это, действительно, не самое очевидное решение со стороны комитета. Может быть, решили, что дать премию только Муру или только Ашкину нельзя, а вот если за одно направление дать половину премии, а за другое - другую половину, то это будет выглядеть достаточно обосновано» .

Нобелевская премия по физике - высшая награда за научные достижения в соответствующей науке - ежегодно присуждается Шведской королевской академией наук в Стокгольме. Она была учреждена по завещанию шведского химика и предпринимателя Альфреда Нобеля. Премия может быть присуждена максимум троим ученым одновременно. Денежное вознаграждение могут распределить между ними поровну либо разделить на половину и две четверти. В 2017 году денежная премия была повышена сразу на одну восьмую - с восьми до девяти миллионов крон (примерно 1,12 миллиона долларов).

Каждый лауреат получает медаль, диплом и денежное вознаграждение. Медали и денежные призы лауреатам традиционно вручат на ежегодной церемонии в Стокгольме 10 декабря - в годовщину смерти Нобеля.

Первую Нобелевскую премию по физике вручили в 1901 году Вильгельму Конраду Рентгену за открытие и изучение свойств лучей, которые позднее назвали в его честь. Интересно, что ученый принял премию, но отказался приехать на церемонию вручения, сказав, что очень занят. Поэтому награду ему переслали почтой. Когда правительство Германии во время Первой мировой войны обратилось к населению с просьбой помочь государству деньгами и ценностями, Рентген отдал все свои сбережения, включая Нобелевскую премию.

В прошлом - 2017 году - Нобелевскую премию по физике получили Райнер Вайсс, Барри Бэриш и Кип Торн. Эти три физика внесли решающий вклад в детектор LIGO, обнаруживший гравитационные волны. Теперь с их помощью стало возможно отслеживать слияния невидимых для телескопов нейтронных звезд и черных дыр.

Интересно, что со следующего года ситуация с выдачей Нобелевских премий может заметно измениться. Нобелевский комитет будет рекомендовать экспертам, принимающим решения по премиям, подбирать кандидатов с учетом пола, чтобы среди них было больше женщин, а также по этнической принадлежности, для увеличения количества представителей не западных народов). Впрочем, вероятно, это не коснется физики - до сих пор всего двое лауреатов этой премии были женщинами. И только в этом году Донна Стрикленд стала третьей.

С формулировкой «за теоретические открытия топологических фазовых переходов и топологических фаз материи ». За этой несколько размытой и малопонятной широкой публике фразой стоит целый мир нетривиальных и удивительных даже для самих физиков эффектов, в теоретическом открытии которых лауреаты сыграли ключевую роль в 1970–1980-е годы. Они, конечно, были не единственными, кто осознал тогда важность топологии в физике. Так, советский физик Вадим Березинский за год до Костерлица и Таулесса сделал, по сути, первый важный шаг к топологическим фазовым переходам. Рядом с именем Холдейна тоже можно поставить много других имен. Но как бы то ни было, все три лауреата безусловно являются знаковыми фигурами в этом разделе физики.

Лирическое введение в физику конденсированных сред

Объяснить доступными словами суть и важность работ, за которые был присужден физический Нобель-2016, - задача не из простых. Мало того, что сами явления сложные и вдобавок квантовые, так они еще и разнообразные. Премия была присуждена не за одно конкретное открытие, а за целый список пионерских работ, которые в 1970–1980-е годы стимулировали развитие нового направления в физике конденсированных сред. В этой новости я попробую достичь более скромной цели: объяснить на паре примеров суть того, что такое топологический фазовый переход, и передать ощущение, что это действительно красивый и важный физический эффект. Рассказ будет лишь про одну половину премии, ту, в которой проявили себя Костерлиц и Таулесс. Работы Холдейна столь же завораживающие, но они еще менее наглядные, и для их объяснения потребовался бы совсем уж длинный рассказ.

Начнем с блиц-введения в самый богатый на явления раздел физики - физику конденсированных сред.

Конденсированная среда - это, на житейском языке, когда много однотипных частиц собрались вместе и сильно воздействуют друг на друга. Почти каждое слово здесь - ключевое. Сами частицы и закон взаимодействия между ними - должны быть однотипными. Можно взять несколько разных атомов, пожалуйста, но главное, что дальше этот фиксированный набор повторяется снова и снова. Частиц должно быть очень много; десяток-другой - это еще не конденсированная среда. И, наконец, влиять они друг на друга должны сильно: толкать, тянуть, мешать друг другу, может быть обмениваться друг с другом чем-то. Разреженный газ конденсированной средой не считается.

Главное откровение физики конденсированных сред: при таких очень простых «правилах игры» в ней обнаружилось нескончаемое богатство явлений и эффектов. Такое многообразие явлений возникает вовсе не из-за пестрого состава - частицы-то однотипные, - а самопроизвольно, динамически, как результат коллективных эффектов . В самом деле, раз взаимодействие сильное, нет смысла смотреть на движение каждого отдельного атома или электрона, ведь оно тут же сказывается на поведении всех ближайших соседей, а может быть, даже и далеких частиц. Когда вы читаете книгу, она «говорит» с вами не россыпью отдельных букв, а набором связанных друг с другом слов, она передает вам мысль в форме «коллективного эффекта» букв. Так же и конденсированная среда «говорит» на языке синхронных коллективных движений, а вовсе не отдельных частиц. И вот этих коллективных движений, оказывается, огромное разнообразие.

Нынешняя Нобелевская премия отмечает работы теоретиков по расшифровке еще одного «языка», на котором могут «разговаривать» конденсированные среды, - языка топологически нетривиальных возбуждений (что это такое - чуть ниже). Конкретных физических систем, в которых возникают такие возбуждения, найдено уже немало, и ко многим из них приложили руку лауреаты. Но самое существенное здесь - не конкретные примеры, а сам факт того, что такое в природе тоже бывает.

Многие топологические явления в конденсированных средах были вначале выдуманы теоретиками и казались просто математической шалостью, не относящейся к нашему миру. Но потом экспериментаторы обнаруживали реальные среды, в которых эти явления наблюдаются, - и математическая шалость вдруг порождала новый класс материалов с экзотическими свойствами. Экспериментальная сторона этого раздела физики сейчас на подъеме, и это бурное развитие будет продолжаться и в будущем, обещая нам новые материалы с запрограммированными свойствами и устройства на их основе.

Топологические возбуждения

Сначала поясним слово «топологический». Не пугайтесь, что объяснение будет звучать как голая математика; связь с физикой проявится по ходу дела.

Есть такой раздел математики - геометрия, наука о фигурах. Если форму фигуры плавно деформировать, то, с точки зрения обычной геометрии, сама фигура меняется. Но у фигур бывают общие характеристики, которые при плавной деформации, без разрывов и склеек, остаются неизменными. Это и есть топологическая характеристика фигуры. Самый известный пример топологической характеристики - это количество дырок у трехмерного тела. Чайная кружка и бублик - топологически эквивалентны, они оба имеют ровно одну дырку, и потому плавной деформацией одну фигуру можно превратить в другую. Кружка и стакан - топологически различаются, потому что у стакана дырок нет. Для закрепления материала предлагаю ознакомиться с прекрасной топологической классификацией женских купальников .

Итак, вывод: всё то, что можно свести друг к другу плавной деформацией, считается топологически эквивалентным. Две фигуры, которые никакими плавными изменениями друг в друга не превратишь, считаются топологически разными.

Второе слово для объяснение - «возбуждение». В физике конденсированных сред возбуждение - это любое коллективное отклонение от «мертвого» неподвижного состояния, то есть от состояния с наименьшей энергией. Например, по кристаллу ударили, по нему побежала звуковая волна - это колебательное возбуждение кристаллической решетки. Возбуждения не обязательно вызывать насильно, они могут спонтанно возникать из-за ненулевой температуры. Обычное тепловое дрожание кристаллической решетки - это, по сути, много наложившихся друг на друга колебательных возбуждений (фононов) с разными длинами волн. Когда концентрация фононов велика, происходит фазовый переход, кристалл плавится. В общем, как только мы поймем, в терминах каких возбуждений следует описывать данную конденсированную среду, мы получим ключ к ее термодинамическим и прочим свойствам.

Теперь соединим два слова. Звуковая волна - это пример топологически тривиального возбуждения. Это звучит умно, но по своей физической сути это просто означает, что звук можно сделать сколь угодно тихим, вплоть до полного исчезновения. Громкий звук - колебания атомов сильные, тихий звук - слабые. Амплитуду колебаний можно плавно уменьшать до нуля (точнее, до квантового предела, но это тут несущественно), и это всё еще будет звуковое возбуждение, фонон. Обратите внимание на ключевой математический факт: существует операция плавного изменения колебаний до нуля - это просто уменьшение амплитуды. Именно это и означает, что фонон - топологически тривиальное возмущение.

А сейчас включается богатство конденсированных сред. В некоторых системах бывают возбуждения, которые нельзя плавно уменьшить до нуля . Не физически нельзя, а принципиально - форма не позволяет. Просто не существует такой повсюду плавной операции, которая переводит систему с возбуждением в систему с наименьшей энергией. Возбуждение по своей форме топологически отличается от тех же фононов.

Смотрите, как это получается. Рассмотрим простую систему (она называется XY-модель) - обычную квадратную решетку, в узлах которой есть частицы со своим спином, который может быть ориентирован как угодно в этой плоскости. Мы будем изображать спины стрелочками; ориентация стрелочки произвольная, но длина фиксирована. Мы будем также считать, что спины соседних частиц взаимодействуют друг с другом таким образом, что наиболее энергетически выгодная конфигурация - это когда все спины во всех узлах смотрят в одну сторону, как в ферромагнетике. Эта конфигурация показа на рис. 2, слева. По ней могут бежать спиновые волны - небольшие волнообразные отклонения спинов от строгой упорядоченности (рис. 2, справа). Но это всё обычные, топологически тривиальные возбуждения.

А вот теперь взгляните на рис. 3. Здесь показаны два возмущения необычной формы: вихрь и антивихрь. Выберите мысленно точку на картинке и пройдите взглядом по круговому пути против часовой стрелки вокруг центра, обращая внимание на то, что происходит со стрелочками. Вы увидите, что у вихря стрелочка поворачивается в ту же сторону, против часовой стрелки, а у антивихря - в противоположную, по часовой стрелке. Проделайте теперь тоже в основном состоянии системы (стрелочка вообще неподвижна) и в состоянии со спиновой волной (там стрелочка слегка колышется около среднего значения). Вы можете также представить себе и деформированные варианты этих картинок, скажем спиновая волна в нагрузку к вихрю: там стрелочка тоже будет делать полный оборот, слегка вихляя.

После этих упражнений становится ясно, что все возможные возбуждения разбиваются на принципиально различающиеся классы : делает ли стрелочка полный оборот при обходе вокруг центра или нет, и если делает, то в какую сторону. Эти ситуации имеют разную топологию. Никакие плавные изменения не могут превратить вихрь в обычную волну: если уж поворачивать стрелочки, то скачком, сразу на всей решетке и сразу на большой угол. Вихрь, равно как и антивихрь, топологически защищены : они, в отличие от звуковой волны, не могут просто так рассосаться.

Последний важный момент. Вихрь топологически отличается от простой волны и от антивихря только в том случае, если стрелочки лежат строго в плоскости рисунка. Если же нам разрешается выводить их в третье измерение, то тогда вихрь можно плавно устранить. Топологическая классификация возбуждений кардинально зависит от размерности системы!

Топологические фазовые переходы

Эти чисто геометрические рассуждения имеют вполне осязаемое физическое следствие. Энергия обычного колебания, того же фонона, может быть сколь угодно малой. Поэтому при любой сколь угодно низкой температуре эти колебания спонтанно возникают и влияют на термодинамические свойства среды. Энергия же топологически защищенного возбуждения, вихря, не может быть ниже некоторого предела. Поэтому при низких температурах отдельные вихри не возникают, а значит, не влияют на термодинамические свойства системы - по крайней мере, так считалось до начала 1970-х годов.

Между тем, в 1960-е годы усилиями многих теоретиков вскрылась проблема с пониманием того, что происходит в XY-модели с физической точки зрения. В обычном трехмерном случае всё просто и интуитивно понятно. При низких температурах система выглядит упорядоченно, как на рис. 2. Если взять два произвольных узла решетки, пусть даже и очень далеких, то спины в них будут слегка колебаться около одинакового направления. Это, условно говоря, спиновый кристалл. При высоких температурах происходит «плавление» спинов: два далеких узла решетки уже никак друг с другом не скоррелированы. Есть четкая температура фазового перехода между двумя состояниями. Если установить температуру ровно на это значение, то система будет находиться в особом критическом состоянии, когда корреляции еще есть, но плавно, степенным образом уменьшаются с расстоянием.

В двумерной решетке при высоких температурах тоже есть неупорядоченное состояние. А вот при низких температурах всё выглядело очень и очень странно. Была доказана строгая теорема (см. Теорема Мермина - Вагнера) о том, что в двухмерном варианте кристаллической упорядоченности нет. Аккуратные расчеты показали, что ее не то чтобы совсем нет, она просто уменьшается с расстоянием по степенному закону - ровно как в критическом состоянии. Но если в трехмерном случае критическое состояние было только при одной температуре, то тут критическое состояние занимает всю низкотемпературную область. Получается, в двумерном случае в игру вступают какие-то другие возбуждения, которых не существует в трехмерном варианте (рис. 4)!

Сопроводительные материалы Нобелевского комитета рассказывают о нескольких примерах топологических явлений в различных квантовых системах, а также о недавних экспериментальных работах по их реализации и о перспективах на будущее. Заканчивается этот рассказ цитатой из статьи Холдейна 1988 года. В ней он, словно оправдываясь, говорит: «Хотя представленная здесь конкретная модель вряд ли физически реализуема, тем не менее ...». 25 лет спустя журнал Nature публикует , в которой сообщается об экспериментальной реализации модели Холдейна. Пожалуй, топологически нетривиальные явления в конденсированных средах - это одно из самых ярких подтверждений негласного девиза физики конденсированных сред: в подходящей системе мы воплотим любую самосогласованную теоретическую идею, какой бы экзотической она ни казалась.

Нобелевская премия была в первый раз вручена в 1901 году. С начала века комиссия ежегодно выбирает лучшего специалиста, сделавшего важное открытие или создавшего изобретение, чтобы удостоить его почетной награды. Список лауреатов Нобелевской премии несколько превышает количество лет проведения церемонии вручения, так как иногда были отмечены одновременно два или три человека. Тем не менее, некоторых стоит отметить отдельно.

Игорь Тамм

Русский физик, родился в городе Владивостоке в семье инженера-строителя. В 1901 году семья переехала на Украину, именно там Игорь Евгеньевич Тамм окончил гимназию, после чего ездил учиться в Эдинбург. В 1918-м он получил диплом физфака МГУ.

После этого он стал преподавать, сначала в Симферополе, затем в Одессе, а потом и в Москве. В 1934 году получил пост заведующего сектором теоретической физики в институте имени Лебедева, где проработал до конца жизни. Игорь Евгеньевич Тамм изучал электродинамику твердых тел, а также оптические свойства кристаллов. В своих работах он впервые высказал идею о квантах звуковых волн. Релятивистская механика в те времена была крайне актуальна, и Тамму удалось экспериментальным образом подтвердить идеи, которые не были доказаны прежде. Его открытия оказались весьма значимыми. В 1958 году работы были признаны на мировом уровне: вместе с коллегами Черенковым и Франком он получил Нобелевскую премию.

Стоит отметить еще одного теоретика, проявившего незаурядные способности и к экспериментам. Немецко-американский физик, лауреат Нобелевской премии Отто Штерн появился на свет в феврале 1888 года в Сорау (теперь это польский город Зори). Школу Штерн окончил в Бреслау, а затем несколько лет занимался естественными науками в немецких университетах. В 1912 году он защитил докторскую диссертацию, руководителем его аспирантской работы стал Эйнштейн.

Во время Первой мировой Отто Штерн был мобилизован в армию, но и там продолжил теоретические исследования в сфере квантовой теории. С 1914 по 1921 год он работал во Франкфуртском университете, где занимался экспериментальным подтверждением молекулярного движения. Именно тогда ему удалось разработать метод атомных пучков, так называемый опыт Штерна. В 1923-м он получил должность профессора Гамбургского университета. В 1933-м выступил против антисемитизма и вынужден был переехать из Германии в США, где получил гражданство. В 1943 году пополнил список лауреатов Нобелевской премии за серьезный вклад в развитие молекулярно-лучевого метода и открытие магнитного момента протона. С 1945 года - член Национальной академии наук. С 1946 года проживал в Беркли, где и закончил свои дни в 1969 году.

О. Чемберлен

Американский физик Оуэн Чемберлен появился на свет 10 июля 1920 года в Сан-Франциско. Совместно с Эмилио Сегре он трудился в сфере Коллегам удалось добиться значительных успехов и совершить открытие: они обнаружили антипротоны. В 1959 году они были замечены на международном уровне и награждены как лауреаты Нобелевской премии по физике. С 1960-го Чемберлен был принят в Национальную академию наук Соединенных Штатов Америки. Трудился в Гарварде в качестве профессора, закончил свои дни в Беркли в феврале 2006 года.

Нильс Бор

Немногие лауреаты Нобелевской премии по физике так известны, как этот датский ученый. В каком-то смысле его можно назвать создателем современной науки. Кроме того, Нильс Бор основал институт теоретической физики в Копенгагене. Ему принадлежит теория атома, основанная на планетарной модели, а также постулаты. Им были созданы важнейшие работы о теории атомного ядра и ядерных реакций, по философии естествознания. Несмотря на интерес к строению частиц, выступал против использования их в военных целях. Образование будущий физик получал в грамматической школе, где прославился как заядлый футболист. Репутацию одаренного исследователя получил в двадцать три года, окончив Копенгагенский университет. Его был отмечен золотой медалью. Нильс Бор предложил определять поверхностное натяжение воды по вибрациям струи. С 1908 по 1911 год трудился в родном университете. Затем переехал в Англию, где работал с Джозефом Джоном Томсоном, а затем и с Эрнестом Резерфордом. Здесь провел свои важнейшие опыты, которые и привели его к получению награды в 1922-м. После этого вернулся в Копенгаген, где прожил до самой своей смерти в 1962 году.

Лев Ландау

Советский физик, лауреат Нобелевской премии, родился в 1908 году. Ландау создал потрясающие работы во многих сферах: он изучал магнетизм, сверхпроводимость, атомные ядра, элементарные частицы, электродинамику и многое другое. Совместно с Евгением Лифшицем создал классический курс теоретической физики. Его биография интересна необычайно быстрым развитием: уже в тринадцать лет Ландау поступил в университет. Какое-то время он обучался химии, но впоследствии решил заниматься физикой. С 1927 года являлся аспирантом Ленинградского института имени Иоффе. Современники запомнили его как увлеченного, резкого человека, склонного к критичным оценкам. Строжайшая самодисциплина позволили Ландау добиться успеха. Он работал над формулами так много, что видел их даже ночью во сне. Сильно повлияли на него и научные поездки за границу. Особенно важным стало посещение Института теоретической физики Нильса Бора, когда ученый смог обсудить интересующие его проблемы на высочайшем уровне. Ландау считал себя учеником известного датчанина.

В конце тридцатых годов ученому пришлось столкнуться со сталинскими репрессиями. Физику довелось бежать из Харькова, где он жил с семьей. Это не помогло, и в 1938 году его арестовали. Ведущие ученые мира обратились к Сталину, и в 1939 году Ландау был освобожден. После этого долгие годы он занимался научной работой. В 1962-м был зачислен в лауреаты Нобелевской премии по физике. Комитет выбрал его за новаторский подход к изучению конденсированных сред, особенно жидкого гелия. В том же году пострадал в трагической аварии, столкнувшись с грузовиком. После этого он прожил шесть лет. Российские физики, лауреаты Нобелевской премии редко достигали такого признания, какое было у Льва Ландау. Несмотря на тяжелую судьбу, он воплотил все свои мечты и сформулировал совершенно новый подход к науке.

Макс Борн

Немецкий физик, лауреат Нобелевской премии, теоретик и создатель квантовой механики родился в 1882 году. Будущий автор важнейших работ по теории относительности, электродинамике, философским вопросам, кинетике жидкости и многим другим трудился в Британии и на родине. Первое обучение получил в гимназии с языковым уклоном. После школы поступил в Бреславский университет. В процессе учебы посещал лекции известнейших математиков того времени - Феликса Клейна, и Германа Минковского. В 1912 году получил в Геттингене место приват-доцента, а в 1914-м отправился в Берлин. С 1919 года трудился во Франкфурте в качестве профессора. В числе его коллег был и Отто Штерн, будущий лауреат Нобелевской премии, о котором мы уже рассказали. В своих работах Борн описывал твердые тела и квантовую теорию. Пришел к необходимости особенного истолкования корпускулярно-волновой природы материи. Он доказал, что законы физики микромира можно назвать статистическими и что волновую функцию необходимо толковать как комплексную величину. После прихода к власти фашистов переехал в Кембридж. Вернулся в Германию только в 1953 году, а премию Нобеля получил в 1954-м. Навсегда остался в как один из самых влиятельных теоретиков двадцатого века.

Энрико Ферми

Не многие лауреаты Нобелевской премии по физике были родом из Италии. Однако именно там появился на свет Энрико Ферми, важнейший специалист двадцатого века. Он стал создателем ядерной и нейтронной физики, основал несколько научных школ и являлся членом-корреспондентом Академии наук Советского Союза. Кроме того, Ферми принадлежит большое количество теоретических работ в сфере элементарных частиц. В 1938-м он переехал в США, где открыл искусственную радиоактивность и построил первый в истории человечества ядерный реактор. В том же году получил Нобелевскую премию. Интересно, что Ферми отличала благодаря которой он не только оказался невероятно способным физиком, но и быстро изучал иностранные языки при помощи самостоятельных занятий, к которым подходил дисциплинированно, согласно собственной системе. Такие способности выделили его еще в университете.

Сразу же после обучения он начал читать лекции по квантовой теории, которую на тот момент в Италии практически не изучали. Его первые исследования в области электродинамики тоже заслужили всеобщее внимание. На пути Ферми к успеху стоит отметить профессора Марио Корбино, который оценил таланты ученого и стал его покровителем в Римском университете, обеспечив юноше прекрасную карьеру. После переезда в Америку работал в Лас-Аламосе и в Чикаго, где и умер в 1954-м.

Эрвин Шредингер

Австрийский физик-теоретик родился в 1887 году в Вене, в семье фабриканта. Состоятельный отец был вице-президентом местного ботанико-зоологического общества и с ранних лет привил сыну интерес к науке. До одиннадцати лет Эрвин обучался дома, а в 1898 году он поступил в академическую гимназию. Блестяще окончив ее, поступил в Венский университет. Несмотря на то что выбрана была физическая специальность, Шредингер проявил и гуманитарные таланты: он знал шесть иностранных языков, писал стихи и разбирался в литературе. Достижения в точных науках были вдохновлены Фрицем Газенролем, талантливым учителем Эрвина. Именно он помог студенту понять, что физика является его главным интересом. Для докторской диссертации Шредингер выбрал экспериментальную работу, которую ему удалось блестяще защитить. Началась работа в университете, в процессе которой ученый занимался атмосферным электричеством, оптикой, акустикой, теорией цветов и квантовой физикой. Уже в 1914 году его утвердили доцентом, что позволило ему читать лекции. После войны, в 1918-м, начал работать в Йенском физическом институте, где трудился с Максом Планком и Эйнштейном. В 1921 году начал преподавать в Штутгарте, но после одного семестра переехал в Бреслау. Через какое-то время получил приглашение от политехникума в Цюрихе. В период с 1925 по 1926 год выполнил несколько революционных экспериментов, опубликовав работу под названием «Квантование как задача о собственных значениях». Создал важнейшее уравнение, актуальное и для современной науки. В 1933 году получил Нобелевскую премию, после чего вынужден был покинуть страну: к власти пришли нацисты. После войны вернулся в Австрию, где прожил все оставшиеся годы и умер в 1961-м в родной Вене.

Вильгельм Конрад Рентген

Известный немецкий физик-экспериментатор родился в Леннепе, что под Дюссельдорфом, в 1845 году. Получив образование в Цюрихском политехникуме, планировал стать инженером, но понял, что заинтересован в теоретической физике. Стал ассистентом кафедры в родном университете, потом переехал в Гиссен. С 1871 по 1873 год работал в Вюрцбурге. В 1895 году открыл рентгеновские лучи и тщательно изучил их свойства. Был автором важнейших трудов по пиро- и пьезоэлектрическим свойствам кристаллов и по магнетизму. Стал первым в мире лауреатом Нобелевской премии по физике, получив ее в 1901 году за выдающийся вклад в науку. Кроме того, именно Рентген работал в школе Кундта, став своего рода основателем целого научного течения, сотрудничая с современниками - Гельмгольцем, Кирхгофомом, Лоренцом. Несмотря на славу успешного экспериментатора, вел достаточно замкнутый образ жизни и общался исключительно с ассистентами. Поэтому воздействие его идей на тех физиков, что не были его учениками, оказалось не слишком значимым. Скромный ученый отказывался от названия лучей в свою честь, всю жизнь называя их X-лучами. Свои доходы он отдал государству и жил в весьма стесненных обстоятельствах. Скончался 10 февраля 1923 года в Мюнхене.

Всемирно известный физик родился в Германии. Он стал создателем теории относительности и написал важнейшие труды по квантовой теории, являлся иностранным членом-корреспондентом Российской академии наук. С 1893 года жил в Швейцарии, а в 1933-м переехал в Соединенные Штаты. Именно Эйнштейн ввел понятие фотона, установил законы фотоэффекта и предсказал открытие индуцированного излучения. Он развил теорию и флуктуаций, а также создал квантовую статистику. Трудился над проблемами космологии. В 1921 году получил Нобелевскую премию за открытие законов фотоэффекта. Кроме того, Альберт Эйнштейн входит в число основных инициаторов основания государства Израиль. В тридцатые годы выступал против фашистской Германии и старался удержать политиков от безумных действий. Его мнение насчет атомной проблемы не было услышано, что стало главной трагедией жизни ученого. В 1955 году он умер в Принстоне от аневризмы аорты.



2024 stdpro.ru. Сайт о правильном строительстве.