Определение погрешности датчиков давления от температуры. Дополнительная температурная погрешность. В целом все применения преобразователей давления можно разделить на две основные группы

1. Особенности применения датчиков давления

Области применения датчиков давления (преобразователей давления) довольно широки, но, как правило, в каждом конкретном применении есть своя специфика, которая должна быть учтена в конструкции датчиков.

В целом все применения преобразователей давления можно разделить на две основные группы:

  • Измерение собственно давления (или разряжения) какой-либо среды в трубопроводе или технологической установке;
  • Измерение уровня жидкостей в емкостях (танках) посредством измерения давления столба жидкости (гидростатический датчик уровня).

При подборе датчиков давления обоих групп, необходимо уточнять следующие особенности применения:

  • Требования по гигиене: пищевая и фармацевтическая промышленность предъявляют высокие требования к датчикам давления по санитарности как в месте контакта с продуктом, так и снаружи (как правило, исполнение полностью из нержавеющей стали). В ассортименте ООО «КИП-Сервис» представлены датчики давления KLAY-INSTRUMENTS , которые специально разработаны для применения в молочной, пивоваренной и пищевой промышленности .
  • Наличие сертификатов: зачастую, для различных применений, помимо обычного сертификата соответствия ГОСТ Р (или декларации соответствия), требуются дополнительные сертификаты. Например, для систем учета необходим сертификат об утверждении типа средств измерения; для применений датчиков давления в пищевой промышленности требуется заключение СЭС, для применений на опасных производствах требуется разрешение Ростехнадзора и т. д.
  • Требования по взрывозащите: на взрывоопасных производствах (например, нефтегазовая, химическая, спиртовая промышленности) используются датчики давления во взрывобезопасном исполнении. Наибольшее распространение для датчиков получили 2 вида взрывозащиты - искробезопасные цепи Ex ia и взрывонепронициаемая оболочка Ex d, выбор которого обуславливается спецификой применения.
  • Тип измеряемой среды: если измеряемая среда является вязкой, агрессивной, слаботекучей или обладает какими-либо другими специфичными свойствами (например, наличие частиц грязи), эти особенности также необходимо учесть. Возможно для данного применения необходимо использование мембранных датчиков давления (оборудованных разделительной мембраной), которые обеспечивают защиту чувствительного элемента датчика от воздействия агрессивных сред.
  • Наличие внешних воздействий: наличие вибрации, электромагнитных полей или других механических или электрических воздействий.

При подборе датчиков давления для применений I-й группы при измерении давления более 1 бар, также нужно учитывать:

  • Наличие гидроударов в системе: если в системе возможно наличие гидроударов, датчик давления необходимо подобрать с достаточным запасом по перегрузке (пиковому давлению) или принять меры для компенсации гидроударов (глушители, специальные датчики и т. п.) на объекте;
  • Дополнительное оборудование: как правило, при измерении давления датчики монтируются при помощи 3-ходовых кранов, кроме того, при измерении давления пара датчики давления рекомендуется подключать через специальное устройство - трубку Перкинса , которая обеспечивает уменьшение температуры среды, действующей на датчик давления.

При подборе датчиков давления для применения в качестве гидростатических датчиков уровня, необходимо учитывать тот факт, что значение давления при одной и той же высоте столба жидкости может меняться с изменением плотности измеряемой среды.

2. Диапазон измерений

Диапазон измерений датчика давления - диапазон значений давления, при подаче которого датчик будет осуществлять измерения и линейное преобразование измеренного значения в унифицированный выходной сигнал.

Диапазон измерений определяется нижним и верхним пределами измерений, которые соответствуют минимальному и максимальному значениям измеряемого давления. Примеры диапазонов измерений: 0…1 бар, 0…2,5 МПа, –100…100 КПа.

При подборе датчиков давления необходимо учитывать, что датчики бывают как с фиксированным диапазоном измерений (например, преобразователи давления ПД100), так и с настраиваемым диапазоном измерений (например, датчики давления KLAY-INSTRUMENTS). У датчиков давления с фиксированным диапазоном измерений значения выходного сигнала жестко привязаны к пределам измерений. Например, датчик давления PTE5000 при давлении 0 МПа будет выдавать 4 мА на выходе, а при давлении 0,6 МПа будет выдавать 20 мА, так как он жестко настроен на диапазон 0…0,6 МПа. В свою очередь, датчик давления KLAY 8000-E-S имеет настраиваемый диапазон 0-1…4 бар, это значит, что при давлении 0 бар датчик будет аналогично выдавать 4 мА, а 20 мА датчик выдаст при любом значении из диапазона 1…4 бар, которое настраивается пользователем при помощи специального потенциометра «SPAN».

3. Температура процесса

Температура измеряемой среды - очень важный параметр при выборе датчиков давления. При подборе датчика, необходимо чтобы температура процесса не выходила за пределы допустимого рабочего температурного диапазона.

В пищевой промышленности происходят кратковременные (от 20 до 40 минут) процессы CIP и SIP-мойки (санитарной обработки), при которых температура среды может достигать 145 °C. Для таких применений следует использовать датчики, устойчивые к такому временному воздействию высоких температур, например датчики давления KLAY-INSTRUMENTS в исполнении SAN - 8000-SAN и 2000-SAN .

Показания всех датчиков давления, использующих тензорезистивный принцип преобразования, сильно зависят от температуры измеряемой среды, так как с изменением температуры изменяется и сопротивление резисторов, составляющих измерительную схему сенсора давления.

Для датчиков давления вводится понятие «температурной ошибки», которая представляет собой дополнительную погрешность измерений на каждые 10 °C изменения температуры измеряемой среды относительно базовой температуры (как правило 20 °C). Таким образом, температуру процесса необходимо знать для определения полной погрешности измерений датчика давления.

Для снижения влияния температуры в измерителях давления используют различные схемы температурной компенсации.

По использованию термокомпенсации все датчики давления можно разделить на три группы:

  • Бюджетные датчики давления, не использующие схемы термокомпенсации;
  • Датчики среднего ценового диапазона, использующие пассивные схемы термокомпенсации;
  • Датчики давления высокого уровня, для систем требовательных к точности измерения, которые используют схемы активной температурной компенсации.

Для измерения давления сред постоянной температурой более 100 °C используются специальные высокотемпературные датчики давления, позволяющие измерять давление сред с температурой вплоть до 250 °C. Как правило такие датчики оборудованы радиатором охлаждения и/или имеют специальный конструктив, позволяющий вынести часть датчика с электроникой в зону с допустимой рабочей температурой.

4. Тип соединения датчика с процессом

Тип соединения датчика с процессом - тип механического включения датчика давления в процесс, для осуществления измерений.

Наиболее популярными соединениями для преобразователей давления общепромышленного исполнения являются резьбовые соединения G1/2″ DIN 16288 и M20x1,5 .

При подборе датчика тип соединения необходимо уточнять для обеспечения удобства монтажа в существующую систему без осуществления дополнительных работ (сварка, нарезка другого типа резьбы и т. п.)

Наиболее разнообразными по типам используемых соединений с процессом являются пищевая, целлюлозно-бумажная и химическая промышленности. К примеру, датчики давления KLAY-INSTRUMENTS , которые специально разработаны для этих отраслей, могут быть изготовлены с более чем 50 различными вариантами включения в процесс.

Выбор типа соединения наиболее актуален для пищевой промышленности, т. к. наряду с удобством, соединение в первую очередь должно обеспечивать «санитарность» и отсутствие «мертвых зон» для процесса санитарной обработки. Для датчиков давления, предназначенных для работы в контакте с пищевыми продуктами, существуют специальные сертификаты, подтверждающие их «санитарность» - Европейский сертификат EHEDG (European Hygienic Equipment Design Group) и Американский сертификат 3A Sanitary Standards. В России для датчиков, контактирующих с пищевыми средами, необходимо наличие Санитарно- эпидемиологического заключения. В ассортименте ООО «КИП-Сервис» требованиям данных сертификатов удовлетворяют датчики серий 8000-SAN и 2000-SAN компании KLAY-INSTRUMENTS .

5. Параметры окружающей среды

При подборе преобразователей давления следует учитывать следующие параметры окружающей среды:

  • Температура окружающей среды;
  • Влажность окружающей среды;
  • Наличие агрессивных сред;

Все параметры окружающей среды должны находиться в допустимых пределах для выбираемого датчика давления.

В случае наличия в окружающей среде агрессивных веществ, многие производители датчиков давления (в том числе KLAY-INSTRUMENTS BV) предлагают специальные исполнения, устойчивые к химическим воздействиям.

При работе в условиях повышенной влажности при частых перепадах температуры датчики давления многих производителей сталкиваются с проблемой коррозии сенсора давления. Основная причина коррозии сенсора датчиков давления - образование конденсата.

Датчикам избыточного давления, для измерения относительного давления, необходима связь сенсора с атмосферой. У недорогих датчиков сенсор связан с атмосферой за счет не герметичности корпуса (коннектор IP65); влажный воздух, при такой конструкции, после попадания внутрь датчика конденсируется при понижении температуры, тем самым постепенно вызывая коррозию измерительного элемента.

Для применения в процессах, где обычные датчики давления выходят из строя из-за коррозии сенсора, идеально подходят промышленные датчики давления KLAY-INSTRUMENTS . У преобразователей давления KLAY связь сенсора с атмосферой осуществляется через специальную «дышащую» мембрану из материала Gore-Tex , которая препятствует проникновению влаги внутрь датчика.

Кроме того, контакты сенсора всех датчиков KLAY по умолчанию залиты специальным синтетическим компаундом для дополнительной защиты датчика от коррозии.

6. Тип выходного сигнала датчика давления

Самым распространенным аналоговым выходным сигналом для датчиков давления является унифицированный токовый сигнал 4…20 мА.

Практически всегда 4 мА соответствуют нижнему значению диапазона измерений, а 20 мА - верхнему, но иногда встречается реверсивный сигнал (как правило на вакуумных диапазонах). Также в промышленности встречаются датчики давления с другими типами аналогового выходного сигнала, например: 0…1 В, 0…10 В, 0…20 мА, 0…5 мА, 0…5 В.

В номенклатуре датчиков давления, складируемых ООО «КИП-Сервис» , присутствуют только датчики с выходным сигналом 4…20 мА. Для получения другого типа выходного сигнала из 4…20 мА можно использовать универсальный преобразователь сигналов Seneca Z109 REG2 , который осуществляет взаимное преобразование практически всех типов унифицированных сигналов по току и напряжению, при этом обеспечивая гальваническую развязку.

Интеллектуальные датчики давления, помимо основного сигнала 4…20 мА, могут быть изготовлены в исполнении с поддержкой протокола HART , который может использоваться для настройки или получения информации о состоянии датчика и дополнительной информации.

Помимо аналогового выходного сигнала, интеллектуальные датчики давления также бывают с цифровым выходным сигналом. Это датчики с выходом по протоколу Profibus PA , который использует в своих устройствах компания SIEMENS.

7. Требуемая точность измерений

При расчете погрешности измерений датчиков давления, необходимо учитывать, что помимо основной погрешности существует дополнительная погрешность.

Основная погрешность - значение погрешности датчика давления относительно диапазона измерений, заявленная заводом изготовителем для нормальных условий эксплуатации. Как правило, под нормальными условиями эксплуатации понимают следующие условия:

  • Температура окружающей и рабочей среды - 20 °C;
  • Давление рабочей среды - в пределах диапазона измерений датчика;
  • Нормальное атмосферное давление;
  • Отстуствие турбулентности потока или других явлений, в месте установки датчика, способных повлиять на показания.

Дополнительная погрешность - значение погрешности, вызванное отклонением условий эксплуатации от нормальных, ввиду особенностей данного конкретного применения. Одной из основных составляющих дополнительной погрешности является температурная погрешность, которая указывается в технической документации к датчикам давления и может быть рассчитана для конкретного значения температуры рабочей среды.

Также дополнительную погрешность может вызывать турбулентность потока измеряемой среды, изменение плотности среды при гидростатическом измерении уровня, динамические нагрузки на оборудование во время перемещения в пространстве (судна, транспорт и т. д.) и другие возможные факторы.

При расчете погрешности измерительной системы в целом нужно также учитывать класс точности измерительного прибора - индикатора.

В качестве примера, рассчитаем полную погрешность измерений для следующей системы:

Дано:

  • Датчик давления KLAY-Instruments 8000-SAN-F-M(25) установлен на трубопроводе с продуктом;
  • Максимальное давление продукта - 4 бар, таким образом датчик настроен на диапазон 0…4 бар;
  • Максимальная температура продукта - 60 °C;
  • Турбулентность потока и другие факторы на точность не влияют.

Решение:

  • По паспортным данным, находим, что основная погрешность датчика 8000-SAN-F-(M25) составляет 0,2 %
  • Температурная погрешность по паспорту равна 0,015 %/°C, таким образом температурная ошибка при 60 °C равна 0,015 %/°C х (60 °C – 20 °C) = 0,6 %
  • 0,2% + 0,6% + 0,25% = 1,05% - полная относительная погрешность;
  • 1,05% х 4 бар = 0,042 бар - абсолютная погрешность измерений данной системы.

Любой потребитель при выборе датчиков давления ставит цель измерения давления с заявленной в тех документации точностью. Это является одним из критериев выбора датчика . В паспорте на датчик ГОСТы требуют указать допустимые значения основной погрешности измерений (+- от истинного давления). Эти значения по ГОСТ 22520 выбирают из ряда 0,075; 0,1; 0,15; 0,2; 0,25; 0,4; 0,5%; и т.д. в зависимости от технических возможностей изделия. Показатель основной погрешности нормируется для нормальных (т.е. идеальных) условий измерения. Нормальные условия определены по ГОСТ 12997 . Эти условия указаны также в методике поверки средства измерения. Например по МИ1997 для определения основной погрешности нужно установить следующие условия окр. среды:
- температура 23+-2оС,
- влажность от 30 до 80%,
- атм. давление 84-106,7 кПа,
- питание 36+-0,72В,
- отсутствие внешних магнитных полей и т.д.
Как видите условия для работы датчика при определении основной погрешности практически идеальные. Поэтому каждая поверочная лаборатория должна иметь возможность их регулирования. Например, для регулирования температуры в помещении используют приборы микроклимата (обогреватель, кондиционер и др.). Но какие показания с датчика мы получим в реальных условиях эксплуатации на объекте, например при +80оС или -30оС – это вопрос. Ответ на этот вопрос дает показатель дополнительной погрешности , который тоже нормируется в ТУ и ГОСТах.
Дополнительная погрешность - Отклонение функции преобразования, вызванное одной влияющей величиной (температура, давление, вибрация, радиопомехи, напряжение питания и пр.). Вычисляется как разность (без учета знака) между значением погрешности в рабочих (фактических) условиях измерения, и значением погрешности в нормальных условиях.
Конечно, на выходной сигнал влияют все факторы условий эксплуатации. Но для датчиков (преобразователей) давления наиболее существенным воздействием является отклонение температуры окружающего воздуха. В ГОСТ 22520 дополнительную погрешность нормируют на каждые 10С отклонения от нормальных условий (т.е от 23оС). Допуски по ГОСТ выглядят так:

Если датчик при испытаниях на воздействие температур вложился в эти допуски, то он «соответствует ГОСТ 22520», что в большинстве случаев и пишут в тех документации на датчик.
Давайте проанализируем точность датчика, который соответствует ГОСТ 22520, при воздействии температуры. Например датчик с основной погрешностью 0,5% и диапазоном рабочих температур -30..+80оС при 30оС может ошибаться на 0,5+0,45=0,95%, при 40оС (отклонение 2 дес. оС) 1,4% соответственно и наконец при 80оС мы получаем точность 3,2% - это сумма основной и дополнительной погрешности. Напомню, мы имеем дело с датчиком 0,5%, а при эксплуатации при 80оС получаем точность 3,2% (прибл. в 6 раз хуже), и такой датчик соответствует требованиям ГОСТ 22520.
Результаты выглядят не очень красиво и наверняка не порадуют покупателя датчика с заявленной точностью 0,5%. Поэтому большинство производителей делают термокомпенсацию выходного сигнала и ужесточают в ТУ на конкретный датчик требования к доп. погрешности от воздействия температуры. Например, для датчиков СЕНСОР-М мы в ТУ установили требование менее 0,1% на 10оС.
Цель термокомпенсации – свести доп. погрешность от температуры к нулю. Природу доп. погрешности от температуры и методы термокомпенсации датчиков мы подробно рассмотрим в следующей статье. В этой статье хотелось бы подвести итоги.
Нужно учитывать основную погрешность и дополнительную в зависимости от требуемой точности измерения в пределах температур эксплуатации датчика. Дополнительную погрешность каждого датчика можно найти в паспорте, руководстве по эксплуатации или ТУ на изделие. Если показатель доп. погрешности не установлен в тех. Документации на датчик, то он просто соответствует требованиям ГОСТ, которые мы анализировали выше.
Следует также различать диапазон термокомпенсации и диапазон рабочих температур . В диапазоне термокомпенсации доп. погрешность минимальная, при выходе за пределы диапазона термокомпенсации опять же работают требования

  • 2.5. Индукционные преобразователи
  • 2.6. Термоэлектрические преобразователи
  • 2.7. Пьезоэлектрические преобразователи
  • 2.8. Преобразователи с устройствами пространственного кодирования
  • 2.9. Гироскопические приборы и устройства
  • 2.9.1. Трехстепенные гироскопы
  • 2.9.2. Двухстепенные гироскопы
  • Глава 3. Волоконно-оптические датчики
  • 3.1. Взаимодействие оптического излучения с оптическими средами
  • 3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
  • 3.3. Амплитудные вод (вод с модуляцией интенсивности)
  • 3.4. Волоконно-оптические датчики поляризационного типа
  • 3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
  • 3.6. Характеристики микрорезонаторных вод физических величин
  • 3.7. Оптическое мультиплексирование вод физических величин
  • 3.8. Волоконно-оптические гироскопы
  • 3.9. Оптические элементы, используемые в волоконно-оптических датчиках
  • Глава 4. Особенности проектирования датчиков давления
  • 4.1. Задачи измерения давления
  • 4.2. Принципы построения аналоговых и дискретных датчиков давления
  • 4.3. Воздействие влияющих факторов на датчики давления
  • 4.4. Динамические погрешности при измерении переменных давлений
  • 4.5. Особенности эксплуатации и монтажа датчиков давления
  • Глава 5. Датчики температуры и тепловых потоков
  • 5.1. Физические основы температурных измерений
  • Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
  • 5.2. Погрешности температурных измерений контактными датчиками
  • 5.3. Основные задачи измерений тепловых потоков
  • 5.4. Классификация датчиков теплового потока
  • 5.5. Физические модели «тепловых» датчиков теплового потока
  • 5.6. Бесконтактные измерители температуры
  • 5.7. Тепловые фотоприемники
  • 5.8. Применение пироэлектриков
  • Глава 6. Компоненты и датчики, управляемые магнитным полем
  • 6.1. Магнитоупругие преобразователи
  • 6.2. Гальваномагниторекомбинационные преобразователи
  • 6.3. Датчики Виганда
  • Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
  • 7.1. Биосенсоры
  • 7.2. Датчики газового состава
  • 7.3. Химические измерения
  • 7.4. Медицинские датчики
  • Глава 8 «интеллектуальные» датчики
  • 8.1. Особенности «интеллектуальных» датчиков физических величин
  • 8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
  • 8.3. Микропроцессорные модули для интеллектуальной обработки информации
  • 8.4. Измерительный канал «интеллектуальных» датчиков
  • 8.5. Основные критерии выбора микроконтроллера
  • 8.6. Универсальный интерфейс преобразователя
  • 8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
  • 8.8. Коррекция ошибок в «интеллектуальных» датчиках
  • 8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
  • 8.10. Примеры реализации «интеллектуализации» датчиков
  • Глава 9. Сопряжение преобразователей с измерительной аппаратурой
  • 9.1. Схемы соединений измерительных преобразователей
  • 9.2. Температурная компенсация тензометров
  • 9.3. Температурная компенсация с помощью мостовых схем
  • 9.4. Установка тензометров
  • 9.5. Шумы
  • 9.6. Защитные кольца
  • 9.7. Случайные шумы
  • 9.8. Коэффициент шума
  • Глава 10 особенности исполнения и испытаний датчиков
  • 10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
  • 10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
  • 10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
  • 10.4. Надежность датчиков
  • Литература
  • Содержание
  • Глава 1. Особенности датчиковой аппаратуры 81
  • Глава 2. Принципы преобразования в датчиках 110
  • 2.9.1. Трехстепенные гироскопы 171
  • 2.9.1.6. Вибрационный гироскоп 176
  • 2.9.2. Двухстепенные гироскопы 177
  • Глава 3. Волоконно-оптические датчики 182
  • Глава 4. Особенности проектирования
  • Глава 5. Датчики температуры и
  • Глава 6. Компоненты и датчики,
  • Глава 7. Особенности проектирования
  • Глава 8 «интеллектуальные» датчики 347
  • Глава 9. Сопряжение преобразователей
  • Глава 10 особенности исполнения и
  • 5.2. Погрешности температурных измерений контактными датчиками

    Погрешности температурных измерений разобраны во многих монографиях и публикациях, число которых исчисляется сотнями и даже тысячами . Здесь рассмотрим эту проблему кратко, упрощенно, схематично на основе наиболее типичных измерительных ситуаций. Главная цель этого рассмотрения  ориентация на правильный выбор датчика, осмысленная, целесообразная организация измерительного эксперимента, обеспечивающая снижение; неизбежных погрешностей, а также возможность приближенной их оценки.

    Будем рассматривать здесь только погрешности теплового происхождения, обусловленные различными теплофизическими характеристиками датчика и измеряемого объекта, а также влиянием на формирование температурного поля датчика не только основного вида теплопередачи, благодаря которому температура чувствительного элемента датчика должна быть равна измеряемой температуре объекта, но и побочных видов теплопередачи, искажающих температурное поле датчика. Указанные причины приводят к тому, что при измерении стационарных температур установившееся значение температуры датчика отличается от измеряемой температуры объекта. Это отличие и есть погрешность, обусловленная побочными видами теплопередачи.

    При измерении нестационарных температур добавляется погрешность, которую принято называть динамической, обусловленная термической инерцией датчика. И в эту погрешность вносят свой вклад побочные виды теплопередачи.

    Кроме того, при наличии внешних источников энергии, в случае их взаимодействия с датчиком, возможно также искажение температуры датчика, носящее характер дополнительного нагрева, формирующего соответствующую погрешность датчика. К числу таких погрешностей относятся погрешности, обусловленные преобразованием кинетической энергии скоростного газового потока при его торможении на датчике в энтальпию датчика, а также нагрев чувствительного элемента термометра сопротивления измерительным током.

    Как уже отмечалось, измерение температуры поверхностей элементов конструкции осуществляется термометрами сопротивления и термопарами. Погрешности таких измерений тем меньше, чем меньше размеры датчика, чем меньше его собственная теплоемкость и термическое сопротивление, а также чем меньше влияние побочных видов теплопередачи (в данном случае основным процессом теплопередачи является кондуктивный теплообмен между измеряемой поверхностью и датчиком).

    Рассмотрим измерение температуры пластины толщиной L 0 плоским термометром сопротивления. По обе стороны пластины реализуются условия, представленные на рис. 5.3,a . Здесь α 1 и α 2  коэффициенты конвективного теплообмена поверхностей пластины со средой; Т 1 и Т 2 температура среды; Т С1 и Т С2  температура поверхностей пластины; l d толщина датчика. И датчик, и пластина, имеют соотносительно конечную толщину l d и l 0 , остальные размеры неограниченные. Таким образом, предполагается, что случай б) соответствует случаю расположения датчика со стороны, противоположной источнику нагрева, случай в) со стороны источника нагрева, а установка датчика не меняет коэффициенты теплообмена α 1 и α 2 .

    Предполагается, что температура, измеряемая датчиком, соответствует размещению чувствительного элемента в его центральном сечении (L D /2).

    Обозначим через Λ 0 и Λ d коэффициенты теплопроводности пластины и датчика соответственно.

    При измерении стационарной температуры пластины погрешность имеет вид:

    для случая б) :

    (5.12)

    для случая в) :

    (5.13)

    Поскольку L d d = P d , L 0 / Λ 0 = P 0 термические сопротивления датчика и пластины соответственно, можно переписать приведенные соотношения погрешности в терминах термических сопротивлений: случай б):

    (5.14)

    (5.15)

    При измерении нестационарных температур выражения для установившихся погрешностей в предположении, что измеряемая температура поверхности меняется по линейному закону Т С = T 0 + и α 2 = 0, имеют вид:

    случай б) :

    (5.16)

    случай в ):

    (5.17)

    (5.18)

    (5.19)

    Предположение о равенстве нулю коэффициента теплообмена со стороны, противоположной источнику нагрева, означает предположение об адиабатической изоляции пластины, т.е. предполагается, что все поступающее в нее тепло расходуется на ее нагрев. Случай этот в первом приближении реализуется при введении физической изоляции пластины со стороны, противоположной источнику нагрева, либо при весьма малых коэффициентах теплообмена (спокойный воздух, разреженная среда при полетах на больших высотах). Именно благодаря такому предположению, удалось получить столь простые выражения Т уст .

    Если пластинка тонка, а материал ее имеет высокий коэффициент теплопроводности, то Δ T уст почти не зависит от термического сопротивления пластины. Зависимость Δ T уст от α 1 носит гиперболический характер заметная зависимость при малых значениях α 1 и практически исчезает зависимость при α 1 >1000 Вт/м 2 град. Таким образом, значение погрешности в основном определяется теплофизическими параметрами датчика. Эти параметры для основных армирующих материалов поверхностных термометров сопротивления приведены в табл. 5.4.

    Таблица 5.4

    Значения С d , P d для материалов, армирующих поверхность термометров сопротивления

    Погрешность измерения температуры пластины термопарой рассмотрим для случая, представленного на рис. 5.4.

    Пластина толщинойL 0 находиться в теплообмене с окружающей средой по обе стороны пластины. Соответственно коэффициенты теплообмена со средой α 1 и α 2 и температура среды Т 1 и Т 2 . Радиус термоэлектродов термопары r d , теплопроводность термоэлектродов принимается одинаковой Λ d .

    Влияние термопары рассматриваем как действие источника тепла Q π R 2 L 0 (R- радиус источника).

    (5.20)

    Влияние термопары рассматриваем как действие источника тепла Q , занимающего в пластине область объемом π R 2 L 0 (R- радиус источника).

    Тогда температура пластины в зоне, удаленной от действия источника,

    (5.21)

    и относительная погрешность

    (5.22)

    где K 0 (μ ), K 1 (μ ) – модифицированные функции Бесселя нулевого и первого порядка;

    (5.23)

    (5.24)

    – коэффициент теплообмена термоэлектродов термопары. Здесь δ из и Λ из – соответственно толщина и коэффициент теплопроводности изоляции термоэлектродов термопары; α d – коэффициент теплообмена термоэлектродов с окружающей средой;

    (5.25)

    Погрешности термопары для случая, представленного на рис. 5.4, являются предельными. Они могут быть значительно снижены, если термоэлектроды сначала прокладываются по измеряемой изотермической поверхности на достаточной длине (критерием достаточности является отношение l / r d >50), а затем уже отходят от поверхности.

    Рассмотрение погрешностей датчика, измеряющего температуру среды, сведем к общей схеме, представленной на рис. 5.5. Среда может быть как газом, так и жидкостью.

    Обозначения на рис. 5.5 Т ср – температура измеряемой среды; T d – температура, измеренная датчиком; Т ст – температура корпуса датчика. Предполагается, что Т ср > T d > T ст > T к α ср - коэффициент конвективного теплообмена между средой и датчиком; ε d , ε ст – коэффициенты черноты поверхности датчика и стенки; q конв , q конд , q рад – конвективный, кондуктивный, радиционный тепловые потоки (два последних характеризуют тепловые потери датчика для рассматриваемой измерительной ситуации);V ср – скорость набегающего потока.

    Для упрощения рассмотрения распределение температуры и скорости среды в магистрали принимается равномерным. Датчик рассматривается как стержень с равномерным распределением теплофизических характеристик (для реальных конструкций должны быть приняты эффективные значения). Стержень и является измерителем температуры среды. В стационарном случае, если бы отсутствовали теплопотери от стержня к более холодному корпусу (q конд) и потери, обусловленные лучеиспусканием к более холодным стенкам (q рад) и если бы при этом отсутствовали погрешности, обусловленные торможением, то датчик измерял бы температуру среды. Если температура среды меняется во времени, то имеет место и динамическая погрешность, обусловленная термической инерцией датчика. Реально же погрешности датчика формируются перечисленными компонентами:

    Совместное проявление погрешностей, обусловленных кондуктивными теплопотерями и динамической, можно назвать статико-динамической погрешностью

    (5.27)

    При сформулированных упрощениях эта погрешность

    (5.28)

    (предполагается скачкообразное изменение температуры на датчике до Т ср от первоначального значения Т d (0)=0). Здесь

    (5.29)

    – температура конвективного нагрева датчика;
    –удельная теплоемкость, удельный вес, площадь поперечного сечения стержня датчика;

    (5.30)

    – температура кондуктивного теплообмена стержня датчика; а – эффективный коэффициент температуропроводности стержня датчика; L длина стержня.

    Видно, что наличие теплоотвода от стержня к корпусу датчика приводит к образованию статической погрешности

    (5.31)

    Видно также, что динамическая погрешность уменьшается при наличии кондуктивного теплообмена.

    В самом деле, темп изменения температуры стержня датчика

    (5.32)

    а термическая инерция  есть величина, обратная темпу.

    В зависимости от условий теплообмена и структуры стержня

    , (5.33)

    где ψ(α dk )  коэффициент неравномерности температурного поля стержня; a dt , коэффициент «кондуктивной теплоотдачи» стержня; Ф  тепловой фактор. Поскольку

    (5.34)

    (5.35)

    Величина, обратная темпу М называется коэффициентом термической инерции

    ε = 1/М, (5.36)

    а зависимость ε (a dk ) характеристической кривой термической инерции.

    Таким образом, погрешность, обусловленная совместным проявлением термической инерции и теплоотвода, зависит от коэффициентов конвективной и кондуктивной теплоотдачи, теплового фактора Ф и коэффициента неравномерности температурного поля стержня ψ(α dk ).

    Общая погрешность при измерениях с ростом теплоотвода к корпусу растет, ибо при наличии теплоотвода установившееся значение температуры тем быстрее реализуется, чем больше оно искажено статической погрешностью теплоотвода.

    Определение величин статических погрешностей и характеристических кривых термической инерции сводится к нахождению трех параметров, характеризующих датчик: α dt , ψ(α dk ) , Φ . Величина ψ(α dk ) может быть представлена в виде

    (5.37)

    (5.38)

     эквивалент термического сопротивления стержня датчика . Для формы стержня в виде пластины n = 3, в виде цилиндра  n = 4, в виде шара  n = 5 (строго справедливо для условий регулярного теплового режима второго рода).

    Если стержень имеет неоднородную структуру  однородную оболочку (защитный кожух) с ядром с низкой теплопроводностью и заметным термическим сопротивлением, то предельное значение коэффициента термической инерции определяется ядром стержня (ε ∞ = ХФ), а статическая погрешность  теплопроводностью оболочки. При этом величина α dt легко рассчитывается при знании геометрических размеров оболочки и коэффициента теплопроводности материала кожуха.

    Сводные данные по величинам статико-динамических параметров некоторых представительных конструктивных типов датчиков приведены в табл. 5.5.

    Таблица 5.5

    Статико-динамические параметры датчиков температуры

    Тип датчика

    α dt , Вт/(м 2 К)

    Вт·с/(м 2 К)

    10 4 ,

    Динамическая погрешность при знании коэффициента термической инерции ε оценивается по формуле:

    (5.39)

    где b – скорость изменения температуры.

    Погрешность, обусловленная радиационным теплообменом датчика со стенками магистрали, имеющими температуру ниже измеряемой температуры среды, может быть оценена из следующего рассмотрения.

    Если газ, температура которого измеряется, прозрачен, то удельный тепловой поток от датчика к стенкам составляет:

    (5.40)

    (5.41)

    – коэффициент лучистого теплообмена между датчиком и стенкой (ε s – коэффициент испускания абсолютно черного тела); s d / s ст отношение площадей поверхности датчика и стенки, находящихся в радиационном теплообмене.

    Если рассмотреть стационарную задачу равенства теплового потока, подводимого к датчику за счет конвекции, и теплопотерь к стенкам за счет радиации, то совместное решение q конв и q рад относительно T d позволяет получить установившееся значение T d и

    (5.42)

    Эффективным способом снижения погрешностей, обусловленных радиационными потерями, (почти на порядок) является введение между датчиком и стенками антирадиационного экрана. Необходимо также иметь в виду, что при температурах среды выше плюс 500°С появляется собственное излучение газа, которое само оказывает экранирующее действие. Примерно такого же эффекта можно добиться, введя покрытия чувствительного элемента датчика, имеющие малые коэффициенты черноты (серебро, золото, платина).

    При торможении потока на датчике, датчик измеряет температуру, превышающую равновесную термодинамическую температуру газового потока, но и не достигающую значения температуры торможения, так как торможение потока на датчике является неполным. Если Tср  равновесная термодинамическая температура газового потока, а Т*  температура торможения

    (5.43)

    где К = с з / c v - отношение удельных теплоемкостей газа при постоянном давлении и постоянном объеме; М = V ср / V зв число Маха, т.е. отношение скорости потока к местной скорости звука, то

    (5.44)

    где r  коэффициент восстановления, характеризующий неполноту преобразования кинетической энергии потока на датчике в тепловую энергию.

    Наиболее благоприятным с точки зрения определимости и стабильности коэффициента восстановления является продольное обтекание тел, при котором в широком диапазоне чисел Маха и Рейнольдса наблюдается независимость коэффициента r .

    Так для пластинчатого термометра значение r составляет 0,85. Проточные чувствительные элементы датчиков на тонкостенной трубке малого диаметра имеют r = 0,86...0,9, у продольно обтекаемых проволочных термопар r = 0,85... 0,87.

    При поперечном обтекании открытых проволочных термопар r ≈ 0,68 ± 0,08.

    Эффективным способом повышения коэффициента восстановления является использование в датчиках камер торможения (открытый вход с уменьшенным по площади выходным отверстием в 25...50 раз). При продольном обтекании термопары в камере торможения r ≈ 0,98, при поперечном r ≈ 0,92... 0,96.

    Если рабочий спай термопары выполнен в виде шарика, превосходящего по диаметру диаметр термоэлектродов, то и при продольном, и при поперечном обтекании r ≈ 0,75.

    Поправка для определения статической температуры потока по измеренной равновесной (или погрешность в случае ее не учета) имеет отрицательный знак и равна:

    (5.45)

    В отдельном рассмотрении нуждаются погрешности, обусловленные неравномерностью распределения температуры по сечению потока при измерении распределенными по поверхности чувствительными элементами.

    Значительна роль погрешностей при высокотемпературных измерениях, обусловленных потерей изоляции армирующих материалов.

    Для термометров сопротивления должна приниматься во внимание возможность нагрева чувствительного элемента термометра измерительным током и связанная c этим погрешность, величина которой зависит как от интенсивности теплообмена термометра с окружающей средой, так и от термического сопротивления и теплоемкости армирующих чувствительный элемент материалов.

    При измерениях температуры в полях проникающей радиации должны учитываться погрешности, обусловленные как мгновенными, так и интегральными эффектами, зависящими от величины излучения.

    Следует понимать, что получение информации, необходимой для оценки погрешностей, отнюдь не легче, чем получение основной информации. Поэтому нередко прибегают к оценке предельных значений погрешностей, для того чтобы убедиться в их допустимости.

    Однако главное состоит в том, чтобы понимать природу погрешностей и закономерности их проявления, так как в этом ключ к целесообразному выбору датчика и надлежащей организации измерений.

    Основной качественной характеристикой любого датчика КИП является погрешность измерения контролируемого параметра. Погрешность измерения прибора это величина расхождения между тем, что показал (измерил) датчик КИП и тем, что есть на самом деле. Погрешность измерения для каждого конкретного типа датчика указывается в сопроводительной документации (паспорт, инструкция по эксплуатации, методика поверки), которая поставляется вместе с данным датчиком.

    По форме представления погрешности делятся на абсолютную , относительную и приведенную погрешности.

    Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

    Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).

    Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

    Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

    Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.


    Нормирующее значение Хn зависит от типа шкалы датчика КИП:

    1. Если шкала датчика односторонняя и нижний предел измерения равен нулю (например, шкала датчика от 0 до 150 м3/ч), то Хn принимается равным верхнему пределу измерения (в нашем случае Хn = 150 м3/ч).
    2. Если шкала датчика односторонняя, но нижний предел измерения не равен нулю (например, шкала датчика от 30 до 150 м3/ч), то Хn принимается равным разности верхнего и нижнего пределов измерения (в нашем случае Хn = 150-30 = 120 м3/ч).
    3. Если шкала датчика двухсторонняя (например, от -50 до +150 ˚С), то Хn равно ширине диапазона измерения датчика (в нашем случае Хn = 50+150 = 200 ˚С).

    Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

    Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

    У некоторых приборов в паспортах вместо погрешности измерения указывают класс точности. К таким приборам относятся механические манометры, показывающие биметаллические термометры, термостаты, указатели расхода, стрелочные амперметры и вольтметры для щитового монтажа и т.п. Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. При этом класс точности не является непосредственной характеристикой точности измерений, выполняемых этим прибором, он лишь указывает на возможную инструментальную составляющую погрешности измерения. Класс точности прибора наноситься на его шкалу или корпус по ГОСТ 8.401-80.

    При присвоении прибору класса точности он выбирается из ряда 1·10 n ; 1,5·10 n ; (1,6·10 n); 2·10 n ; 2,5·10 n ; (3·10 n); 4·10 n ; 5·10 n ; 6·10 n ; (где n =1, 0, -1, -2, и т. д.). Значения классов точности, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

    Определение погрешности измерения датчиков выполняют, например, при их периодической поверке и калибровке. С помощью различных задатчиков и калибраторов с высокой точностью генерируют определенные значения той или иной физической величины и сличают показания поверяемого датчика с показаниями образцового средства измерения, на которое подается то же самое значение физической величины. Причем погрешность измерения датчика контролируется как при прямом ходе (увеличение измеряемой физической величины от минимума до максимума шкалы), так и при обратном ходе (уменьшение измеряемой величины от максимума до минимума шкалы). Это связано с тем, что из-за упругих свойств чувствительного элемента датчика (мембрана датчика давления), различной интенсивности протекания химических реакций (электрохимический сенсор), тепловой инерции и т.п. показания датчика будут различны в зависимости от того, как меняется воздействующая на датчик физическая величина: уменьшается или увеличивается.

    Довольно часто в соответствии с методикой поверки отсчет показаний датчика при поверке нужно выполнять не по его дисплею или шкале, а по величине выходного сигнала, например, по величине выходного тока токового выхода 4…20 мА.

    У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.
    Во-первых, необходимо вычислить каким должен быть выходной ток датчика Iвых.т при давлении Рт = 125 mbar.
    Iвых.т = Iш.вых.мин + ((Iш.вых.макс – Iш.вых.мин)/(Рш.макс – Рш.мин))*Рт
    где Iвых.т – выходной ток датчика при заданном давлении 125 mbar, мА.
    Iш.вых.мин – минимальный выходной ток датчика, мА. Для датчика с выходом 4…20 мА Iш.вых.мин = 4 мА, для датчика с выходом 0…5 или 0…20 мА Iш.вых.мин = 0.
    Iш.вых.макс - максимальный выходной ток датчика, мА. Для датчика с выходом 0…20 или 4…20 мА Iш.вых.макс = 20 мА, для датчика с выходом 0…5 мА Iш.вых.макс = 5 мА.
    Рш.макс – максимум шкалы датчика давления, mbar. Рш.макс = 250 mbar.
    Рш.мин – минимум шкалы датчика давления, mbar. Рш.мин = 0 mbar.
    Рт – поданное с калибратора на датчик давление, mbar. Рт = 125 mbar.
    Подставив известные значения получим:
    Iвых.т = 4 + ((20-4)/(250-0))*125 = 12 мА
    То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе должно быть 12 мА. Считаем, в каких пределах может изменяться расчетное значение выходного тока, учитывая, что основная относительная погрешность измерения равна ± 5%.
    ΔIвых.т =12 ± (12*5%)/100% = (12 ± 0,6) мА
    То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе выходной сигнал должен быть в пределах от 11,40 до 12,60 мА. По условию задачи мы имеем выходной сигнал 12,62 мА, значит наш датчик не уложился в определенную производителем погрешность измерения и требует настройки.
    Основная относительная погрешность измерения нашего датчика равна:
    δ = ((12,62 – 12,00)/12,00)*100% = 5,17%

    Поверка и калибровка приборов КИП должна выполнятся при нормальных условиях окружающей среды по атмосферному давлению, влажности и температуре и при номинальном напряжении питания датчика, так как более высокие или низкие температура и напряжение питания могут привезти к появлению дополнительной погрешности измерения. Условия проведения поверки указываются в методике поверки. Приборы, погрешность измерения которых не уложилась в установленные методикой поверки рамки либо заново регулируют и настраивают, после чего они повторно проходят поверку, либо, если настройка не принесла результатов, например, из-за старения или чрезмерной деформации сенсора, ремонтируются. Если ремонт невозможен то приборы бракуются и выводятся из эксплуатации.

    Если все же приборы удалось отремонтировать то они подвергаются уже не периодической, а первичной поверке с выполнением всех изложенных в методике поверки пунктов для данного вида поверки. В некоторых случаях прибор специально подвергают незначительному ремонту () так как по методике поверки выполнить первичную поверку оказывается существенно легче и дешевле чем периодическую, из-за различий в наборе образцовых средств измерения, которые используются при периодической и первичной поверках.

    Для закрепления и проверки полученных знаний рекомендую выполнить .

    Пружинным манометрам свойственны следующие инструмен­тальные погрешности.

    1. Погрешности характеристики (шкаловые погрешности), вызываемые неполной взаимной компенса­цией нелинейности характеристик чувствительного элемента и передаточно-множительного механизма, а в датчиках - и электрического преобразователя. Этипогрешности минимизируют путем индивидуальной регулировки механизма в изготовленных образцах приборов и датчиков.

    Существуют специальные механизмы, позволяющие свести к нулю погрешности во многих точках характеристики. Примером такого механизма служит механический корректор шкаловых погрешностей, в котором ролик скользит по ку­лачку, выполненному из гибкой ленты; кривизна кулачка может плавно изменяться за счет местного изгиба ленты с помощью регулировочных винтов (рис. 6.15.). Ролик укреплен на рычаге, который при своем повороте сообщает выходной оси дополнительное угловое перемещение того или иного знака. Знак дополнительного перемещения зависит от того, попадает ли ролик на выступ или впадину кулачка.

    2. Погрешности, обусловленные влиянием вредных сил, к чис­лу которых относятся, прежде всего, силы трения в передаточно-множительном механизме и электрическом преобразователе, си­лы от неуравновешенности подвижных частей, электромагнитные или электростатические силы от взаимного притяжения или от­талкивания подвижных и неподвижных частей электрического преобразователя. Уменьшение этих погрешностей возможно сле­дующими путями:

    а) снижением вредных сил за счет улучшения качества опор, тщательной балансировки механизма и т. п. Повышение точно­сти балансировки позволяет ослабить натяги пружин, выбираю­щих люфты, что в свою очередь способствует уменьшению сил трения;

    б) увеличением эффективной площади чувствительного эле­мента;

    в) применением дифференциальных электрических преобразо­вателей, у которых в начальном положении силы притяжения взаимно скомпенсированы;

    г) применением следящих систем, разгружающих чувстви­тельный элемент от сил трения.

    3. Температурные погрешности манометров, вызываемые влиянием температуры окружающей среды на физические пара­метры материалов и геометрические размеры деталей.

    Наиболее существенно температура влияет на модуль упруго­сти чувствительного элемента.

    Линеаризованная зависимость модуля упругости от темпера­туры имеет вид

    н/м 2 ,

    где Е о - начальное значение Е (при 6 = 9о) в н/м 2 ;

    - температурный коэффициент Е;

    Характеристика чувствительного элемента дифференциально­го манометра связана с модулем упругости соотношением

    Относительная величина температурной погрешности


    Влияние температуры на геометрические размеры чувстви­тельного элемента и передаточно-множительного механизма вы­ражается зависимостью

    м,

    где - геометрический размер;

    Коэффициент линейного расширения.

    Это влияние сказывается на показаниях прибора значительно слабее благодаря тому, что температурные коэффициенты линейного расширения металлов на порядок меньше, чем темпера­турные коэффициенты модуля упругости.

    Температура влияет также на величину остаточного давления р ост внутри анероидов (чувствительных вакуумированных эле­ментов), применяемых в манометрах абсолютного давления. При изменении температуры на величину возникает погрешность

    . Наконец, при изменении температуры может изменяться выходной параметр R, L, М или С электрического пре­образователя.

    Уменьшение температурных погрешностей достигается следу­ющими способами:

    а) изготовлением чувствительных элементов из сплава типа элинвар, обладающих весьма малым температурным коэффици­ентом модуля упругости;

    б) снижением остаточного давления внутри анероидов путем более тщательного вакуумирования их;

    в) введением в конструкцию прибора специальных биметал­лических компенсаторов, которые вызывают в зависимости от температуры приращение показания прибора, равное по вели­чине и противоположное по знаку температурной погрешности прибора.

    Различают биметаллические компенсаторы 1 и 2-го рода.

    Действие компенсаторов 1-го рода (рис. 6.16, а) основано на введении последовательно с упругим чувствительным элементом кинематического звена, выполненного в виде консольно закреп­ленной биметаллической пластины, линейное перемещение сво­бодного конца которой , пропорциональное приращению тем­пературы, складывается с прогибом s упругого чувствительного элемента (или вычитается из него). Расчет величины для би­металлического компенсатора пластинчатого типа (см. рис. 6.19, а) производится по формуле (см. в гл. II):

    м,

    где - толщина биметаллической пластины в м;

    - коэффициенты линейного расширения компонент

    биметалла;

    Длина пластины в м;

    - приращение температуры °С.

    Компенсатор 1-го рода компенсирует только аддитивную тем­пературную погрешность.

    Действие компенсаторов 2-го рода (см. рис. 6.16,6) основано на введении в кривошип кинематического звена, выполненного в виде биметаллической пластины, перемещение свободного конца которой, пропорциональное приращению температуры, вызывает увеличение или уменьшение плеча кривошипа на величину , которая определяется так же, как и величина As для компенса­тора 1-го рода, по формуле (6.16). Характер влияния компенса­тора 2-го рода на приращение показаний прибора зависит от на­чального угла установки кривошипа (см. рис. 6.16, а). Если этот угол близок к нулю, т. е. если при s = 0 кривошип примерно перпендикулярен шатуну, то приращение плеча кривошипа почти не вызывает начального поворота кривошипа, а лишь из­меняет передаточное отношение механизма. Поэтому при = 0 вводимая компенсатором 2-го рода поправка носит чисто муль­типликативный характер.

    г) применением дифференциальных электрических преобразо­вателей, выдающих два переменных параметра z 1 и z 2 и вклю­ченных по схеме делителя напряжений; при работе на высокоомную нагрузку дифференциальный преобразователь не имеет тем­пературной погрешности, так как величина снимаемого напряже­ния от величины параметров z 1 и z 2 не зависит, а определяется соотношением z 1 / z 2 важно обеспечить лишь равенство темпера­турных коэффициентов параметров z 1 и z 2 ,

    д) применением электрических компенсаторов, выполненных в виде проволочного или полупроводникового термосопротивлений и включаемых во внешнюю электрическую цепь так, чтобы ском­пенсировать температурные погрешности, вносимые всеми остальными элементами датчика. Варианты таких схем рассмат­риваются в гл. VII.

    4. Погрешности от люфтов в опорах, шарнирах и направля­ющих передаточно-множительного механизма. Для устранения погрешностей от люфтов на выходной оси передаточно-множи­тельного механизма устанавливается спиральная пружина (во­лосок), которой дается начальный натяг. Величина натяга вы­бирается из тех соображений, чтобы во всем диапазоне углов поворота выходной оси момент, создаваемый пружиной вокруг своей оси, несколько превышал приведенный момент небаланса, умноженный на максимальную величину вибрационной перегруз­ки или перегрузки от линейных ускорений. Слишком большой натяг пружины нежелателен, так как он приводит к увеличению погрешностей от трения.

    5. Погрешности от гистерезиса и упругого последействия. Сни­жение этих погрешностей достигается выбором материалов с хо­рошими упругими свойствами и улучшением режимов их терми­ческой обработки. Наименьшими погрешностями от гистерезиса и упругого последействия обладают чувствительные элементы, изготовленные из сплавов типа 47ХНМ и бериллиевой бронзы.

    6. Погрешности от влияния давления окружающей среды. Эти погрешности возникают в манометрах со сдвоенными чувстви­тельными элементами (см. рис. 3.6 и 6.8) в случае неравенства их эффективных площадей. Для уменьшения погрешностей подби­рают чувствительные элементы с возможно более близкими эф­фективными площадями.



    2024 stdpro.ru. Сайт о правильном строительстве.