Объём и площадь поверхности правильной четырёхугольной призмы. Определение призмы, ее элементы и виды. Основные характеристики фигуры Площадь сечения правильной четырехугольной призмы формула

С помощью этого видеоурока все желающие смогут самостоятельно познакомиться с темой «Понятие многогранника. Призма. Площадь поверхности призмы». В ходе занятия учитель расскажет о том, что представляют собой такие геометрические фигуры, как многогранник и призмы, даст соответствующие определения и объяснит их суть на конкретных примерах.

С помощью этого урока все желающие смогут самостоятельно познакомиться с темой «Понятие многогранника. Призма. Площадь поверхности призмы».

Определение . Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранной поверхностью или многогранником.

Рассмотрим следующие примеры многогранников:

1. Тетраэдр ABCD - это поверхность, составленная из четырех треугольников: АВС , ADB , BDC и ADC (рис. 1).

Рис. 1

2. Параллелепипед ABCDA 1 B 1 C 1 D 1 - это поверхность, составленная из шести параллелограммов (рис. 2).

Рис. 2

Основными элементами многогранника являются грани, ребра, вершины.

Грани - это многоугольники, составляющие многогранник.

Ребра - это стороны граней.

Вершины - это концы ребер.

Рассмотрим тетраэдр ABCD (рис. 1). Укажем его основные элементы.

Грани : треугольники АВС, ADB, BDC, ADC .

Ребра : АВ, АС, ВС, DC , AD , BD .

Вершины : А, В, С, D .

Рассмотрим параллелепипед ABCDA 1 B 1 C 1 D 1 (рис. 2).

Грани : параллелограммы АА 1 D 1 D, D 1 DСС 1 , ВВ 1 С 1 С, АА 1 В 1 В, ABCD, A 1 B 1 C 1 D 1 .

Ребра : АА 1 , ВВ 1 , СС 1 , DD 1 , AD, A 1 D 1 , B 1 C 1 , BC, AB, A 1 B 1 , D 1 C 1 , DC.

Вершины : A, B, C, D, A 1 ,B 1 ,C 1 ,D 1 .

Важным частным случаем многогранника является призма.

АВСА 1 В 1 С 1 (рис. 3).

Рис. 3

Равные треугольники АВС и А 1 В 1 С 1 расположены в параллельных плоскостях α и β так, что ребра АА 1 , ВВ 1 , СС 1 параллельны.

То есть АВСА 1 В 1 С 1 - треугольная призма, если:

1) Треугольники АВС и А 1 В 1 С 1 равны.

2) Треугольники АВС и А 1 В 1 С 1 расположены в параллельных плоскостях α и β: ABC А 1 B 1 C (α ║ β).

3) Ребра АА 1 , ВВ 1 , СС 1 параллельны.

АВС и А 1 В 1 С 1 - основания призмы.

АА 1 , ВВ 1 , СС 1 - боковые ребра призмы.

Если с произвольной точки Н 1 одной плоскости (например, β) опустить перпендикуляр НН 1 на плоскость α, то этот перпендикуляр называется высотой призмы.

Определение . Если боковые ребра перпендикулярны к основаниям, то призма называется прямой, а в противном случае - наклонной.

Рассмотрим треугольную призму АВСА 1 В 1 С 1 (рис. 4). Эта призма - прямая. То есть, ее боковые ребра перпендикулярны основаниям.

Например, ребро АА 1 перпендикулярно плоскости АВС . Ребро АА 1 является высотой этой призмы.

Рис. 4

Заметим, что боковая грань АА 1 В 1 В перпендикулярна к основаниям АВС и А 1 В 1 С 1 , так как она проходит через перпендикуляр АА 1 к основаниям.

Теперь рассмотрим наклонную призму АВСА 1 В 1 С 1 (рис. 5). Здесь боковое ребро не перпендикулярно плоскости основания. Если опустить из точки А 1 перпендикуляр А 1 Н на АВС , то этот перпендикуляр будет высотой призмы. Заметим, что отрезок АН - это проекция отрезка АА 1 на плоскость АВС .

Тогда угол между прямой АА 1 и плоскостью АВС это угол между прямой АА 1 и её АН проекцией на плоскость, то есть угол А 1 АН .

Рис. 5

Рассмотрим четырехугольную призму ABCDA 1 B 1 C 1 D 1 (рис. 6). Рассмотрим, как она получается.

1) Четырехугольник ABCD равен четырехугольнику A 1 B 1 C 1 D 1 : ABCD = A 1 B 1 C 1 D 1 .

2) Четырехугольники ABCD и A 1 B 1 C 1 D 1 ABC А 1 B 1 C (α ║ β).

3) Четырехугольники ABCD и A 1 B 1 C 1 D 1 расположены так, что боковые ребра параллельны, то есть: АА 1 ║ВВ 1 ║СС 1 ║DD 1 .

Определение . Диагональ призмы - это отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Например, АС 1 - диагональ четырехугольной призмы ABCDA 1 B 1 C 1 D 1 .

Определение . Если боковое ребро АА 1 перпендикулярно плоскости основания, то такая призма называется прямой.

Рис. 6

Частным случаем четырёхугольной призмы является известный нам параллелепипед. Параллелепипед ABCDA 1 B 1 C 1 D 1 изображен на рис. 7.

Рассмотрим, как он устроен:

1) В основаниях лежат равные фигуры. В данном случае - равные параллелограммы ABCD и A 1 B 1 C 1 D 1 : ABCD = A 1 B 1 C 1 D 1 .

2) Параллелограммы ABCD и A 1 B 1 C 1 D 1 лежат в параллельных плоскостях α и β: ABC A 1 B 1 C 1 (α ║ β).

3) Параллелограммы ABCD и A 1 B 1 C 1 D 1 расположены таким образом, что боковые ребра параллельны между собой: АА 1 ║ВВ 1 ║СС 1 ║DD 1 .

Рис. 7

Из точки А 1 опустим перпендикуляр АН на плоскость АВС . Отрезок А 1 Н является высотой.

Рассмотрим, как устроена шестиугольная призма (рис. 8).

1) В основании лежат равные шестиугольники ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 : ABCDEF = A 1 B 1 C 1 D 1 E 1 F 1 .

2) Плоскости шестиугольников ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 параллельны, то есть основания лежат в параллельных плоскостях: ABC А 1 B 1 C (α ║ β).

3) Шестиугольники ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 расположены так, что все боковые ребра между собой параллельны: АА 1 ║ВВ 1 …║FF 1 .

Рис. 8

Определение . Если какое-нибудь боковое ребро перпендикулярно плоскости основания, то такая шестиугольная призма называется прямой.

Определение . Прямая призма называется правильной, если её основания - правильные многоугольники.

Рассмотрим правильную треугольную призму АВСА 1 В 1 С 1 .

Рис. 9

Треугольная призма АВСА 1 В 1 С 1 - правильная, это значит, что в основаниях лежат правильные треугольники, то есть все стороны этих треугольников равны. Также данная призма - прямая. Значит, боковое ребро перпендикулярно плоскости основания. А это значит, что все боковые грани - равные прямоугольники.

Итак, если треугольная призма АВСА 1 В 1 С 1 - правильная, то:

1) Боковое ребро перпендикулярно плоскости основания, то есть является высотой: AA 1 АВС .

2) В основании лежит правильный треугольник: ∆АВС - правильный.

Определение . Площадью полной поверхности призмы называется сумма площадей всех её граней. Обозначается S полн .

Определение . Площадью боковой поверхности называется сумма площадей всех боковых граней. Обозначается S бок .

Призма имеет два основания. Тогда площадь полной поверхности призмы:

S полн = S бок + 2S осн.

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство проведем на примере треугольной призмы.

Дано : АВСА 1 В 1 С 1 - прямая призма, т. е. АА 1 АВС .

АА 1 = h.

Доказать : S бок = Р осн ∙ h.

Рис. 10

Доказательство .

Треугольная призма АВСА 1 В 1 С 1 - прямая, значит, АА 1 В 1 В, АА 1 С 1 С, ВВ 1 С 1 С - прямоугольники.

Найдем площадь боковой поверхности как сумму площадей прямоугольников АА 1 В 1 В, АА 1 С 1 С, ВВ 1 С 1 С:

S бок = АВ∙ h + ВС∙ h + СА∙ h = (AB + ВС + CА) ∙ h = P осн ∙ h.

Получаем, S бок = Р осн ∙ h, что и требовалось доказать.

Мы познакомились с многогранниками, призмой, её разновидностями. Доказали теорему о боковой поверхности призмы. На следующем уроке мы будем решать задачи на призму.

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил.
  1. Якласс ().
  2. Shkolo.ru ().
  3. Старая школа ().
  4. WikiHow ().
  1. Какое минимальное число граней может иметь призма? Сколько вершин, ребер у такой призмы?
  2. Существует ли призма, которая имеет в точности 100 ребер?
  3. Боковое ребро наклонено к плоскости основания под углом 60°. Найдите высоту призмы, если боковое ребро равно 6 см.
  4. В прямой треугольной призме все ребра равны. Площадь ее боковой поверхности составляет 27 см 2 . Найдите площадь полной поверхности призмы.

Общие сведения о прямой призме

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S = a 1 l + a 2 l + ... + a n l = pl,

где a 1 ,а n - длины ребер основания, р - периметр основания призмы, а I - длина боковых ребер. Теорема доказана.

Практическое задание

Задача (22) . В наклонной призме проведено сечение , перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 411). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Обобщение пройденной темы

А теперь давайте попробуем с вами подвести итоги пройденной темы о призме и вспомним, какими свойствами обладает призма.


Свойства призмы

Во-первых, у призмы все ее основания являются равными многоугольниками;
Во-вторых, у призмы все ее боковые грани являются параллелограммами;
В-третьих, у такой многогранной фигуры, как призма, все боковые ребра равны;

Также, следует вспомнить, что такие многогранники, как призмы могут быть прямыми и наклонными.

Какая призма называется прямой?

Если же у призмы боковое ребро расположено перпендикулярно плоскости ее основания, то такая призма носит название прямой.

Не будет лишним напомнить, что боковые грани прямой призмы являются прямоугольниками.

Какую призму называют наклонной?

А вот если же у призмы боковое ребро не расположено перпендикулярно плоскости ее основания, то можно смело утверждать, что это наклонная призма.

Какую призму называют правильной?



Если у основания прямой призмы лежит правильный многоугольник, то такая призма является правильной.

Теперь вспомним свойства, которыми обладает правильная призма.

Свойства правильной призмы

Во-первых, всегда основаниями правильной призмы служат правильные многоугольники;
Во-вторых, если рассматривать у правильной призмы боковые грани, то они всегда бывают равными прямоугольниками;
В-третьих, если сравнивать размеры боковых ребер, то в правильной призме они всегда равны.
В-четвертых, правильная призма всегда прямая;
В-пятых, если же в правильной призмы боковые грани имеют форму квадратов, то такую фигуру, как правило, называют полуправильным многоугольником.

Сечение призмы

А теперь давайте рассмотрим сечение призмы:



Домашнее задание

А теперь давайте попробуем закрепить изученную тему с помощью решения задач.

Давайте нарисуем наклонную треугольную призму, у которой расстояние между ее ребрами будет равно: 3 см, 4 см и 5 см, а боковая поверхность этой призмы будет равна 60 см2. Имея такие параметры, найдите боковое ребро данной призмы.

А вы знаете, что геометрические фигуры постоянно окружают нас не только на уроках геометрии, но и в повседневной жизни встречаются предметы, которые напоминают ту или иную геометрическую фигуру.



У каждого дома, в школе или на работе имеется компьютер, системный блок которого имеет форму прямой призмы.

Если вы возьмете в руки простой карандаш, то вы увидите, что основной частью карандаша, является призма.

Идя по центральной улице города, мы видим, что у нас под ногами лежит плитка, которая имеет форму шестиугольной призмы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Лекция: Призма, её основания, боковые рёбра, высота, боковая поверхность; прямая призма; правильная призма


Призма


Если Вы вместе с нами выучили плоские фигуры из прошлых вопросов, значит, полностью готовы к изучению объемных фигур. Первое объемное тело, которое мы выучим, будет призма.


Призма – это объемное тело, которое имеет большое количество граней.

Данная фигура имеет в основаниях два многоугольника, которые расположены в параллельных плоскостях, а все боковые грани имеют форму параллелограмма.


Рис 1. Рис. 2


Итак, давайте разберемся, из чего состоит призма. Для этого обратите внимание на Рис.1

Как уже говорилось ранее, у призмы есть два основания, которые параллельны друг другу – это пятиугольники ABCEF и GMNJK. Более того, данные многоугольники равны между собой.

Все остальные грани призмы называются боковыми гранями – они состоят из параллелограммов. Например, BMNC, AGKF, FKJE и т.д.

Общая поверхность всех боковых граней называется боковой поверхностью .

Каждая пара соседних граней имеет общую сторону. Такая общая сторона называется ребром. Например МВ, СЕ, АВ и т.д.

Если верхнее и нижнее основание призмы соединить перпендикуляром, то он будет называться высотой призмы. На рисунке высота отмечена, как прямая ОО 1 .

Существует две основных разновидности призмы: наклонная и прямая.

Если боковые ребра призмы не являются перпендикулярными к основаниям, то такая призма называется наклонной .

Если все ребра призмы перпендикулярны к основаниям, то такая призма называется прямой .

Если в основаниях призмы лежат правильные многоугольники (те, у которых стороны равны), то такая призма называется правильной .

Если основания у призмы не параллельны друг другу, то такая призма будет называться усеченной.

Её Вы можете наблюдать на Рис.2



Формулы для нахождения объема, площади призмы


Существует три основных формулы нахождения объема. Отличаются они друг от друга применением:




Аналогичные формулы для нахождения площади поверхности призмы:



Призма является геометрической объемной фигурой, характеристики и свойства которой изучают в старших классах школ. Как правило, при ее изучении рассматривают такие величины, как объем и площадь поверхности. В данной же статье раскроем несколько иной вопрос: приведем методику определения длины диагоналей призмы на примере четырехугольной фигуры.

Какая фигура называется призмой?

В геометрии дается следующее определение призме: это объемная фигура, ограниченная двумя многоугольными одинаковыми сторонами, которые параллельны друг другу, и некоторым числом параллелограммов. Рисунок ниже показывает пример призмы, соответствующий данному определению.

Мы видим, что два красных пятиугольника равны друг другу и находятся в двух параллельных плоскостях. Пять розовых параллелограммов соединяют эти пятиугольники в цельный объект - призму. Два пятиугольника называются основаниями фигуры, а ее параллелограммы - это боковые грани.

Призмы бывают прямые и наклонные, которые также называют прямоугольными и косоугольными. Разница между ними заключается в углах между основанием и боковыми гранями. Для прямоугольной призмы все эти углы равны 90 o .

По количеству сторон или вершин многоугольника в основании говорят о призмах треугольных, пятиугольных, четырехугольных и так далее. Причем если этот многоугольник является правильным, а сама призма прямой, то такую фигуру называют правильной.

Приведенная на предыдущем рисунке призма является пятиугольной наклонной. Ниже же изображена пятиугольная прямая призма, которая является правильной.

Все вычисления, включая методику определения диагоналей призмы, удобно выполнять именно для правильных фигур.

Какие элементы характеризуют призму?

Элементами фигуры называют составные части, которые ее образуют. Конкретно для призмы можно выделить три главных типа элементов:

  • вершины;
  • грани или стороны;
  • ребра.

Гранями считаются основания и боковые плоскости, представляющие параллелограммы в общем случае. В призме всегда каждая сторона относится к одному из двух типов: либо это многоугольник, либо параллелограмм.

Ребра призмы - это те отрезки, которые ограничивают каждую сторону фигуры. Как и грани, ребра также бывают двух типов: принадлежащие основанию и боковой поверхности или относящиеся только к боковой поверхности. Первых всегда в два раза больше, чем вторых, независимо от вида призмы.

Вершины - это точки пересечения трех ребер призмы, два из которых лежат в плоскости основания, а третье - принадлежит двум боковым граням. Все вершины призмы находятся в плоскостях оснований фигуры.

Числа описанных элементов связаны в единое равенство, имеющее следующий вид:

Р = В + С - 2.

Здесь Р - количество ребер, В - вершин, С - сторон. Это равенство называется теоремой Эйлера для полиэдра.

На рисунке показана треугольная правильная призма. Каждый может посчитать, что она имеет 6 вершин, 5 сторон и 9 ребер. Эти цифры согласуются с теоремой Эйлера.

Диагонали призмы

После таких свойств, как объем и площадь поверхности, в задачах по геометрии часто встречается информация о длине той или иной диагонали рассматриваемой фигуры, которая либо дана, либо ее нужно найти по другим известным параметрам. Рассмотрим, какие бывают диагонали у призмы.

Все диагонали можно разделить на два типа:

  1. Лежащие в плоскости граней. Они соединяют несоседние вершины либо многоугольника в основании призмы, либо параллелограмма боковой поверхности. Значение длин таких диагоналей определяется, исходя из знания длин соответствующих ребер и углов между ними. Для определения диагоналей параллелограммов всегда используются свойства треугольников.
  2. Лежащие внутри объема призмы. Эти диагонали соединяют неоднотипные вершины двух оснований. Эти диагонали оказываются полностью внутри фигуры. Их длины рассчитать несколько сложнее, чем для предыдущего типа. Методика расчета предполагает учет длин ребер и основания, и параллелограммов. Для прямых и правильных призм расчет является относительно простым, поскольку он осуществляется с использованием теоремы Пифагора и свойств тригонометрических функций.

Диагонали сторон четырехугольной прямой призмы

На рисунке выше изображены четыре одинаковые прямые призмы, и даны параметры их ребер. На призмах Diagonal A, Diagonal B и Diagonal C штриховой красной линией изображены диагонали трех разных граней. Поскольку призма является прямой с высотой 5 см, а ее основание представлено прямоугольником со сторонами 3 см и 2 см, то отыскать отмеченные диагонали не представляет никакого труда. Для этого необходимо воспользоваться теоремой Пифагора.

Длина диагонали основания призмы (Diagonal A) равна:

D A = √(3 2 +2 2) = √13 ≈ 3,606 см.

Для боковой грани призмы диагональ равна (см. Diagonal B):

D B = √(3 2 +5 2) = √34 ≈ 5,831 см.

Наконец, длина еще одной боковой диагонали равна (см. Diagonal C):

D С = √(2 2 +5 2) = √29 ≈ 5,385 см.

Длина внутренней диагонали

Теперь рассчитаем длину диагонали четырехугольной призмы, которая изображена на предыдущем рисунке (Diagonal D). Сделать это не так сложно, если заметить, что она является гипотенузой треугольника, в котором катетами будут высота призмы (5 см) и диагональ D A , изображенная на рисунке вверху слева (Diagonal A). Тогда получаем:

D D = √(D A 2 +5 2) = √(2 2 +3 2 +5 2) = √38 ≈ 6,164 см.

Правильная призма четырехугольная

Диагональ правильной призмы, основанием которой является квадрат, рассчитывается аналогичным образом, как и в приведенном выше примере. Соответствующая формула имеет вид:

D = √(2*a 2 +c 2).

Где a и c - длины стороны основания и бокового ребра, соответственно.

Заметим, что при вычислениях мы использовали только теорему Пифагора. Для определения длин диагоналей правильных призм с большим числом вершин (пятиугольные, шестиугольные и так далее) уже необходимо применять тригонометрические функции.

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Элементы треугольной призмы

Треугольники ABC и A 1 B 1 C 1 являются основаниями призмы .

Четырехугольники A 1 B 1 BA, B 1 BCC 1 и A 1 C 1 CA являются боковыми гранями призмы .

Стороны граней являются ребрами призмы (A 1 B 1 , A 1 C 1 , C 1 B 1 , AA 1 , CC 1 , BB 1 , AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

— это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

Объем призмы = площадь основания х высота

V=S осн. h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

S бок =P осн. h

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

так как S бок =P осн. h, то получим:

S полн.пов. =P осн. h+2S осн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы :

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см 2 , то высота должна быть выражена в сантиметрах, а объем — в см 3 . Если площадь основания в мм 2 , то высота должна быть выражена в мм, а объем в мм 3 и т. д.

Пример призмы

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S - площадь основания, а h - боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2 · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Решение:

Объём призмы равен произведению площади основания на высоту: V = S осн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S 2 = S 1 k 2 = S 1 2 2 = 4S 1 .

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.



2024 stdpro.ru. Сайт о правильном строительстве.