Генная инженерия растений. Генетически модифицированные деревья

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ОПРЕДЕЛЕНИЯ

СОКРАЩЕНИЕ И ОБОЗНАЧЕНИЯ

ВВЕДЕНИЕ

1. ОСНОВНАЯ ЧАСТЬ

1.1 История генной инженерии

1.2 Генная инженерия растений

2. СОЗДАНИЕ ТРАНСГЕННЫХ РАСТЕНИЙ

2.1 Генетически модифицированные растения с помощью бактерии Bacillus thuringiensis

2.2 Трансгенные кукуруза и хлопок

2.3 Трансгенный картофель

3. ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ СОЗДАНИЯ ТРАНСГЕННЫХ КУЛЬТУР РАСТЕНИЙ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ОПРЕДЕЛЕНИЯ

В данной курсовой работе использованы следующие определения:

Bt -растения - генномодифицированные растительные культуры, в которые был вставлен ген, позаимствованный у бактерии Bacillus thuringiensis .

Биоинженерия - направление науки и техники, развивающее применение инженерных принципов в биологии и медицине.

Генетимчески модифицимрованный органимзм - организм, генотип которого был искусственно изменён при помощи методов генной инженерии. Генетически модифицированные организмы - это организмы: растения, животные или микроорганизмы, чей генетический материал ДНК был изменен, причём такие изменения были бы невозможны в природе в результате размножения или естественной рекомбинации.

Гербициды - Химические вещества, применяемые для уничтожения сорных растений.

Гибридизация - процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке.

Гибриды - организм или клетка, полученные вследствие скрещивания генетически различающихся форм.

Мутагенез - внесение изменений в нуклеотидную последовательность ДНК (мутаций).

Плазмиды - небольшие молекулы ДНК, физически отдельные от геномных хромосом и способные реплицироваться автономно.

Полиплоид - число одинаковых наборов хромосом, находящихся в ядре клетки или в ядрах клеток многоклеточного организма.

Селекция - наука о методах создания новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов, с полезными для человека свойствами.

Трансген - фрагмент ДНК, переносимый при помощи генно-инженерных манипуляций в геном определённого организма с целью модификации его свойств. Обычно трансген является фрагментом генома другого вида.

Штамм - это по большому счету чистая культура вируса или бактерии,может также быть культурой клеток. Эта чистая культура изолирована в определенное время и в определенном месте.

СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ

В данной курсовой работе использованы следующие сокращения и обозначения:

БАВ - Биологически активные вещества

Bt - Bacillus thuringiensis

ГМО - Генномодифицированные организмы

% - процент

E.coli - Escherichia coli (кишечная палочка)

ДНК - дезоксирибонуклеиновая кислота

кг - килограмм

мг - милиграмм

млн - миллион

РНК - рибонуклеимновая кислотам

см - сантиметров

ц - центнер

FAO - Продовольственной и сельскохозяйственной организации ООН

ВВЕДЕНИЕ

В работе раскрывается тема о генетически модифицированных растениях с помощью бактерий Bacillus thuringiensis . В последнее десятилетие благодаря разработке новых и совершенствованию имеющихся методов молекулярно-генетического изучения геномов живых организмов идет активное развитие сельскохозяйственной биотехнологии. Одним из результатов этой активности является производство и широкое внедрение в сельское хозяйство новых генно-модифицированных сортов растений. Использование трансгенных растений в биотехнологии позволяет значительно ускорить процесс получения нового сорта, снизить его себестоимость и получить хорошо прогнозируемый эффект по признаку, определяемому встроенной конструкцией. Но вместе с данным признаком организм приобретает целый набор новых качеств.

Генетическая модификация может давать растению и пищевому продукту, который производится из неё, целый ряд признаков. Большинство культивируемых генно-модифицированных организмов, растении обладают устойчивостью к возбудителям болезней вирусов и грибов, насекомым-вредителям или к гербицидам. Это значительно облегчает культивирование, а также снижает затраты на обработку ядохимикатами. Условно генные модификации растений можно разделить на две группы: модификации повышающие урожайность культуры (путем приобретения устойчивости к неблагоприятным факторам окружающей среды) и модификации, улучшающие технологическую ценность культуры.

Bt - растениями называют генетически модифицированные растения, содержащие д-эндотоксин-кодирующие гены грамм-положительной аэробной спорообразующей бактерии Bacillus thuringiensis .

В настоящее время промышленно выращивают около тридцати сельскохозяйственных Bt -культур. В этот список входит кукуруза Zeamays L , хлопчатник Gossypium hirsutum L , картофель Solanum tubersoum L , особый сорт рапса Brassica napus L , рис Oryza sativa L , брокколи Brassica oleracea L var. cymosa , арахис Arachis hypogea L , баклажан Solanum melongena L , табак Nicotiana tabacum L и т.д. Большинство сортов трансгенной кукурузы содержат ген, кодирующий белок Cry1Ab и защищающий их от опасного вредителя - личинок кукурузного стеблевого мотылька Ostrinia nubilalis Hbn .

Цель курсовой работы: изучить генетически модифицированные растениe с помощью бактерий Bacillus thuringiensis .

Задачи курсовой работы:

1. Рассмотреть достижения генной инженерии.

2. Определить виды агрокультур где используются Bt бактерии.

3. Выявить преимущество и экономическую рентабельность Bt растений. генный инженерия растение бактерия

1 . ОСНОВНАЯ ЧАСТЬ

1.1 История генной инженерии

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50 - 60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали E. coli , ее вирусы и плазмиды. Разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам .

Историю развития генетической инженерии можно условно разделить на три этапа.

Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro . Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.

Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

Третий этап - начало работ по включению в векторные молекулы ДНК генов эукариот, главным образом, животных.

Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг, С. Коэн, Х. Бойер с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. Coli .

Генетическая инженерия - это методы получения рекомбинантных ДНК, объединяющих последовательности равного происхождения, т.е. осуществляется перенос целых хромосом от клеток-доноров в клетки-реципиенты.

В основу генно-инженерных методов заложена способность ферментов рестриктаз расщеплять ДНК на отделочные нуклеотидные последовательности, которые могут быть использованы для встраивания их в гены бактериальных клеток с целью получения гибридных или химерных форм, эти гибридные формы состоят из собственной ДНК и дополнительно встроенных фрагментов несвойственной им ДНК. Поэтому методами генетической инженерии добиваются клонирования генов. Это когда выделяют нужный отрезок ДНК из какого-либо биообъекта и затем получают любое количество его, выращивая колонии генетически идентичных клеток, содержащих заданный участок ДНК. Клонирование ДНК - это получение ее генетически идентичных колоний .

Сущность геномной инженерии заключается в целенаправленной глубокой перестройке генома прокариот вплоть до создания новых видов. При геномной инженерии вносят большое количество дополнительной генетической информации и получают гибридный организм, который отличается от исходного по многим признакам.

На сегодняшний день существует несколько сотен генетически изменённых продуктов. Уже на протяжении нескольких лет их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть «McDonalds». Многие крупные концерны, типа «Unilever, Nestle, Danon» и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта".

Некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора.

Пример. Какое-либо растение выбросило несколько тысяч семян, и они проросли. Среди тысяч появившихся ростков некоторые обязательно будут отличаться от родителя, то есть фактически окажутся мутантами. Если изменения вредны для растения, то оно погибнет или будет угнетать, а если полезны, то оно даст более приспособленное и совершенное потомство, и так может образоваться новый вид растения. Но если природе для образования новых видов требуется много столетий или тысячелетий, то учёные производят этот процесс за несколько лет. Какой-то принципиальной же разницы нет.

Итак, процедуры генетической инженерии сводятся к тому, что из набора фрагментов ДНК, содержащих нужный ген, собирают гибридную структуру, которую затем вводят в клетку. Введенная генетическая информация экспрессируется, что приводит к синтезу нового продукта. Таким образом, вводя в клетку новую генетическую информацию в виде гибридных молекул ДНК, можно получить измененный организм .

1. 2 Генная инженерия растений

Генная инженерия растений сегодня - самое бурно развивающееся направление не только биотехнологии, но, пожалуй, и всего научно-технологического комплекса. Но ее применение вызывает ожесточенные споры: сторонники, прежде всего создатели новых форм растений говорят о второй «зеленой революции», которая решит все наболевшие проблемы сельского хозяйства, а противники, преимущественно радикальные «зеленые» организации усматривают в ГМО не только гипотетические риски в будущем, но и угрозу, якобы уже сегодня нависшую над человеком и природой.

Это открытие оказалось очень важным для генной инженерии растений. Собственно, ее история и началась с момента, когда ученые научились заменять гены растения и гены бактерии в Т-ДНК генами, которые необходимо ввести в растение. Обманутая бактерия, внедряя свою ДНК в хромосому растения, в свою очередь, обманывает его геном, вынуждая исправно синтезировать необходимые человеку продукты .

Противники использования достижений генной инженерии обычно ссылаются на то, что все испытания пока были краткосрочными (самой генной инженерии 20 лет от роду), а влияние ГМ-продуктов может проявиться через длительное время -- в следующих поколениях. Но при этом они упорно не хотят признавать, что накапливающиеся в окружающей среде ядохимикаты и удобрения, столь жадно потребляемые традиционным сельским хозяйством, также вполне могут сказаться на потомках. И чем же в этом случае генная инженерия растений опаснее существующих методик их химической защиты, без которых ни на одном крупном поле сегодня не получить приличного урожая и против которых зеленые не так уж возражают. Следующий довод - неизвестно, как новые растения повлияют на существующие пищевые цепи и экологический баланс в мире нельзя, исключить, что насекомые, обитающие на ГМ-растениях, подвергнутся мутации и последствия этого могут быть непредсказуемыми. И снова почему-то упускается из виду, что подобные мутации ежесекундно происходят в натуральной природе, которая вся сплошь состоит из генетически измененных организмов, ибо эволюция и происходила благодаря мутациям.

Ведущая роль в применении генно-инженерных растений принадлежит США. В основе генной инженерии растений лежат методы культивирования клеток и тканей растений in vitro и возможность регенерации целого растения из отдельных клеток .

Растения имеют одно очень важное преимущество перед животными, а именно возможна их регенерация in vitro из недифференцированных соматических тканей с получением нормальных, фертильных, способных завязывать семена растений. Это свойство открывает для молекулярных биологов большие возможности в изучении функционирования генов, введенных в растения, а также используется в селекции растений. Для конструирования растений необходимо решить следующие задачи: выделить конкретный ген, разработать методы, обеспечивающие включение его в наследственный аппарат растительной клетки, регенерировать из единичных клеток нормальное растение с измененным генотипом. Таким образом, методология генетической инженерии в отношении растений направлена на коренное изменение методов традиционной селекции, с тем чтобы желаемые признаки растений можно было получать путем прямого введения в них соответствующих генов вместо длительной работы по скрещиваниям.

Формальной датой рождения генетической инженерии растений является полученное с помощью Ti-плазмидного вектора первое в мире химерное растение санбин (sunbeen) как результат переноса гена запасного белка бобовых в геном подсолнечника (sunflower + been). Это было первым ощутимым, хотя, быть может, и несовершенным свидетельством того, что в отношении растений генетическая инженерия сможет оправдать надежды специалистов в области молекулярной генетики, биологии и селекции.

Самые распространенные ГМ-растения в мире - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т.д. В тех странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания.

Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные к гербицидам, выживают. Чаще всего компания, продающая семена подобных растений, предлагает в наборе и соответствующие гербициды. Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина - земляной бактерии Bacillus thuringiensis . Устойчивость к вирусу растение приобретает благодаря встроенному гену, взятому из этого же самого вируса.

Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае, меньше - в других странах. Европа же очень озабочена. Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие .

2. СОЗДАНИЕ ТРАНСГЕННЫХ РАСТЕНИЙ

Еще 10 лет тому назад биотехнология растений заметно отставала в своем развитии, но за последние 3 года наблюдается быстрый выброс на рынок трансгенных растений с новыми полезными признаками. Трансгенные растения в США в 1996 году занимали площадь 3 млн. акров, в 1997 году площадь увеличилась до 15 млн. акров, в 1998 году - до 60 млн. акров, а в 2000 году до 80 млн. акров. Темпы расширения площади просто поражают своей быстротой. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, то не сложно догадаться, что площадь под генноиженерные растения в 2001 году увеличилась примерно в 4 - 5 раз.

В апреле 1998 года доля в процентах трансгенных форм растений в сельском хозяйстве составила: кукуруза - 6%; соя - 12%; хлопчатник - 15%; томаты - <1%.

Так как число жителей за последнее столетие увеличилось с 1.5 до 6.5 млрд. человек, а к 2020 году предполагается вырост до 9 млрд., таким образом, возникает огромная проблема, стоящая перед человечеством. Эта проблема заключается в огромном увеличение производства продуктов питания, несмотря на то, что за последние 40 лет производство увеличилось в 2.5 раза, все равно этого не достаточно. Другая проблема возникла с медицинским лечением. Несмотря на огромные достижение современной медицины, производимые сегодня лекарственные препараты столь дороги, что часть населения земли полностью полагаются на традиционные донаучные методы лечения, прежде всего, на неочищенные препараты растительного происхождения .

В развитых странах лекарственные средства на 25% состоят из природных веществ, выделенных из растений. Открытия последних лет свидетельствуют о том, что растения еще долго будут оставаться источником полезных биологически-активных веществ (БАВ), и что способности растительной клетки к синтезу сложных БАВ все еще значительно превосходят синтетические способности инженера-химика. Вот почему ученые взялись за проблему создания трансгенных растений.

Отсчёт истории генетической инженерии растений принято вести с 1982 года, когда впервые были получены генетически трансформированные растения. Одним из наиболее распространенных методов трансформации является технология, основанная на обстреле ткани микрочастицами золота или других тяжелых металлов, покрытыми раствором ДНК. Все выращиваемые ныне коммерческие сорта получены в основном с помощью данного метода .

Введение генов в клетки растений - основные способы. Ввести чужеродную ДНК в растения можно различными способами. Для двудольных растений существует естественный вектор для горизонтального переноса генов: плазмиды агробактерий. Что касается однодольных, то, хотя в последние годы достигнуты определенные успехи в их трансформации агробактериальными векторами, все же подобный путь трансформации встречает существенные затруднения.

Для трансформации устойчивых ("рекальцитрантных") к агробактериям растений разработаны приемы прямого физического переноса ДНК в клетку, многие из которых взяты из практики работы с клетками бактерий или животных. Эти методы достаточно разнообразны, они включают: бомбардировку микрочастицами или баллистический метод; электропорацию; обработку полиэтиленгликолем; перенос ДНК в составе липосом и другие .

Наиболее продуктивным и чаще всего используемым является метод бомбардировки микрочастицами. При достаточной скорости эти частицы могут непосредственно проникать в ядро, что сильно повышает эффективность трансформации. Этим же методом можно, впрочем, трансформировать и другие ДНК-содержащие клеточные органеллы -хлоропласты и митохондрии.

В последнее время был разработан и успешно применен также комбинированный метод трансформации, названный агролистическим. При этом чужеродная ДНК вводится в ткани каким-либо физическим методом, например, баллистическим. Вводимая ДНК включает как Т-ДНК вектор с целевым и маркерным геном, так и агробактериальные гены вирулентности, поставленные под эукариотический промотор. Временная экспрессия генов вирулентности в растительной клетке приводит к синтезу белков, которые правильно вырезают Т-ДНК из плазмиды и встраивают ее в хозяйский геном, как и при обычной агробактериальной трансформации.

После проведения тем или иным способом трансформации растительной ткани ее помещают in vitro на специальную среду с фитогормонами, способствующую размножению клеток. Среда обычно содержит селективный агент, в отношении которого трансгенные, но не контрольные клетки приобретают устойчивость. Регенерация чаще всего проходит через стадию каллуса, после чего при правильном подборе сред начинается органогенез (побегообразование). Сформированные побеги переносят на среду укоренения, часто также содержащую селективный агент для более строгого отбора трансгенных особей .

2 . 1 Генетически модифи цированные растения с помощью бактерии Bacillus thuringiensis

Bt -белки - инсектицидные белки Bacillus thuringiensis , экспрессируемые модифицированными растениями, что обеспечивает безопасную технологию борьбы с насекомыми-вредителями. Bt -защищенные кукуруза, хлопок и картофель были внедрены в сельское хозяйственую практику в США в 1995-1996 гг., и в 1997 г. занимали площадь в 4 млн га, в 1998 г. -8 млн га, а в 1999 г. -11,7 млн га. Исключительно быстрое признание Bt -защищенных культур демонстрирует удовлетворенность производителей высоким качеством и объемами получаемой продукции. Модифицированные растения обеспечивают высокоэффективную борьбу с большинством насекомых-вредителей, таких как европейский зерновой мотылек, юго-западный зерновой мотылек, табачная листоверка, хлопковая листоверка, розовый коробочный червь (хлопковая совка) и колорадский жук, позволяя сократить применение обычных химических пестицидов. Bt -защищенные культуры обеспечивают значительно более высокие урожаи хлопка и кукурузы. По оценкам специалистов, общая экономия средств производителями, использующими Bt -защищенный хлопчатник, в США в 1998 г. составила до 92 млн долларов. Другие преимущества этих культур состоят в том, что они содержат в зерне пониженные концентрации фунготоксинов, что позволяет осуществлять дополнительную борьбу с вредителями, используя полезных насекомых, численность которых увеличивается благодаря снижению уровня обработки посевов инсектицидами широкого спектра действия. Разработаны и внедряются специальные планы ведения с.-х. работ, направленные на сохранение чувствительности насекомых к данному виду защиты и на эффективное применение данной технологии в будущем. Широкомасштабные испытания Bt -защищенных культур установили безопасность получаемой продукции для человека и окружающей среды. Исследования острой, продолжительной и долгосрочной токсикологии, проводимые в течение 40 лет, показали безопасность микробиологической Bt - продукции, включая вырабатываемые микроорганизмами инсектицидные белки, которые полностью одобрены для коммерческого использования. Эксперименты по токсикологии на млекопитающих и исследования Bt -продукции в желудочно-кишечном тракте подтвердили, что эти белки не токсичны для человека и не вызывают опасений с точки зрения их возможной аллергенности. Было показано, что пищевые продукты и их компоненты, получаемые из Bt -защищенных растений, практически по всем параметрам соответствуют тем же продуктам, получаемым из обычных растений. Другие живые организмы, не являющиеся прямыми вредителями, подвергнутые воздействию высоких доз Cry-белка, не проявили практически никаких неблагоприятных реакций за исключением некоторых насекомых, тесно связанных с упомянутыми группами вредителей. Поскольку Cry-белок содержится непосредственно внутри растения (в микроколичествах), его потенциальное воздействие на сельском хозйстве, рабочих и живые организмы, не относящихся к группе вредителей, ничтожно, и, следовательно, воздействие этих растений на окружающую среду очень незначительно. Безопасность Bt -защищенных растений для человека и окружающей среды подтверждается многолетней историей безопасного применения Bt -микробных препаратов во всем мире.

Список сельскохозяйственных культур, генно-инженерные сорта которых официально допущены к использованию во всех странах мира, включает 20 наименований: соя, кукуруза, рапс, хлопчатник, томаты, картофель, рис, сахарная свекла, лен, турнепс, кабачки, дыни, табак, па­пайя, цикорий, пшеница, гвоздика, полевица, люцерна, слива. Однако не все они выращиваются в промышленных масштабах. Ряд генетически модифицированных культур, таких, как картофель, кабачки, папайя и томаты, относительно массово выращивался лишь в отдельные годы. В России массовое производство трансгенных растений пока не разрешено. По состоянию на 2011 году, в России разрешены к использованию 17 линий трансгенных растений таблица 1.

Таблица№ 1. Регуляторные последовательности и гены трансгенных вставок линий, разрешенных для применения в пищевых продуктах и кормах на территории Российской Федерации .

Растения

Производитель

Промотор

Monsanto, США

Bayer Crop Science, Германия

Bayer Crop Science, Германия

Monsanto, США

Кукуруза

Monsanto, США

Monsanto, США

Monsanto, США

Monsanto, США

Monsanto, США

Syngenta Crop Protection

AG, Швейцария

Bayer Crop Science, Германия

Syngenta Seeds Inc,

Картофель

Луговской

Центр Биоинженерии

Елизавета

Центр Биоинженерии

Bayer CropScience,

Германия

Сахарная свекла

Monsanto, США

2.2 Т рансгенные кукуруза и хлопок

В США приблизительно две трети площадей, занятых кукурузой, засеяны семенами, содержащими Bt ген. Это одна из важнейших составляющих частей огромной кампании по внедрению искусственно улучшенных, генетически модифицированных линий сельскохозяйственных растений, среди которых уже есть линии устойчивые к отдельным гербицидам, к засухе и другим неблагоприятным факторам. Каждая из этих линий позволяет снизить те или иные сельскохозяйственные риски, но подавляющее число фермеров останавливают свой выбор на Bt семенах.

Первая линия кукурузы с Bt геном, защищающим растение от определенных групп насекомых, была внедрена в 1996 году. Недавно Центр по экономическим исследованиям Департамента по сельскому хозяйству США подготовил анализ 15-летней истории внедрения и успехов Bt кукурузы на американских полях. В представленном отчете имеются сведения, свидетельствующие, что в 2000 году Bt семенами было засеяно 19% кукурузных полей, а к 2011 году эта цифра возросла до 65%. Попытка подсчета экономических преимуществ использования устойчивой к насекомым ГМ кукурузы в первые пять лет после начала внедрения дала следующие результаты: В Айове на полях, где используется Bt кукуруза, урожайность была выше примерно на 4,5 ц/га.

В Миннесоте урожайность кукурузы на полях, засаженных Bt линиями кукурузы, была выше на 11,4 ц/га. В среднем, урожайность Bt линий была на 8,1 ц/га выше по сравнению с сортами традиционной селекции. Внедрение данных линий позволило увеличить урожайность на 2,8-6,6%. В Пенсильвании и Мэриленде урожайность повысилась на 5,5%.

Фермеры, использовавшие в 2001 г. линии Bt кукурузы, имели урожай на 7,8 ц/га выше, по сравнению с теми, кто отказался от этой технологии. В 2005 г. средние урожаи у тех, кто использовал Bt линии, были уже на 10,4 ц/га выше по сравнению со средними показателями хозяйств, где не использовались ГМ растения.

Результат налицо - более высокие урожаи. Аналитики из Департамента по сельскому хозяйству США провели оценку экономической обоснованности использования Bt кукурузы в следующей пятилетке. По итогам вегетационного сезона 2010 г., был проведен опрос владельцев 1208 фермерских хозяйств в 19 штатах США, являющихся основными производителями этой культуры. Среди опрошенных, 77% подтвердило, что они видят реальное увеличение урожайности от использования Bt сортов. Еще 10% заявили, что у них значительно сократились временные затраты на уход за растениями, а 6% выбрали эту технологию из-за высокой цены на инсектицидные препараты.

Анализ экономических показателей в этих хозяйствах свидетельствует, что средний урожай кукурузы в них на 16 ц/га, или примерно на 20%, выше по сравнению с теми хозяйствами, где пока отказываются от новых технологий. Это равноценно почти 300 дополнительным долларам с гектара.

Так как Bt линии предназначены для повышения устойчивости к насекомым, окончательная экономическая оценка должна отталкиваться от объемов использования инсектицидов при уходе за традиционными сортами. Следует заметить, что последние два года, попавшие в поле зрения аналитиков, отличались относительно невысоким уровнем давления со стороны вредителей, поэтому и объемы использования инсектицидов при уходе за не-ГМ кукурузой были небольшими. Интересен и тот факт, что за первые 10 лет использования генетически модифицированной Bt кукурузы использование инсектицидов резко сократилось. В 2001 году в США было продано 2,0 млн. т инсектицидов для ухода за кукурузой, в 2005 году - 1,4 млн. т, а в 2010году - только 0,7 млн. т.

Вывод, сделанный по результатам проведенных исследований, однозначен: "Bt кукуруза позволяет получать более высокие урожаи, увеличивает прибыльность хозяйств и спрос на семена". Если быть более точным, то экономический анализ показал, что выращивание Bt кукурузы на 10% площадей, на уровне хозяйства приводит к 2,3-процентному росту прибылей, 2,3-процентному повышению урожайности (на 2,1 ц/га) и 2,1-процентному увеличению спроса на семена. Кроме того, показано, что переход на ГМ кукурузу не оказал статистически значимого влияния на снижение спроса на инсектициды. В настоящее время 90% американских фермеров не используют инсектициды при выращивании кукурузы. Помимо этого ученые добавляют: "экономические последствия внедрения ГМ культур зависят от степени давления со стороны вредителей, цен на биотехнологичные семена и стоимости альтернативных средств борьбы с насекомыми".

К настоящему времени ген бактериального токсина присутствует в 60% всей выращиваемой в США кормовой и технической кукурузы, но отсутствует в сладкой кукурузе и в других сортах кукурузы, поступающих в пищевую промышленность. Этот же ген включен в большую часть выращиваемых в США хлопка и сои. Для защиты хлопковых плантаций трансгенная технология считается предпочтительнее и безопаснее, чем частое опрыскивание и опыление пестицидами. Трансгенный хлопок - пока единственная культура, которая распространилась по многим производящим его странам .

2 .3 Т рансгенный картофель

Значительно больший успех выпал на долю технического картофеля, который выращивается для производства амилопектина и используется в производстве глянцевой бумаги, а также как кормовой продукт. Этот картофель, названный Amflora , был выведен крупной немецкой биотехнологической компанией BASF сравнительно недавно. В его клубнях образуется амилопектин, одна из разновидностей крахмала, более устойчивая к действию амилазы. Несмотря на протесты, этот картофель высевается в Германии, а с 2010 году и в Швеции. Выращивание трансгенного картофеля Amflora , в порядке исключения, было одобрено Европейской Комиссией.

3. ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ СОЗДАНИЯ ТРАНСГЕННЫХ КУЛЬТУР РАСТЕНИЙ

Улучшение качества продовольственных продуктов пока находится лишь в стадии интересных проектов. В 2006 г. были экспериментально получены клонированные свиньи с генами из червей, которые добавляли к насыщенному свиному жиру ненасыщенные Омега-3 жирные кислоты .

ЗАКЛЮЧЕНИЕ

Расмотрены достижения и перспективы генетической инженерии и инженерии растений и на их осневе выращивание генетически модифицированных растений с помощью бактерий Bacillus thuringiensis . Получение трансгенных Bt растений является на данный момент одной из перспективных и наиболее развивающихся направлений агропроизводства. Существуют проблемы, которые не могут быть решены такими традиционными направлениями как селекция, кроме того, что на подобные разработки требуются годы, а иногда и десятилетия. Создание трансгенных Bt растений, обладающих нужными свойствами, требует гораздо меньшего времени и позволяет получать растения с заданными хозяйственно ценными признаками, а также обладающих свойствами, не имеющими аналогов в природе. Примером последнего могут служить полученные методами генной инженерии сорта растений, обладающих повышенной устойчивостью к насекомым. Изучение экономических эффектов выращивания устойчивых к насекомым Bt культур указывает на преимущества, получаемые фермерами в случаях нашествий вредителей или появления их устойчивых форм. Польза от перехода на Bt -культуры заключается не только в уменьшении потерь урожая за счет более высокой эффективности защиты от насекомых-вредителей по сравнению с химическими инсектицидами, но и в финансовой выгоде за счет отказа от последних. Культивирование Bt -культур является простой и эффективной альтернативой распылению химикатов, так как растения синтезируют инсектицидный белок в течение всего вегетативного периода, в то время как эффективность опрыскивания химическими инсектицидами зависит от погодных условий и трудностей в определении оптимального времени обработки. Результаты всех исследований, проведенных в развивающихся странах, указывают на то, что переход с традиционных сортов на Bt -растений увеличивает урожай, снижает использование пестицидов и повышает чистый доход. Еще рано делать окончательные выводы о преимуществах Bt -сортов перед традиционными, однако специалисты ФАО - Продовольственной и сельскохозяйственной организации ООН (Food and Agriculture Organization, FAO) - считают, что имеющиеся на сегодняшний день данные и активное внедрение Bt -культур в сельскохозяйственную практику свидетельствуют в их пользу.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. «Биотехнология проблемы и перспективы» - Егоров Н.С., Москва, «Высшая школа» 1987 г.

2. «Сельскохозяйственная биотехнология» - Калашникова Е.А., Шевелуха В.С., Воронин Е.С., «Высшая школа» 2003 г.

3. Сайт «Biotechnolog» Н. Кульмина 1995-2013

4. Мендель, «Опыты над растительными гибридами», 1935

5. М.Е. Аспиз - «Энциклопедический словарь юного биолога»

6. «Основы биотехнологии: Учебное пособие для высших учебных заведений» Т.А. Егорова, С.М. Клунова, Е.А Живухина. М: «Академия» 2003

7 Н.П. Дубинин - «Очерки о генетике»

8 Брукс Г, Барфут П. ГМ-культуры: итоги первых десяти лет - глобальные социально-экономические и экологические последствия // Докл. ISAAA, Нью-Йорк, 2006. Вып. № 36. 124 с.

9 Глазко В.И. Кризис аграрной цивилизации и генетически модифицированные организмы (ГМО). Киев: PANOVA, 2006. 206 c.

10 Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. СПб.: Наука, 200

11 Глеба Ю. Ю. Биотехнология растений // Соросовский образовательный журнал. № 6. 1998

12. Михалко, Е. Р. Методические аспекты оценки риска возможных неблагоприятных эффектов ГМО для здоровья человека и их влияние на продовольственную безопасность государства. Наука о человеке: гуманитарные исследования. - 2010. - № 5.- С. 89-95

13 Кузнецов В.В., Куликов А.М. Генетически модифицированные организмы и полученные из них продукты: реальные и потенциальные риски // Рос.хим. журн. 2010. Т. XLIX. № 4. С. 84-91.

14 Викторов А.Г. Эволюция резистентности фитофагов к трансгенным коммерческим Bt-растениям: можно ли создать эффективное инсектицидное растение? // Физиология растений. 2010. Т. 62. С. 17-27.

Размещено на Allbest.ru

...

Подобные документы

    Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат , добавлен 11.11.2010

    Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация , добавлен 26.01.2014

    Этапы получения трансгенных организмов. Агробактериальная трансформация. Схема создания генетически модифицированного организма. Пример селективного маркера растений. Процесс подавления экспрессии генов (сайленсинг). Направления генной инженерии растений.

    презентация , добавлен 24.06.2013

    Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.

    контрольная работа , добавлен 15.12.2011

    Пересадка генов и частей ДНК одного вида в клетки другого организма. История генной инженерии. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Что несёт человечеству генная инженерия. Какие перспективы генной инженерии.

    презентация , добавлен 24.02.2015

    Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат , добавлен 18.04.2013

    Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа , добавлен 11.07.2012

    Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад , добавлен 10.05.2011

    Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.

    реферат , добавлен 04.09.2007

    Сельскохозяйственные растения и вакцины производимые помощью генной инженерии. Изменение свойств сельскохозяйственных технических растений. Генные вакцины. Аргументы против распространения генетически модифицированных продуктов.

К концу 1980-х удалось успешно внедрить новые гены в десятки видов растений и животных - создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов.

Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно, во-первых, из-за их токсичности, во-вторых, потому, что дождевой водой они смываются с растений. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, позволяющих синтезировать инсектициды бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов стали устойчивы к непобедимому колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Использование генной инженерии позволило сократить применение инсектицидов на 40 - 60%.

Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке.

Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и много других сельскохозяйственных растений.

51) Геном и кариотип. Кариотип: крупный рогатый скот, свиньи, домашние куры.

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гаплоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.

При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. Таким образом, генотип - это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе - кариотипе.

Кариотип - диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом.

Кариотип – это набор хромосом соматической клетки, свойственный тому или иному виду животных или растений. Он включает все особенности хромосомного комплекса: число хромосом, их форму, наличие видимых под световым микроскопом деталей строения отдельных хромосом. Число хромосом в кариотипе всегда четное. Это объясняется тем, что в соматических клетках находятся две одинаковые по форме и размеру хромосомы – одна из отцовского организма, вторая – от материнского.

Число хромосом у некоторых видов животных и человека: Крупный рогатый скот 60, Свинья 38, Курица 78 .

Конец работы -

Эта тема принадлежит разделу:

Строение хромосом. Аутосомы и половые хромосомы. Гаплоидный и диплоидный набор хромосом

Инбридинг от английского inbreeding in в внутри breeding разведение один из методов разведения при котором в пары сводят животных.. о положительных и отрицательных сторонах инбридинга постоянно ведутся.. действительно большинство популяций диких животных в природе возникает от одной пары или нескольких особей случайно..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Гетерозис, его биологические особенности и причины возникновения
ГЕТЕРОЗИС (гибридная мощность, гибридная сила), превосходство гибридов первого поколения над родительскими формами по жизнеспособности, урожайности, плодовитости и ряду других приз

Использование методов генной инженерии в животноводстве
Применение методов генной инженерии в животноводстве позволяет повышать продуктив-ность животных (например, удои молока), сопротивляемость их организма к болезням и т. д. Жи вотных, имеющи

Современное представление о гене
Ген – это участок молекулы ДНК (у некоторых вирусов РНК),кодирующий первичную структуру полипептида, молекулы тРНК, рРНК, либо взаимодействующий с регуляторным белком.Ген имеет дискретную с

Иные живые существа
· Белые голубоглазые коты имеют склонность к глухоте. · Летальная мутация, вызывающая нарушения в развитии хрящей у крыс, приводит к смерти за счет большого количества патологий в разных с

Хромосомная теория наследственности Т.Г.Моргана
Хромосомная теория наследственности, теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственно

Три альтернативные гипотезы репликации ДНК
Консервативная репликация. Исходная двухцепочечная молекула ДНК служит матрицей для образования совершенно новой двухцепочечной молекулы, нацело достраивающейся на исходной. При этом одна из

Доказательства генетической роли ДНК. Гипотезы (трансформация и трансдукция)
Трансформация – способность разных штаммов бактерий обмениваться участками молекул ДНК, изменяя при этом свои свойства; это включение участка ДНК донора в ДНК реципиента. Трансдукция – это

Наследование признаков, сцепленных с полом. Признаки, ограниченные полом и зависимые от пола
Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом. Эти признаки обусловливаются гена

Закон Харди-Вайнберга, генное равновесие и методы его определения
Закон Харди – Вайнберга. Харди и Вайнберг провели математический анализ распределения генов в больших популяциях, где нет отбора, мутаций и смешивания популяций. Они устан

Использование плазмид для получения рекомбинантных ДНК
Ген нужно ввести в клетку таким образом, чтобы он не был разрушен клеточными нуклеазами, а интегрировался с геномом клетки. Для этого in vitro ген соединяют с определенной ДНК, выполняющей роль про

Правило чистоты гамет (3 закон менделя)
Гомозиготные по генотипу особи имеют одинаковые аллельные гены в одном локусе, например ВВ или bb. У гибридов F1 при полном доминировании проявляется только аллель В. Однако во втором по

Процессинг РНК
Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-кон

Трансляция
У прокариот мРНК может считываться рибосомами в аминокислотную последовательность белков сразу после транскрипции, а у эукариот она транспортируется из ядра в цитоплазму, где находятся рибосомы. Ск

Отбор и методы отбора, используемые в селекции растений
Биологические особенности растений позволяют в селекционной работе с ними использовать инбридинг, полиплоидию, искусственный мутагенез, отдаленную гибридизацию и другие методы. Отбор и гиб

Отбор и методы отбора, используемые в селекции животных
Методы селекции животных те же, что и методы селекции растений, но при их применении селекционерам приходится учитывать ряд особенностей, характерных для животных. Животные размнож

1 В 1972 г. Пол Берг с сотрудниками опубликовали первую работу о получении in vitro (вне организма) рекомбинантной (гибридной) молекулы ДНК, состоящей из фрагментов фаговой, бактериальной и вирусной ДНК. Так родилась новая отрасль молекулярной биологии, получившая название «генетическая (генная) инженерия». Своей целью она имеет создание новых генетических структур и, в конечном счете, создание организмов с новыми наследственными свойствами.

В том же году появилась первая публикация, в которой сообщалось о получении in vitro рекомбинантной ДНК, состоящей из фрагментов разных молекул ДНК: вирусной, бактериальной и фаговой. Работа была выполнена американским ученым Полем Бергом с сотрудниками и ознаменовала рождение новой отрасли молекулярной биологии генетической (генной) инженерии.

А.А. Баев был первым в нашей стране ученым, который поверил в перспективность генной инженерии и возглавил исследования в этой области. Генетическая (генная) инженерия, по его определению, это конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или создание искусственных генетических программ. Генная инженерия имеет целью изучение механизмов функционирования генетического аппарата.

Интроны – это участки ДНК, разбивающие экспрессируемую, то есть кодирующую часть гена на участки, называемые экзонами. Впервые феномен существования прерывистых генов был открыт при изучении аденовируса и подтвердился в 1977 г. при исследовании гена глобина мыши и рибосомных генов плодовой мушки Drosophilla melanogaster. В одном гене может находиться довольно много интронов.

В процессе транскрипции РНК-полимераза снимает копию со всего гена. Затем специальные сплайсинг-ферменты осуществляют «монтаж» (сплайсинг) транскрипта, вырезают интроны и «склеивают» экзоны друг с другом. В результате чего образуется зрелая, но еще модифицированная мРНК.

Рисунок 13. Сегмент генома в процессе транскрипции

Эукариот, включая человека, что другими приемами сделать невозможно. Вместе с тем, генная инженерия ставит перед собой обширные практические задачи, немало из которых уже решено. Прежде всего это получение путем бактериального синтеза ряда лекарственных средств, например, инсулина, интерферонов. Важнейшим достижением является создание диагностических препаратов. Получение так называемых трансгенных растений открывает принципиально новые возможности для растениеводства в создании сельскохозяйственных культур, устойчивых к экстремальным воздействиям и инфекционным поражениям. Это далеко не полный перечень практических свершений генной инженерии.

После первых успешных экспериментов с рекомбинацией молекул ДНК в пробирке появились первые сомнения и опасения, не принесет ли генная инженерия вред природе и человечеству. В июле 1974 года несколько крупных ученых обратились к научной общественности с предложением наложить мораторий на работы с рекомбинантными ДНК in vitro. В феврале 1975 года в Калифорнии на Асиломарской конференции собрались 140 ученых разных стран, работающих в области генной инженерии. Всесторонне изучив результаты и возможные последствия, ученые пришли к выводу, что потенциальные опасности невелики, так как рекомбинантные штаммы в природных условиях нежизнеспособны и их бесконтрольное распространение маловероятно. Было решено


прервать мораторий и продолжить исследования с соблюдением специально разработанных правил. Сегодня мы можем отметить, что почти за четверть века своего существования генная инженерия не причинила никакого вреда самим исследователям, не принесла ущерба ни природе, ни человеку. Свершения генной инженерии как в познании механизмов функционирования организмов, так и в прикладном плане весьма внушительны, а перспективы поистине фантастичны.

Молекулярная биология заявила о себе в качестве самостоятельной науки в 1953 году, когда Джеймс Уотсон и Френсис Крик открыли знаменитую двойную спираль ДНК и постулировали матричный механизм ее синтеза.

В соответствии с этим механизмом двойная спираль ДНК при репликации разделяется и каждая цепь служит матрицей для синтеза дочерней цепи, которая по своей первичной структуре является зеркальным отражением матрицы (рис. 14). В результате такого матричного синтеза образуются две совершенно идентичные двуспиральные молекулы ДНК, каждая из которых передается в дочерние клетки. Последние получают всю генетическую программу от родительской клетки. По такому же матричному механизму осуществляется синтез РНК, только РНК синтезируется в виде односпиральной цепи, которая комплементарна ДНК – матрице.

Рисунок 14. Транскрипция ДНК

Этот процесс получил название транскрипции. А процесс и синтеза белка на РНК-матрице (м-РНК) происходит на рибосомах, и структура белка соответствует структуре м-РНК. Это очень сложный процесс, он называется трансляцией (рис. 14), и в нем участвует транспортная РНК (т-РНК). Она доставляет в рибосому аминоксилоты и адаптирует язык м-РНК к языку белка. Таким образом, процесс матричного синтеза ДНК определяет передачу наследственной информации от родительской клетки в дочернюю. В процессе матричного синтеза РНК происходит передача информации (генетического кода данного белка)от ДНК на м-РНК, а м-РНК переносит информацию на рибосому, где она реализуется в виде конкретной структуры белка.

При половом процессе может происходить обмен участками между двумя хромосомами (молекулами ДНК) от двух скрещиваемых индивидуумов. Этот процесс получил название рекомбинация, и в клетке чаще всего он может происходить только между гомологичными хромосомами, так как комплементарные по своей структуре молекулы ДНК притягиваются друг к другу и обмениваются генетическими детерминантами, в результате чего образуется дочерняя хромосома, содержащая элементы структуры от двух родительских хромосом. Открытый недавно процесс негомологичной рекомбинации осуществляется только в том случае, если в одной из взаимодействующих молекул ДНК есть гены, кодирующие специальные ферменты разрезания ДНК.

Рисунок 15. Схема организации хромосомного материала

Следующее важное открытие, предопределившее возникновение генной инженерии, обнаружение в бактериальных клетках внехромосомных маленьких кольцевых молекул ДНК. Эти минихромосомы впервые были обнаружены в начале 50-х годов и получили название плазмид. Плазмиды обладают способностью к автономной от хромосомы репликации, поэтому плазмиды содрежатся в клетке в виде нескольких копий. Различаются плазмиды по генетическим детерминантам. Очень важно, что плазмиды из-за своих малых размеров могут быть выделены из клетки в неповрежденном, нативном состоянии.

В 1970 году американцы Келли и Смит с сотрудниками выделили первую рестриктазу фермент, который вызывает гидролиз ДНК в строго определенных местах с образованием так называемых липких концов. Существование таких ферментов-рестриктаз было доказано в опытах швейцарцев Линна и Арбера в конце 60-х годов. В настоящее время описано множество таких ферментов, которые применяются в генной инженерии.

Таким образом, к началу 70-х годов были сформулированы основные принципы функционирования нуклеиновых кислот и белков в живом организме и созданы теоретические предпосылки генной инженерии.

2 Как уже указывалось, процесс рекомбинации в организме (in vivo) возможен в большинстве случаев между гомологичными молекулами ДНК. Однако оказалось, что in vitro притягивание и взаимодействие (гибридизация) молекул ДНК возможно, если они будут иметь небольшие комплементарные односпиральные участки из четырех и более нуклеотидов на концах молекул (в настоящее время описаны двенадцатинуклеотидные липкие концы). Такие комплементарные односпиральные последовательности получили название липких концов, так как две молекулы ДНК могут соединиться (слипнуться) этими концами. Таким образом, если в пробирку поместить самые разные молекулы ДНК с одинаковыми липкими концами, то будет происходить рекомбинация, даже если вся их структура очень различается.

Как же получить гетерогенные молекулы ДНК с одинаковыми липкими концами? Для этого используются ферменты-рестриктазы, которые «умеют» разрезать молекулы ДНК так, что у них образуются одинаковые (комплементарные) липкие концы. Происходит такое разрезание в участках, несущих особым образом повторяющиеся последовательности нуклеотидов. Рестриктазы узнают эти последовательности и разрезают ДНК в точках повтора: в результате односпиральный конец одной молекулы оказывается комплементарным (липким) концу другой молекулы.

Теперь, чтобы полученные в пробирке генные конструкции заработали, необходимо их ввести в подходящую бактериальную клетку. Вот тут –то и пригодятся плазмиды. В генной инженерии их называют векторами (повозки, которые доставляют в клетку клонируемый ген). Для этого плазмиды тоже режут рестриктазами, чтобы получить односпиральные концы, комплементраные концам генов, проводят гибридизацию гена и плазмиды в пробирке, а затем рекомбинантную плазмиду (ее называют еще химерной) вводят в клетку. Плазмиды, которые используются в генной инженерии, имеют очень важное свойство: они содержат так называемый маркерный ген, например ген, сообщающий клетке устойчивость к определенному антибиотику. Благодаря этому клетки, несущие рекомбинантную плазмиду, легко отделить от клеток, не имеющих такой плазмиды. Для этого бактерии высевают на среду с антибиотиком, на которой будут расти только клетки с плазмидой – так называемые рекомбинантные клетки, а процедура их отбора получила название молекулярного клонирования, так как рекомбинантные клетки представляют собой потомство одной молекулы ДНК.

В рекомбинантных клетках химерная плазмида, несущая чужеродный ген, начинает функционировать, то есть совершаются процессы репликации, транскрипции и трансляции нового введенного в клетку гена и синтезируется продукт этого гена, который в природных клетках никогда ранее не мог образоваться. Таким образом, in vitro проводится только рекомбинация, а все остальные превращения с химерной плазмидой происходят в клетке так же, как и со своими собственными генами. Иными словами, теперь можно ввести в бактериальную клетку ген, полученный из любого организма, и заставить чужеродный ген там функционировать.

Итак, основные процедуры в генной инженерии сводятся к следующему (рис. 16):

1) рекомбинация in vitro ДНК-вектора и ДНК – гена;

2) введение рекомбинантной плазмиды в клетку;

3) молекулярное клонирование.

Рисунок 16. Принципиальная схема манипуляции генной инженерии

Перечень дополнительных работ, производимых при капитальном ремонте здания и объектов

1. Обследование зданий (включая сплошное обследование жилищного фонда) и изготовление проектно-сметной документации (независимо от периода проведения ремонтных работ).

2. Перепланировка квартир, не вызывающая изменение основных технико-экономических показателей здания, увеличение количества и качества услуг, оборудование в квартирах, кухонь и санитарных узлов; расширения жилой площади за счет подсобных помещений; улучшение инсоляции жилых помещений; ликвидация темных кухонь и входов в квартиры через кухни с устройством при необходимости встроенных или пристроенных помещений для лестничных клеток, санитарных узлов или кухонь, а также балконов, лоджий и эркеров; замена печного отопления центральным с устройством котельных, теплопроводов и тепловых пунктов; переоборудование печей для сжигания в них газа или угля; оборудование системами холодного и горячего водоснабжения, канализации, газоснабжения с присоединением к существующим магистральным сетям при расстоянии от ввода до точки подключения к магистралям до 150 мм; устройство газоходов, водоподкачек, бойлерных; установка бытовых электроплит взамен газовых плит или кухонных очагов; устройство лифтов, мусоропроводов, систем пневматического мусороудаления в домах с отметкой лестничной площадки верхнего этажа 14 м и выше; перевод существующей сети электроснабжения на повышенное напряжение; устройство теле- и радиоантенн коллективного пользования, подключение к телефонной и радиотрансляционной сетям; установка домофонов, электрических замков; устройство систем противопожарной автоматики и дымоудаления; автоматизация и диспетчеризация отопительных котельных, тепловых сетей, теплопунктов и инженерного оборудования жилых домов; благоустройство дворовых территорий (замощение, асфальтирование, озеленение, устройство ограждений, дровяных сараев); оборудование детских, спортивных (кроме стадионов) и хозяйственно-бытовых площадок; разборка аварийных домов; изменение конструкции крыш; оборудование чердачных помещений жилых и нежилых зданий под эксплуатируемые.

3. Замена существующего и установка нового технологического оборудования в зданиях коммунального и социально-культурного назначения.

4. Утепление и шумозащита зданий.

5. Замена изношенных элементов внутриквартальных инженерных сетей.

6. Ремонт встроенных помещений в зданиях.

7. Экспертиза проектно-сметной документации.

9. Технический надзор.

10. Проведение ремонтно-реставрационных работ памятников, находящихся под охраной государства.


Генетическую инженерию можно трактовать как искусство использовать знание основ и методов молекулярной генетики и молекулярной биологии для конструирования организмов с заданными наследственными свойствами.

Генная инженерия методами in vivo или in vitro решает задачи введения в геном реципиентной клетки одного или нескольких (обычно чужеродных) генов либо создания в геноме новых типов регуляторных связей. В таких случаях видовая принадлежность реципиентных организмов не меняется, но появляются несвойственные им признаки.

Среди направлений генной инженерии в растениеводстве можно выделить следующие:

1. Методы диагностики и отбора:

· растений, поражённых вирусами и бактериями;

· генотипов, устойчивых к стрессам и болезням;

· растений с различной цитоплазмой;

· растений с высоким уровнем гомеостатичности.

2. Методы улучшения:

· качества зерна;

· устойчивости к вредителям;

3. Создания молекулярно-генетической карты с целью повышения эффективности селекционных программ.

Своими успехами генетическая инженерия растений обязана в первую очередь достижениям клеточной инженерии в разработке методов регенерации целых растений из единичных дифференцированных клеток или протопластов. Второй слагающей успеха явилось использование природной системы трансформации растений Ti-плазмидами Agrobacterium tumefaciens и создания на их базе векторов, способных интегрироваться в растительные хромосомы. Это дало возможность вводить в клетки растений чужеродные гены и получать из единственной клетки сформированные растения. Такие организмы, в которых чужеродные гены обнаруживаются во всех его клетках, включая половые, называются трансгенными. Они обладают свойством передавать приобретённые или новые признаки своему потомству.

Успех в манипулировании генами достигнут главным образом в работах с двудольными растениями семейства Solanaceae, а модельными объектами является табак, томаты и петуния.

Прогресс в решении проблемы генетической трансформации растений при помощи экзогенной ДНК связан с решением трёх проблем:

1. создание удобной реципиентной системы;

2. выделение отдельных генов;

3. использование векторов.

Создано 30.08.2011 17:33

Светящиеся в темноте коты? Это может звучать, как научная фантастика, но они существуют уже многие годы. Капуста, производящая яд скорпионов? Сделано. Да, и в следующий раз, когда вам понадобится вакцина, доктор может просто дать вам банан.

Эти и многие другие генетически измененные организмы существуют сегодня, их ДНК была изменена и смешана с другой ДНК, чтобы получить полностью новый набор генов. Вы можете не знать этого, но многие из этих генетически модифицированных организмов являются частью жизни и даже частью повседневного питания. К примеру, в США около 45% кукурузы и 85% соевых бобов генетически модифицированы, и оценочно 70-75% бакалейных продуктов на полках продуктовых магазинов содержат генетически созданные ингредиенты.

Ниже представлен список самых странных растений и животных, созданных методами генной инженерии и существующих сегодня.

Светящиеся в темноте коты

В 2007 году южнокорейский ученый изменил ДНК кота, чтобы заставить его светиться в темноте, а затем взял эту ДНК и клонировал из нее других котов, создав целую группу пушистых флуоресцирующих кошачьих. И вот, как он это сделал: исследователь взял кожные клетки мужских особей турецкой ангоры и, используя вирус, ввел генетические инструкции по производству красного флуоресцентного белка. Затем он поместил генетически измененные ядра в яйцеклетки для клонирования, и эмбрионы были имплантированы назад донорским котам, что сделало их суррогатными матерями для собственных клонов.

Так для чего же нужно домашнее животное, работающее по совместительству ночником? Ученые говорят, что животные с флуоресцентными протеинами дадут возможность искусственно изучать на них человеческие генетические болезни.

Эко-свинья

Эко-свинья, или как критики ее еще называют Франкенсвин - это свинья, которая была генетически изменена для лучшего переваривания и переработки фосфора. Свиной навоз богат формой фосфора фитатом, а потому, когда фермеры используют его как удобрение, это химическое вещество попадает в водосборы и становится причиной цветения водорослей, которые, в свою очередь, уничтожают кислород в воде и убивают водную жизнь.

Борющиеся с загрязнениями растения

Ученые Вашингтонского университета работают над созданием тополей, которые могут очищать загрязненные места при помощи впитывания через корневую систему загрязняющих веществ, содержащихся в подземных водах. После этого растения разлагают загрязнители на безвредные побочные продукты, которые впитываются корнями, стволом и листьями или высвобождаются в воздух.

В лабораторных испытаниях трансгенные растения удаляют ни много, ни мало 91% трихлорэтилена из жидкого раствора, химического вещества, являющегося самым распространенным загрязнителем подземных вод.

Ядовитая капуста

Ученые недавно выделили ген, отвечающий за яд в хвосте скорпиона, и начали искать способы введения его в капусту. Зачем нужна ядовитая капуста? Чтобы уменьшить использование пестицидов и при этом не давать гусеницам портить урожай. Это генетически модифицированное растение будет производить яд, убивающий гусениц после укуса листьев, но токсин изменен так, чтобы быть безвредным для людей.

Плетущие паутину козы

Крепкий и гибкий паутиний шелк является одним из самых ценных материалов в природе, его можно было бы использовать для производства целого ряда изделий от искусственных волокон до парашютных строп, если бы была возможность производства в коммерческих объемах. В 2000 году компания «Nexia Biotechnologies» заявила, что имеет решение: коза, производящая в своем молоке паутинный белок паука.

Исследователи вложили ген каркасной нити паутины в ДНК козы таким образом, чтобы животное стало производить паутинный белок только в своем молоке. Это «шелковое молоко» затем можно использовать для производства паутинного материала под названием «Биосталь».

Быстрорастущий лосось

Генетически модифицированный лосось компании «AquaBounty» растет в два раза быстрее, чем обычная рыба этого вида. На фото показаны два лосося одного возраста. В компании говорят, что рыба имеет тот же вкус, строение ткани, цвет и запах, как и обычный лосось; однако все еще идут споры о ее съедобности.
Генетически созданный атлантический лосось имеет дополнительный гормон роста от чавычи, который позволяет рыбе производить гормон роста круглый год. Ученым удалось сохранить активность гормона при помощи гена, взятого у схожей на угря рыбы под названием «американская бельдюга» и действующего как «включатель» для гормона.

Если Федеральное управление США по контролю качества продуктов питания, напитков и лекарственных препаратов согласует продажу лосося, то это станет первым случаем, когда американское правительство разрешит распространять модифицированное животное для потребления человеком. В соответствии с федеральными положениями рыбу не надо будет помечать как генетически модифицированную.

Помидор Flavr Savr

Помидор Flavr Savr был первым коммерчески выращиваемым и генетически созданным продуктом питания, которому предоставили лицензию для потребления человеком. Добавляя антисмысловый ген, компания «Calgene» надеялась замедлить процесс созревания помидора, чтобы предотвратить процесс размягчения и гниения, давая при этом ему возможность сохранить природный вкус и цвет. В итоге помидоры оказались слишком чувствительными к перевозке и совершенно безвкусными.

Банановые вакцины

Вскоре люди смогут получать вакцину от гепатита Б и холеры, просто укусив банан. Исследователи успешно создали бананы, картофель, салат-латук, морковь и табак для производства вакцин, но, по их словам, идеальными для этой цели оказались именно бананы.

Когда измененная форма вируса вводится в молодое банановое дерево, его генетический материал быстро становится постоянной частью клеток растения. С ростом дерева его клетки производят вирусные белки, но не инфекционную часть вируса. Когда люди съедают кусок генетически созданного банана, заполненного вирусными белками, их иммунная система создает антитела для борьбы с болезнью; то же происходит и с обычной вакциной.

Менее страдающие от метеоризма коровы

Коровы производят значительные объемы метана в результате процессов пищеварения. Он производится бактерией, являющейся побочным продуктом богатой целлюлозой диеты, включающей траву и сено. Метан – второй по объему после двуокиси углерода загрязнитель, вызывающий парниковый эффект, и потому ученые работали над созданием коровы, производящей меньше этого газа.

Исследователи в сфере сельского хозяйства Университета Альберты обнаружили бактерию, отвечающую за производство метана, и создали линию скота, выделяющего на 25% меньше газа, чем обычная корова.

Генетически модифицированные деревья

Деревья изменяются генетически для более быстрого роста, лучшей древесины и даже для обнаружения биологических атак. Сторонники генетически созданных деревьев говорят, что биотехнологии могут помочь остановить обезлесение и удовлетворить потребности в древесине и бумаге. Например, австралийское эвкалиптовое дерево изменено для устойчивости к низким температурам, была создана ладанная сосна с меньшим содержанием лигнина – вещества, дающего деревьям твердость. В 2003 году Пентагон даже наградил создателей сосны, меняющей цвет во время биологической или химической атаки.

Однако критики заявляют, что знаний о том, как созданные деревья влияют на природное окружение, еще недостаточно; среди иных недостатков они могут распространять гены на природные деревья или увеличивать риск воспламенения.

Лекарственные яйца

Британские ученые создали породу генетически модифицированных кур, которые производят в яйцах лекарства против рака. Животным добавили в ДНК гены людей, и, таким образом, человеческие белки секретируются в белок яиц вместе со сложными лекарственными белками, схожими с препаратами, используемыми для лечения рака кожи и других заболеваний.

Что же именно содержится в этих борющихся с болезнями яйцах? Куры несут яйца с miR24 – молекулой, способной лечить злокачественные опухоли и артрит, а также с человеческим интерфероном b-1a – антивирусным лекарством, схожим на современные препараты от множественного склероза.

Активно связывающие углерод растения

Ежегодно люди добавляют около девяти гигатонн углерода в атмосферу, а растения впитывают около пяти из этого количества. Оставшийся углерод способствует парниковому эффекту и глобальному потеплению, но ученые работают над созданием генетически модифицированных растений для улавливания этих остатков углерода.

Углерод может в течение десятилетий оставаться в листьях, ветвях, семенах и цветах растений, а тот, что попадает в корни, может быть там столетия. Таким образом, исследователи надеются создать биоэнергетические культуры с обширной корневой системой, которые смогут связывать и сохранять углерод под землей. Ученые в настоящее время работают над генетическим модифицированием многолетних растений, как просо прутьевидное и мискант, что связано с их большими корневыми системами. Подробнее об этом читайте



2024 stdpro.ru. Сайт о правильном строительстве.