Расчет на смятие металлического кольца. Практические приемы расчета на сдвиг и смятие. Расчет болтовых и заклепочных соединений. Подставляя числовые значения, получим

Расчеты на срез и смятие

Пример № 1

Круглый стержень, растягиваемый силой F = 180 кН укреплен на детали с помощью чеки прямоугольного сечения (рис.1). Из условий прочности на растяжение, срез и смятие стали определить диаметр стержня d , необходимую длину а хвостовой его части, а также размеры поперечного сечения чеки t и h без учета ее работы на изгиб. Допускаемые напряжения принять: [σ р ] = 160 МПа, [τ ср ] = 100 МПа, [σ см ] = 320 МПа.

Рис.1

Решение.

Стержень под действием силы F испытывает растяжение, ослабленным сечением будет сечение стержня, которое проходит через чеку. Его площадь определяется как разность площадей круга и прямоугольника, у которого одна сторона равна ширине чеки t , а вторую можно принять равной диаметру стержня d .. Эта площадь показана на (рис. 1, ж).

По условию прочности на растяжения

определяем площадь растяжения, подставляя N = F , имеем:

приравнивая(1) получаем первое уравнение. В хвостовике стержня под давлением чеки может произойти срез по площади А ср = 2(a - h )∙ d . Из условия прочности на срез

определим площадь среза хвостовика

отсюда 2(a - h d = 1800(2) получаем второе уравнение.

Исходя из условия равно прочности насрез стержня и чеки определяем площадь среза чеки, которая определяется как A 2ср = 2h t и равны A 1ср т.е. A 2ср = A 1ср , поэтому получаем третье уравнение 2h t = 1800(3).

Под действием силы F чека, оказывая давление на внутреннюю часть стержня вызывает смятие стержня по площади A см = d · t .

определяем площадь смятия:

Таким образом, получим четыре уравнения для определения диаметра стержня d , длины хвостовика а и размеров поперечного сечения чеки t и h :

2(a - h )∙ d = 1800(4)

2h t = 1800

d t = 56,25

подставим в первое уравнение системы (4) вместо d t = 56,25, получим:

– 56,25 = 1125 или = 1125 + 56,25 = 1687,5

отсюдат.е. d = 46,4мм

т.к. d t =56,25,;t = 12,1 мм .

Из третьего уравнения системы (4) определяем h .

2h t = 1800, отсюда ;h = 74,3 мм .

Из второго уравнения системы (4) определяем а .

2(a - h ) ∙ d = 1800

(a - h ) = 900, отсюда

Итак, а = 93,7 мм.

Пример № 2

Проверить прочность тяги на растяжение, а болта на срез и смятие, если к тяге приложена сила F = 60 кН , размеры даны на (рис.2), при допускаемых напряжениях: на растяжение [σ р ] = 120 МПа, на срез [τ ср ] = 80 МПа, на смятие [σ см ] = 240 МПа.

Рис. 2

Решение.

Устанавливаем, какие виды деформаций испытывают детали соединения. Под действием силы F стальная тяга диаметром d и проушина с наружным диаметром D 1 и внутренним D 2 будут испытывать растяжение, площадка тяги представляет собой окружность с площадью

в проушине, ослабленной отверстием D 2 разрыв может произойти по площади A 2р = (D 1 – D 2 )∙ в . Используя условия прочности при растяжении

проверяем прочность тяги на растяжение; т.к.N = F , то

т.е. тяга удовлетворяет условию прочности.

Растягивающее напряжение в проушине;

Прочность проушине обеспечена.

Болт диаметром D 2 испытывает срез по двум плоскостям, каждая из которых равна площади поперечного сечения болта, т.е.

Из условия прочности на срез:

Внутренняя часть проушины оказывает давление на поверхность болта, поэтому смятию подвергается цилиндрическая поверхность болта по площади А см = D 2 ·в.

выполняем проверку прочности болта на смятие

Пример № 3

Болт диаметром d = 100мм , работающий на растяжение, опирается головкой на лист (рис. 3). Определить диаметр головки D и высоту ее h , если растягивающее напряжение в сечении болта σ р = 100 Н/мм 2 , напряжение смятия по площади опирания головки σ см = 40Н/мм 2 и напряжения среза головки τ ср = 50 Н/мм 2 .

Рис.3

Решение.

Приступая к решению задачи, нужно установить какие виды деформаций испытывает стержень болта и его головка, чтобы затем использовать соответствующие расчетные зависимости. Если уменьшать диаметр болта d , то это может привести к разрыву, так как стержень болта испытывает растяжение. Площадь поперечного сечения, по которой может произойти разрыв (рис. 3,в). Уменьшение высоты головки h , если прочность головки стержня окажется недостаточной, повлечет за собой срез по боковой поверхности цилиндра высотой h и диаметром d (рис. 3,а). Площадь срезаА ср = π·d · h .

Если будет уменьшаться диаметр головки D , то воспринимающая силу F , опорная кольцевая поверхность головки стержня может подвергнуться смятию. Площадь смятия (рис. 3,б).

Таким образом, расчет необходимо вести по условиям прочности на растяжение, срез и смятие. При этом следует соблюдать определенную последовательность, т.е. начинать расчет с определения тех силовых факторов или размеров, которые не зависят от других определяемых величин. В данной задаче начинаем с определения внутренней силы Ν , которая равна по величине срезающей силе Q прикладываемой к болту силы F .

Из условия прочности при растяжении

определяем силу N , которая равна по величине силе Q = F .

Сила

Из условия прочности на срез определим высоту головки

болта, т.к. Q = F , то, , но A ср = πdh , поэтому .

Определяем диаметр опорной поверхности головки болта из условия ее прочности на смятие

Ответ: h = 50 мм, D = 187 мм.

Пример № 4

Определить какую силу F (рис. 4) надо приложить к пуансону штампа для пробивки в стальном листе толщиной t = 4 мм , размером в × h = 10× 15, если предел прочности на срез материала листа τ пч = 400 МПа. Определить также напряжение сжатия в пуансоне.

Рис.4

Решение.

Под действием силы F произошло разрушение материала листа по четырем поверхностям, когда действительное напряжение достигло предела прочности τ пч при срезе. Следовательно, надо определить внутреннюю Q и равную ей внешнюю силу F по известному напряжению и размерам h , в и t площадь деформируемых сечений. А эта площадь представляет собой площадь четырех прямоугольников: двух с размерами h × t и двух с размерами в × t .

Таким образом,А ср = h · t + в· t = 2t · (h + в ) = 2·4·(15+10) = 200 мм 2 .

Касательное напряжение при срезе срез

но так как Q = F ;

F = 𝜏 пч A ср = 400·200 = 80000 Н = 80 кН; F = 80 кН

Напряжение сжатия в пуансоне

Ответ: F =80кН; σ сж = 533,3 МПа.

Пример № 5

Деревянный брус квадратного сечения, а = 180 мм (рис.5) подвешен на двух горизонтальных прямоугольных балках и нагружен растягивающей силой F = 40 кН . Для крепления на горизонтальных балках в брусе выполнены две врубки до размера в = 120 мм . Определить возникающие в опасных сечениях бруса напряжения растяжения, среза и смятия, если с = 100 мм .

Рис.5

Решение.

Под действием силы F в брусе, ослабленном с двух сторон врубками возникаем растягивающее напряжение σ . В опасном сечении, размеры которого А р = в ∙ а = 120∙ 180 = 21600 мм 2 . Нормальное напряжение σ , учитывая, что внутренняя сила N в сечении равна внешней силе F равно:

Касательные напряжения скалывания τ ск возникают в двух опасных сечениях от давления горизонтальных балок на вертикальный брус, под действием силы Q = F . Эти площадки расположены в вертикальной плоскости, их величина А ск 2 ∙ с ∙ а =2∙ 100∙ 180=36000 мм 2 .

Вычисляем напряжения скалывания, действующих на этих площадках:

Напряжение смятия σ см возникает от действия силы F в двух опасных сеченияхвертикального бруса в верхней части горизонтальных балок, оказывающих давление на вертикальный брус. Их величина определяется А см ∙ (а-в) = 180∙ (180-120) =180∙ 60 = 10800 мм 2 .

Напряжение смятия

Пример № 6

Определить необходимые размеры врубки «прямым зубом». Соединение показано на (рис. 6). Сечение брусьев квадратное, растягивающая сила F = 40 кН . Допускаемые напряжения для древесины имеют значения: на растяжение[σ р ]= 10МПа, на скалывание [τ ск ]= 1МПа, на смятие [σ см ] = 8 МПа.

Рис.6

Решение.

Сопряжения элементов деревянных конструкций – врубки рассчитываются на прочность из условия их работы на растяжение, скалывание и смятие. При достаточной величине сил F , действующих на врубку прямым зубом (рис.6), может произойти скалывание по сечениям de и mn , по этим сечениям возникают касательные напряжения, величина которых определяется в предположении их равномерного распределения по площади сечения. Площадь сечения de или mn А ск = а∙ с .

Условие прочности имеет вид:

а·с = 4000 мм 2 (1)

В вертикальной стенке зуба на площадке m е имеет место деформация смятия. Площадь сечения, по которой может произойти смятие А см = в∙ а .

Из условия прочности на смятие:

имеем или в·а = 5000 мм 2 (2)

Исходя из разнопрочности деталей А и В , разрыв их может произойти по сечению, площадь которой .

Условия прочности на растяжение имеет вид:

В результате получим систему уравнений: 1, 2, 3.

а ∙ с = 4000

в ∙ а = 5000

Выполнив преобразование в третьем уравнении системы (4), получим:

а ∙ с = 4000

в ∙ а = 5000 (4 ’)

а 2 - а∙ в = 8000

уравнение (3) системы (4 ’)принимает вид а 2 = 8000∙ в = 8000+5000 = 13000 отсюда а = = 114 мм ;

из уравнения (2) системы (4’)

из уравнения (1) системы (4’)

Ответ: а = 114 мм ; в = 44 мм ;с = 351 мм .

Пример № 7

Соединение стропильной ноги с затяжкой выполнено с помощью лобовой врубки (рис. 7). Определить необходимые размеры (х, х 1 , y ), если сжимающее усилие в подкосе равно F = 60 кН , угол наклона крышки α = 30 о, размеры сечения брусьев h = 20 см , в = 10 см . Допускаемые напряжения приняты: на растяжения и сжатие вдоль волокон [σ ] = 10 МПа , на смятие поперек волокон [σ см ] = 8 МПа , на смятие вдоль волокон [σ 90 ] = 2,4 МПа и на скалывание вдоль волокон [τ ск ] = 0,8 МПа . Проверить также прочность стропильной ноги на сжатие и затяжки в ослабленном месте сечения на растяжение.

Рис.7

Решение.

Определяем усилия, действующие по плоскостям врубки. Для этого раскладываем силу F на вертикальную составляющую F 1 и горизонтальную составляющую F 2 ,получим

F 1 = F sin 𝛼 = 60∙ 0,5 = 30 кН .

F 2 = F cos 𝛼 = 60∙ 0,867 = 52,02 кН .

Эти силы уравниваются реакцией опоры R = F 1 и растягивающим усилием в затяжке N = F 2 . Сила F 1 вызывает смятие затяжки по площади опирания на опорную подушку (перпендикулярно к волокнам). Условия прочности на смятие:

откуда, т.к. А см =х 1 в ,то

Конструктивно она принимается значительно больше. Глубину врубки y определяем из условия, что сила F 2 вызывает смятие по вертикальной упорной, и площадке А см = у∙ в в месте контакта торца строительной ноги с затяжкой. Из условия прочности на смятие имеем:

т.к. А см =у ·в , то .

Конец затяжки испытывает скалывание вдоль волокон под действием этой же горизонтальной силы F 2 . Длину х затяжки, выступающую за врубку, определим из условия прочности на скалывание:

т.к. τ ск = 0,8 МПа , . Площадь скалывания А ск = в∙ х

Следовательно, в х = 65000, откуда

Проверим прочность строительной ноги на сжатие:

Проверим прочность затяжки в ослабленном сечении:

т.е. прочность обеспечена.

Пример № 8

Определить напряжение растяжения, вызываемое силой F = 30 кН в ослабленном, тремя заклепками сечения стальных полос, а также напряжения среза и смятия в заклепках. Размеры соединения: ширина полос а = 80 мм , толщина листов δ = 6 мм , диаметр заклепок d = 14 мм (рис.8).

Рис.8

Решение.

Максимальное напряжение растяжения возникает в полосе по сечению 1-1 (рис. 8,а) ослабленному тремя отверстиями под заклепки. В этом сечении действует внутренняя сила N , равная по величине силе F . Площадь поперечного сечения показана на (рис. 8, г) и равна А р = а ∙𝛿 – 3∙ d 𝛿 = 𝛿∙ (a - 3d ).

Напряжение в опасном сечении 1-1:

Срез вызывается действием двух равных внутренних сил , направленных в противоположные стороны, перпендикулярно оси стержня (рис. 8,в). Площадь среза одной заклепки равна площади круга (рис.8,д), площадь среза всего сечения , гдеn – число заклепок, в данном случае n = 3.

Подсчитываем напряжение среза в заклепках:

На стержень заклепки давление со стороны отверстия в листе передается по боковой поверхности полуцилиндра (рис. 8, д), высотой, равной толщине листа δ . С целью упрощения расчета за площадь смятия вместо поверхности полуцилиндра условно принимают проекцию этой поверхности на диаметральную плоскость (рис. 8,е), т.е. площадь прямоугольника efck , равную d 𝛿 .

Вычисляем напряжение смятия в заклепках:

Итак σ р = 131,6 МПа ,τ ср = 65 МПа ,σ см = 119 МПа .

Пример № 9

Стержень фермы, состоящий из двух швеллеров №20, соединен с фасонным листом (косынкой) узла фермы заклепками расчетным диаметром d = 16 мм (рис.9). Определить требуемое число заклепок при допускаемых напряжениях: [τ ср ] = 140 МПа ;[σ см ] = 320 МПа ;[σ р ] = 160 МПа . Проверить прочность стержня.

Рис.9

Решение.

Определяем размеры поперечного сечения швеллера №20 по ГОСТ 8240-89 А = 23,4 см 2 , толщина стенки швеллера δ = 5,2 мм . Из условия прочности на срез

где Q ср – поперечная сила: при нескольких одинаковых соединительных деталях Q ср = F / i ( – число заклепок; А с p – площадь среза одной заклепки; [τ ср ] – допускаемое напряжение на срез, зависящее от материала соединительных элементов и условий работы конструкций.

Обозначим z – число плоскостей среза соединения, площадь среза одной заклепки , тогда из условия прочности (1) следует, что допускаемая сила на одну заклепку:

Здесь принято z = 2, т.к. заклепки двухсрезные .

Из условия прочности на смятие

где А см = d 𝛿 к

𝛿 к – толщина фасонного листа (косынки). d – диаметр заклепки.

Определим допускаемую силу на одну заклепку:

Толщина косынки 9 мм меньше удвоенной толщины швеллера 10,4 мм , поэтому она и принята в качестве расчетной.

Требуемое число заклепок определяем из условия прочности на смятие, так как .

Обозначим n –число заклепок, тогда принимаем n =12.

Проверяем прочность стержня на растяжение. Опасным сечением будет сечение 1-1, так как в этом сечении действует наибольшая сила F , а площади во всех ослабленных сечениях одинаковы, т.е. , где А = 23,4 см 2 площадь поперечного сечения одного швеллера №20 (ГОСТ 8240-89).

Следовательно, прочность швеллеров обеспечена.

Пример № 10

Зубчатое колесо А соединено с валом В призматической шпонкой (рис. 10). С зубчатого колеса передается на вал диаметром d =40 мм момент М = 200 Нм . Определить длину призматической шпонки, учитывая, что допускаемые напряжения материала шпонки равны: на срез [τ ср ] = 80 МПа, а на смятие [σ см ] = 140 МПа (размеры на рис. указаны в мм ).

Рис.10

Решение.

Определяем усилие F , действующее на шпонку со стороны соединяемых деталей. Момент, передаваемый на вал равен , где d – диаметр вала. Откуда . Предполагается, что усилие F равномерно распределено по площади шпонки , где - длина шпонки, h – ее высота.

Длина шпонки, необходимая для обеспечения ее прочности, может быть найдена из условия прочности на срез

и условия прочности на смятие

Находим длину шпонки из условия прочности на срез, так как срез происходит по площади А ср = в·ℓ , то ;

Из условия прочности (2) на смятие, имеем:

Для обеспечения прочности соединения длину шпонки необходимо принять равной большему значению из двух полученных, т.е. ℓ= 18 мм.

Пример № 11

Вильчатый кривошип укреплен на валу с помощью цилиндрического штифта (рис.11) и нагружен силой F =2,5 кН. Проверить прочность штифтового соединения на срез и смятие, если [τ ср ] = 60 МПа и[σ см ] = 100 МПа .

Рис.11

Решение.

Сначала следует определить величину силы F 1 , передаваемую на штифт от силы F , приложенной к кривошипу. Очевидно, что М= F h равен моменту .

проверим прочность штифта на срез под действием силы F 1 . В продольном сечении штифта возникает касательное напряжение среза, величина которого определяется по формуле , где А ср = d ∙ ℓ

Цилиндрическая поверхность штифта под действием силы F 1 подвергается смятию. Поверхность контакта, через которую передается сила F 1, представляет собой четвертую часть поверхности полуцилиндра, так как за уловную площадь смятия принимается площадь проекции поверхности контакта на диаметральную плоскость, т.е. d ℓ , то А см = 0,5∙ d ∙ ℓ.

Итак, прочность штифтового соединения обеспечена.

Пример № 12

Рассчитать количество заклепок диаметром d = 4 мм, необходимое для соединения двух листов двумя накладками (см. рис.12). Материалом для листов и заклепок служит дюралюминий, для которого R bs = 110 МПа, R b р = 310 МПа. Сила F = 35 кН, коэффициент условий работы соединения γ b = 0,9; толщина листов и накладок t = 2 мм.

Рис.12

Решение.

Используя формулы

рассчитываем потребное количество заклепок:

из условия прочности на срез

из условия прочности на смятие

Из полученных результатов видно, что в данном случае решающим явилось условие прочности на смятие. Таким образом, следует взять 16 заклепок.

Пример № 13

Выполнить расчет прикрепления стержня к узловой фасонке (см. рис.13) болтами диаметром d = 2 см. Стержень, поперечное сечение которого представляет собой два одинаковых равнобоких уголка, растягивается силой F = 300 кН.

Материал фасонки и болтов – сталь, для которой расчетные сопротивления равны: на растяжениеR bt = 200 МПа, на срезR bs = 160 МПа, на смятие R b р = 400 МПа, коэффициент условий работы соединения γ b = 0,75. Одновременно рассчитать и назначить толщину листа фасонки .

Рис.13

Решение.

Прежде всего необходимо установить номер равнобоких уголков, составляющих стержень, определив потребную площадь поперечного сеченияA nec из условия прочности на растяжение

Учитывая предстоящее ослабление стержня отверстиями для болтов, следует добавить к площади сечения A nec 15%. Полученной таким образом площади сечения А = 1,15∙ 20 = 23 см 2 отвечает по ГОСТ 8508–86 (см. Приложение) симметричное сечение из двух равнобоких уголков размерами 75× 75× 8 мм.

Производим расчет на срез. Пользуясь формулой , найдем необходимое число болтов

Остановившись на этом числе болтов, определим толщину δ узловой фасонки , используя условие прочности на смятие

Указания

1. Привязка линии размещения болтов (заклепок) в один ряд находится из условия:m = b / 2 + 5 мм.

В нашем примере (рис. 13)

m = 75/2 + 5 = 42,5 мм.

2. Минимальное расстояние между центрами соседних болтов принимают равным l = 3d . В рассматриваемой задаче имеем

l = 3∙ 20 = 60 мм.

3. Расстояние от крайних болтов до границы соединения l / принимается равным 0,7l . В нашем примере l / = 0,7l = 0,7∙ 60 = 42 мм.

4. При выполнении условия b ≥12 см болты (заклепки) размещают в две линии в шахматном порядке (рис. 14).

Рис.14

Пример № 14

Определить необходимое количество заклепок диаметром 20 мм для соединения внахлестку двух листов толщиной 8 мм и 10 мм (рис.15). Сила F , растягивающая соединение, равна 200 кН. Допускаемые напряжения: на срез [τ ] = 140 МПа, на смятие [σ c ] = 320 МПа.

Допускаемые напряжения – 80…120 МПа.

Овализация пальца

Овализация пальца происходит, когда от действия вертикальных сил (рис. 7.1, в ) возникает деформация с увеличением диаметра в поперечном сечении. Максимальные приращения диаметра пальца в средней части:

, (7.4)

где – коэффициент, полученный из эксперимента,

К =1,5…15( -0,4) 3 ;

– модуль упругости стали пальца, МПа.

Обычно = 0,02…0,05 мм – эта деформация не должна превышать половины диаметрального зазора между пальцем и бобышками или отверстием шатунной головки шатуна.

Напряжения, которые возникают при овализации (см. рис. 7.1) в точках 1 и 3 внешнего и 2 и 4 внутреннего волокон, можно определить по формулам:

Для наружной поверхности пальца

. (7.5)

Для внутренней поверхности пальца

, (7.6)

где h – толщина стенки пальца, r = (d н +d в)/4; f 1 и f 2 – безразмерные функции, зависящие от углового положения расчетного сечения j , рад.

f 1 =0,5cosj +0,3185sinj -0,3185j cosj ;

f 2 =f 1 - 0,406.

Наиболее нагружена точка 4 . Допустимые значения
s св = 110...140 МПа. Обычно монтажные зазоры между плавающим пальцем и втулкой шатуна 0,01...0,03 мм, а в бобышках чугунного поршня 0,02...0,04 мм. При плавающем пальце зазор между пальцем и бобышкой для прогретого двигателя должен быть не более

D = D¢+(a пп Dt пп - a б Dt б)d пн, (7.7)

где a пп и a б – коэффициенты линейного расширения материала пальца и бобышки, 1/К;

Dt пп и Dt б – повышение температуры пальца и бобышки.

Поршневые кольца

Компрессионные кольца (рис. 7.2) являются основным элементом уплотнения внутрицилиндрового пространства. Устанавливаются с достаточно большим радиальным и осевым зазором. Хорошо уплотняя надпоршневое газовое пространство, они, обладая насосным эффектом, не ограничивают поступление масла в цилиндр. Для этого служат маслосъемные кольца (рис. 7.3).

В основном применяют:

1. Кольца с прямоугольным сечением. Просты в изготовлении, имеют большую площадь контакта со стенкой цилиндра, что обеспечивает хороший теплоотвод от головки поршня, но они плохо прирабатываются к зеркалу цилиндра.

2. Кольца с конической рабочей поверхностью хорошо прирабатываются, после чего приобретают качества колец с прямоугольным сечением. Однако производство таких колец сложно.

3. Скручивающиеся кольца (торсионные). В рабочем положении такое кольцо скручивается и его рабочая поверхность контактирует с зеркалом узкой кромкой, как у конических, что обеспечивает приработку.

4. Маслосъемные кольца обеспечивают на всех режимах сохранение масляной пленки между кольцом и цилиндром толщиной 0,008...0,012 мм. Для предохранения от всплытия на масляной пленке оно должно обеспечивать большое радиальное давление (рис. 7.3).

Различают:

а) Чугунные кольца с витым пружинным расширителем. Для повышения долговечности рабочие пояски колец покрывают слоем пористого хрома.

б) Стальные и сборные хромированные маслосъемные кольца. При эксплуатации кольцо теряет свою упругость неравномерно по периметру, особенно в стыке замка при нагреве. Вследствие этого кольца при изготовлении заневоливают, что обеспечивает неравномерную эпюру давления. Большие давления получают в зоне замка в виде грушевидной эпюры 1 и каплевидной 2 (рис. 7.4, а ).

Знать условия прочности при срезе и смятии. Уметь проводить расчеты на срез и смятие.

Примеры решения задач

Пример 1. Определить потребное количество заклепок для пе­редачи внешней нагрузки 120 кН. Заклепки расположить в один ряд. Проверить прочность соединяемых листов. Известно: [σ ] = 160 МПа; [σ см ] = 300 МПа; [τ с ] = 100 МПа; диаметр заклепок 16 мм.

Решение

1. Определить количество заклепок из расчета на сдвиг (рис. 24.1).

Условие прочности на сдвиг:

z - количество заклепок.

Таким образом, необходимо 6 заклепок.

2. Определить количество заклепок из расчета на смятие. Условие прочности на смятие:

Таким образом, необходимо 4 заклепки.

Для обеспечения прочности на сдвиг (срез) и смятие необходи­мо 6 заклепок.

Для удобства установки заклепок расстояние между ними и от края листа регламентируется. Шаг в ряду (расстояние между цен­трами) заклепок 3d; расстояние до края 1,5d. Следовательно, для расположения шести заклепок диаметром 16 мм необходима ширина листа 288мм. Округляем величину до 300мм (b = 300мм).

3. Проверим прочность листов на растяжение. Проверяем тон­кий лист. Отверстия под заклепки ослабляют сечение, рассчитываем площадь листа в месте, ослабленном отверстиями (рис. 24.2):

Условие прочности на растяжение:

73,53 МПа < 160 МПа. Следовательно, прочность листа обеспечена.

Пример 2. Проверить прочность заклепочного соединения на срез и смятие. Нагрузка на соединение 60 кН, [τ с ] = 100 МПа; [σ см ] = 240 МПа.

Решение

1.

Соединение двухсрезными заклепками последовательно вос­принимается тремя заклепками в левом ряду, а затем тремя заклеп­ками в правом ряду (рис. 24.3).

Площадь сдвига каждой заклепки А с = r 2 . Площадь смятия боковой поверхности A см = min .

2. Проверим прочность соединения на сдвиг (срез).

Q = F/z - поперечная сила в поперечном сечении заклепки:

Прочность на сдвиг обеспечена.

3. Проверим прочность соединения на смятие:

Прочность заклепочного соединения обеспечена.

Пример 3. Определить требуемый диаметр заклеп­ки в нахлесточном соединении, если передающаяся сила
Q = 120 кН, толщина листов δ = 10 мм. Допускаемые на­пряжения на срез [τ ] = 100 H/мм 2 , на смятие [σ см ] = 200 Н/мм 2 (рис. 2.25). Число заклепок в соединении п = 4 (два ряда по две заклепки в каждом).

Решение

Определяем диаметр заклепок. Из условия прочности на срез по сечению аb, учитывая, что заклепки односрезные (т = 1), получаем

Принимаем d = 20 мм.



Из условия прочности соединения на смятие

получаем

Принимаем большее из найденных значений d = 20 мм.

Пример 4. Определить необходимое количество заклепок диаметром d = 20 мм для нахлесточного соеди­нения двух листов толщиной δ 1 = 10 мм и δ 2 = 12 мм. Сила Q , растягивающая соединение, равна 290 кН. До­пускаемые напряжения: на срез [т| = 140 Н/мм а, на смя­тие [σ см ] = 300 Н/мм 2 .

Решение

Из условия прочности на срез необходимое число заклепок при т = 1

Напряжения смятия будут наибольшими между за­клепками и более тонким листом, поэтому в условие прочности на смятие подставляем δ min = 6, и находим

В соединении необходимо поставить 7 заклепок, тре­буемых по условию прочности на срез.

Пример 5. Два листа с поперечными размерами δ 1 = 14 мм, b = 280 мм соединены двусторонними наклад­ками толщиной каждая δ 2 = 8 мм (рис. 2.26). Соединение передает растягивающее усилие Q = 520 кН. Определить число заклепок диаметром d = 20 мм, которое необходимо поставить с каждой стороны стыка. Проверить также прочность листа по опасному сечению, учитывая, что заклепки поставлены по две в ряд (к = 2, рис. 2.26). Допускаемое напряжение на срез заклепок [τ ] = 140Н/мм а, на смятие [σ см ] = 250 H/мм 2 , на растяжение листов [σ ] = 160 Н/мм 2 .

Решение

В рассматриваемом соединении заклепки ра­ботают как двухсрезные т = 2, т. е. каждая заклепка испытывает деформацию среза по двум поперечным сече­ниям (рис. 2.26).

Из условия прочности на срез

Из условия прочности на смятие, учитывая, что ми­нимальная площадь смятия соответствует δ min = δ 1 < 2δ 2 , получаем

Принимаем п = 8.

В данном случае требуемое количество заклепок из условия прочности на смятие оказалось большим, чем из условия прочности на срез.

Проверяем прочность листа в сечении I - I

Таким образом, расчетное напряжение в листе меньше допускаемого.

Пример 6. Зубчатое колесо скреплено с барабаном грузоподъемной машины шестью болтами диаметром d = 18 мм, поставленными без зазоров в отверстия. Центры болтов расположены по окружности диаметром D = 600 мм (рис. 2.27). Определить из условия прочности болтов на срез величину до­пускаемого момента, который может быть передан через зубчатое колесо бара­бану. Допускаемое напряжение для болтов на срез



Решение

Момент, который может передать болтовое соединение колеса с барабаном по рис. 2.27, определится из формулы

где п - число болтов, для нашего слу­чая п = 6; [Q] - допускаемое по условию прочности на срез усилие, передаваемое одним болтом; 0,5D - плечо усилия, передаваемого болтом относительно оси вращения вала.

Вычислим допускаемое усилие, которое может передать болт по условию прочности на срез

Подставив значение [Q ] в формулу для момента, най­дем

Пример 7. Проверить прочность сварного соединения угловы­ми швами с накладкой. Действующая нагрузка 60 кН, допускаемое напряжение металла шва на сдвиг 80 МПа.

Решение

1. Нагрузка передается последовательно через два шва слева, а далее - два шва справа (рис. 24.4). Разрушение угловых швов про­исходит по площадкам, расположенным под углом 45° к поверхности соединяемых листов.

2. Проверим прочность сварного соединения на срез. Двухсторонний угловой шов можно рассчитать по формуле

А с - расчетная площадь среза шва; К - катет шва, равен толщине накладки; b - длина шва.


Следовательно,

59,5 МПа < 80МПа. Расчетное напряжение меньше допускаемого, прочность обеспечена.

Детали соединений (болты, штифты, шпонки, заклепки) рабо­тают так, что можно учитывать только один внутренний силовой фактор - поперечную силу. Такие детали рассчитываются на сдвиг.

Сдвиг (срез)

Сдвигом называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - поперечная сила рис. 23.1).

При сдвиге выполняется закон Гука, который в данном случав записывается следующим образом:

где - напряжение;

G - модуль упругости сдвига;

Угол сдвига.

При отсутствии специальных испытаний G можно рассчитать по формуле,

гдеЕ - модуль упругости при растяжении, [G ] = МПа.

Расчет деталей на сдвиг носит условный характер. Для упрощения расчетов принимается ряд допущений:

При расчете на сдвиг изгиб деталей не учитывается, хотя силы, действующие на деталь, образуют пару;

При расчете считаем, что силы упругости распределены по сечению равномерно;

Если для передачи нагрузки используют несколько деталей, считаем, что внешняя сила распределяется между ними равномерно.

Условие прочности при сдвиге (срезе)

где - допускаемое напряжение сдвига, обычно его определяют по формуле

При разрушении деталь перерезается поперек. Разрушение детали под действием поперечной силы называют срезом.

Довольно часто одновременно со сдвигом происходит смятие боковой поверхности в месте контакта в результате передачи нагрузки одной поверхности к другой. При этом на поверхности возникают сжимающие напряжения, называемые напряжениями смятия, .

Расчет также носит условный характер. Допущения подобны принятым при расчете на сдвиг, однако при расчете боковой цилиндрической поверхности напряжения по поверхности распределены не равномерно, поэтому расчет проводят для наиболее нагруженной точки. Для этого вместо боковой поверхности цилиндра в расчете используют плоскую поверхность, проходящую через диаметр.

Условие прочности при смятии

гдеА см - расчетная площадь смятия

d - диаметр окружности сечения;

Наименьшая высота соединяемых пластин;

F - сила взаимодействия между деталями

Допускаемое напряжение смятия

= (0,35 + 0,4)

Тема 2.5. Кручение

Кручение – вид нагружения бруса, при котором в его поперечных сечениях возникает один внутренний силовой фактор – крутящий момент М кр.

Крутящий момент М кр в произвольном поперечном сечении бруса равен алгебраической сумме моментов, действующих на отсеченную часть бруса.

Крутящий момент считается положительным, если кручение происходит против часовой стрелки и отрицательны – по часовой стрелке.

При расчете валов на прочность при кручении используется условие прочности:

,

где - полярный момент сопротивления сечения, мм 3 ;

– допускаемое касательное напряжение.

Крутящий момент определяется по формуле:

где Р – мощность на валу, Вт;

ω – угловая скорость вращения вала, рад/с.

Полярный момент сопротивления сечения определяется по формулам:

Для круга

Для кольца

.

При кручении бруса его ось испытывает скручивание на некоторый угол φ, который называется углом закручивания . Его величина определяется по формуле:

где l – длина бруса;

G – модуль сдвига, МПа (для стали G=0,8·10 5 МПа);

Полярный момент инерции сечения, мм 4 .

Полярный момент инерции сечения определяется по формулам:

Для круга

Для кольца

.

Тема 2.6. Изгиб

Многие элементы конструкций (балки, рельсы, оси всех колес и т.д.) испытывают деформацию изгиба.

Изгибом называется деформация от момента внешних сил, действующих в плоскости, проходящей через геометрическую ось балки.

В зависимости от места приложения действующих сил различают прямой и косой изгиб.

Прямой изгиб – внешние силы, действующие на балку, лежат в главной плоскости сечения.

Главная плоскость сечения – плоскость, проходящая через ось балки и одну из главных центральных осей сечения.

Косой изгиб - внешние силы, действующие на балку, не лежат в главной плоскости сечения.

В зависимости от характера ВСФ, возникающих в поперечных сечениях балки, изгиб может быть чистым и поперечным .

Изгиб называется поперечным , если в поперечном сечении балки возникают два ВСФ – изгибающий момент М х и поперечная сила Q y .

Изгиб называется чистым , если в поперечном сечении балки возникает один ВСФ – изгибающий момент М х.

Изгибающий момент в произвольном сечении равен алгебраической сумме моментов внешних сил, действующих на отсеченную часть балки:

Поперечная сила Q равна алгебраической сумме проекций внешних сил, действующих на отсеченную часть балки:

При определении знаков поперечных сил используют правило «Часовой стрелки» : поперечная сила считается положительной, если «вращение» внешних сил происходит по часовой стрелке; отрицательной – против часовой стрелки.

При определении знаков изгибающих моментов используют правило «Сжатых волокон» (правило «ЧАШИ»): изгибающий момент считается положительным, если сжимаются верхние волокна балки («вода не выливается»); отрицательным, если сжимаются нижние волокна балки («вода выливается»).

Условие прочности при изгибе: рабочее напряжение должно быть меньше или равно допускаемому напряжению, т.е.

где W х – осевой момент сопротивления (величина, характеризующая способность элементов конструкции сопротивляться деформации изгиба), мм 3 .

Осевой момент сопротивления определяется по формулам:

Для круга

Для кольца

;

Для прямоугольника

При прямом поперечном изгибе изгибающий момент обуславливает возникновение нормального напряжения, а поперечная сила – касательного напряжения, которое определяется по формуле:

где А – площадь поперечного сечения, мм 2 .

4.2.6 Расчет пальца на срез

Расчитаем палец на срез.

Прочность пальца обеспеченна

4.3.5 Расчёт подшипников рычагов

Выбираем роликовый двухрядный сферический подшипник №3003168 по ГОСТ 5721-75 с параметрами: С=2130000 Н, d=340мм, D=520мм, B=133мм.

Расчет методика произведем по формуле изложенной в .

Срок службы подшипника:

где b 1 - коэффициент учёта направления нагрузки, b 1 = 5;

b 2 - коэффициент учёта условий смазки, b 2 = 1;

b 3 - коэффициент температуры, b 3 = 1;

b 4 - размерный коэффициент, b 4 = 1,5;

b 5 - коэффициент учёта свойств материала, b 5 = 1,1;

D a - диаметр сферы, D a = 100 мм;

в - половина угла колебаний, в = 90 о;

С - номинальная динамическая грузоподъёмность, С = 2130000 Н;

Срок службы подшипников рычага:

При выталкивании 1 ряда заготовок приводной вал, рычаг и соответственно подшипник рычага совершают поворот на угол 180 и на такой же угол при обратном ходе. Этот угол соответствует 1 обороту.

Т.е. на ряд заготовок приходится 1 оборот подшипника рычага.

Масса одного ряда заготовок 11200 кг = 112 т. Производительность стана 210 т/ч.

Количество заготовок за 1 час 210/112 = 1,85 шт.

Значит, за 1 час подшипник рычага совершит 1,85 оборотов.

Тогда, срок службы, выраженный в часах, для подшипника рычага равен G/15.

Годовой фонд рабочего времени составляет 7200..7400 часов (если из 8760 часов за год отнять часы плановых ремонтов всего стана). С учетом этого можно выразить срок службы в годах:

где n ч - обороты подшипника за 1 час.

Срок службы подшипника рычага:

Герметичный электронасос

Где -- допускаемое напряжение среза шпонки, условие проверки шпоночного соединения на срез соблюдается...

Назначаем толщину бурта гайки, принимая ее равной: НБ = 0,3*НГ = 21 мм. Опасное сечение: 3 - 3 (рис. 2); Условие статической прочности при срезе: фср? [фср]; где [фср] = ; [s] = 4…5; уB= 250 МПа; Примем [s]=5, [фср] = МПа. ==8...

Проектирование винтового механизма

Опасное сечение: 4 - 4 (рис. 2); Схему нагружения витка см. на рис. 5; Рис. 5. Схема нагружения витка резьбы при расчете на срез Условие статической прочности при срезе: фср? [фср] (определение [фср] - см. выше)...

Проектирование привода

Условие прочности на срез, где [фср] - допускаемое напряжение на срез; [фср] = 100 МПа (, стр. 74); следовательно, условие прочности обеспечено. 8.2 Шпоночное соединение тихоходного вала с зубчатым колесом. 8.2...

Проектирование привода

Условие прочности на срез, где [фср] = 100 МПа (, стр. 74); следовательно, условие прочности обеспечено. 8.3 Шпоночное соединение тихоходного вала редуктора с ведущей звездочкой цепной передачи 8.3...

Проектирование привода

Условие прочности на срез, где [фср] = 100 МПа (, стр. 74); следовательно, условие прочности обеспечено...

Проектирование привода ленточного транспортера

Подбор шпоночных соединений был выполнен в процессе 1-го этапа эскизной компоновки. Все шпонки призматические (ГОСТ 233360-78) (см. рисунок 8) Шпонка испытывает напряжение смятия боковых поверхностей (см) и напряжение среза (ср)...

Проектирование редуктора, выполненного по схеме замкнутого дифференциального планетарного механизма, для высотного турбовинтового двигателя

Шлицевая гайка 76 воспринимает тягу винта. С ее помощью разъемная внутренняя обойма шарикоподшипника 70 прижата к буртику вала, она также крепит на шлицах ступицу 39 перебора. Проверим витки резьбы гайки на срез: (5.1...

Проектирование скрепера МоАЗ-60071

Для расчета размера пальца примем его за брус, закрепленный на двух опорах, на который действует сила Sп, со стороны гидроцилиндра, которая вызывает изгибающие моменты, т.к. изгибающий момент действует в плоскости...

Расчет авиационного поршневого двигателя

Расчет производится на прочность от изгибающих моментов; на предельно допустимую деформацию (овализацию) во избежание заклинивания в верхней головке шатуна; на удельное давление на его трущихся поверхностях...

Расчет привода печного толкателя

Напряжения среза определяются по формуле: где: b - ширина шпонки, - площадь среза шпонки, - допускаемое напряжение среза, = 60... 100 МПа (меньшие значения принимаются при неравномерной или ударной нагрузке), l - стандартная длина шпонки...

Расчет четырехцилиндрового дизельного двигателя рядной компоновки

Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации. В соответствии с указанными условиями работы к материалам...

Редуктор для высотного турбовинтового двигателя

Шлицевая гайка воспринимает тягу винта. С ее помощью разъемная внутренняя обойма шарикоподшипника прижата к буртику вала, она также крепит на шлицах ступицу перебора. Проверим витки резьбы гайки на срез: (5.1...

Редуктор червячный

, (6.2) где b - ширина шпонки, мм; . Таким образом, прочность шпоночных соединений обеспечена...

Тепловой и конструктивный расчеты поршневого компрессора

Наибольшее давление на поршневой палец в подшипнике Наибольшее давление в месте соединения пальца с поршнем Напряжение от изгиба Напряжение на срез в сечении между бобышкой поршня и головкой...



2024 stdpro.ru. Сайт о правильном строительстве.