Центральный угол опирающийся на дугу равен. Окружность и вписанный угол. Визуальный гид (2019)

В этой статье я расскажу как решать задачи, в которых используются .

Сначала, как обычно, вспомним определения и теоремы, которые нужно знать, чтобы успешно решать задачи на .

1. Вписанный угол - это угол, вершина которого лежит на окружности, а его стороны пересекают окружность:

2. Центральный угол - это угол, вершина которого совпадает с центром окружности:

Градусная величина дуги окружности измеряется величиной центрального угла, который на нее опирается.

В данном случае градусная величина дуги АС равна величине угла АОС.

3. Если вписанный и центральный угол опираются на одну дугу, то величина вписанного угла в два раза меньше центрального :

4. Все вписанные углы, которые опираются на одну дугу, равны между собой:

5. Вписанный угол, опирающийся на диаметр, равен 90°:

Решим несколько задач.

1 . Задание B7 (№ 27887)

Найдем величину центрального угла, который опирается на ту же дугу:

Очевидно, что величина угла АОС равна 90°, следовательно, угол АВС равен 45°

Ответ: 45°

2 .Задание B7 (№ 27888)

Найдите величину угла ABC. Ответ дайте в градусах.

Очевидно, что угол АОС равен 270°, тогда угол АВС равен 135°.

Ответ: 135°

3 . Задание B7 (№ 27890)

Найдите градусную величину дуги AC окружности, на которую опирается угол ABC. Ответ дайте в градусах.

Найдем величину центрального угла, который опирается на дугу АС:

Величина угла АОС равна 45°, следовательно, градусная мера дуги АС равна 45°.

Ответ: 45°.

4 . Задание B7 (№ 27885)

Найдите угол ACB, если вписанные углы ADB и DAE опираются на дуги окружности, градусные величины которых равны соответственно и . Ответ дайте в градусах.

Угол ADB опирается на дугу АВ, следовательно, величина центрального угла АОВ равна 118°, следовательно, угол BDA равен 59°, и смежный ему угол ADC равен 180°-59°=121°

Аналогично, угол DOE равен 38° и соответствующий вписанный угол DAE равен 19°.

Рассмотрим треугольник ADC:

Сумма углов треугольника равна 180°.

Величина угла АСВ равна 180°- (121°+19°)=40°

Ответ: 40°

5 . Задание B7 (№ 27872)

Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно , , и . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

Угол В опирается на дугу АDC, величина которой равна сумме величин дуг AD и CD, то есть 71°+145°=216°

Вписанный угол В равен половине величины дуги ADC, то есть 108°

Ответ: 108°

6 . Задание B7 (№ 27873)

Точки A, B, C, D, расположенные на окружности, делят эту окружность на четыре дуги AB, BC, CD и AD, градусные величины которых относятся соответственно как 4:2:3:6 . Найдите угол A четырехугольника ABCD. Ответ дайте в градусах.

(см. чертеж предыдущей задачи)

Так как у нас дано отношение величин дуг, введем единичный элемент х. Тогда величины каждой дуги будут выражаться таким соотношением:

АВ=4х, ВС=2х, СD=3х, AD=6x. Все дуги образуют окружность, то есть их сумма равна 360°.

4х+2х+3х+6х=360°, отсюда х=24°.

Угол А опирается на дуги ВС и CD, которые в сумме имеют величину 5х=120°.

Следовательно, угол А равен 60°

Ответ: 60°

7 . Задание B7 (№ 27874)

Четырехугольник ABCD вписан в окружность. Угол ABC равен , угол CAD

Вписанный угол, теория задачи. Друзья! В этой статье речь пойдёт о заданиях, для решения которых необходимо знать свойства вписанного угла. Это целая группа задач, они включены в ЕГЭ. Большинство из них решаются очень просто, в одно действие.

Есть задачи посложнее, но и они большой трудности для вас не представят, необходимо знать свойства вписанного угла. Постепенно мы разберём все прототипы задач, приглашаю вас на блог!

Теперь необходимая теория. Вспомним, что такое центральный и вписанный угол, хорда, дуга, на которые опираются эти углы:

Центральным углом в окружности называется плоский угол с вершиной в ее центре .

Часть окружности, расположенная внутри плоского угла, называется дугой окружности.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Угол, называется вписанным в окружность, если вершина угла лежит на окружности, а стороны угла пересекают эту окружность.


Отрезок соединяющий две точки окружности называется хордой . Самая большая хорда проходит через центр окружности и называется диаметр.

Для решения задач на вписанные в окружность углы, вам необходимо знать следующие свойства:

1. Вписанный угол равен половине центрального, опирающегося на ту же дугу.


2. Все вписанные углы, опирающиеся на одну и ту же дугу, равны.

3. Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.

4. Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°.

Следствие: противолежащие углы четырёхугольника вписанного в окружность в сумме составляют 180 градусов.

5. Все вписанные углы, опирающиеся на диаметр, прямые.

Вообще, это свойство является следствием из свойства (1), это его частный случай. Посмотрите – центральный угол равен 180 градусам (и этот развёрнутый угол есть не что иное, как диаметр), значит по первому свойству вписанный угол С равен его половине, то есть 90 градусам.

Знание данного свойства помогает в решении многих задач и часто позволяет избежать лишних расчётов. Хорошо усвоив его — вы более половины задач такого типа сможете решать устно. Два следствие, которые можно сделать:

Следствие 1: если в окружность вписан треугольник и одна его сторона совпадает с диаметром этой окружности, то треугольник является прямоугольным (вершина прямого угла лежит на окружности).

Следствие 2: центр описанной около прямоугольного треугольника окружности совпадает с серединой его гипотенузы.

Многие прототипы стереометрических задач также решаются благодаря использованию этого свойства и данных следствий. Запомните сам факт: если диаметр окружности является стороной вписанного треугольника, то этот треугольник прямоугольный (угол лежащий против диаметра равен 90 градусов). Все остальные выводы и следствия вы сможете сделать сами, учить их не надо.

Как правило, половина задач на вписанный угол даётся с эскизом, но без обозначений. Для понимания процесса рассуждения при решении задач (ниже в статье) введены обозначения вершин (углов). На ЕГЭ вы можете этого не делать. Рассмотрим задачи:

Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Построим центральный угол для заданного вписанного угла, обозначим вершины:

По свойству вписанного в окружность угла:

Угол АОВ равен 60 0 , так как треугольник АОВ равносторонний, а в равностороннем треугольнике все углы равны по 60 0 . Стороны треугольника равны, так как в условии сказано, что хорда равна радиусу.

Таким образом, вписанный угол АСВ равен 30 0 .

Ответ: 30

Найдите хорду, на которую опирается угол 30 0 , вписанный в окружность радиуса 3.

Это по сути обратная задача (предыдущей). Построим центральный угол.

Он в два раза больше вписанного, то есть угол АОВ равен 60 0 . От сюда можно сделать вывод, что треугольник АОВ равносторонний. Таким образом, хорда равна радиусу, то есть трём.

Ответ: 3

Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную корню из двух. Ответ дайте в градусах.

Построим центральный угол:

Зная радиус и хорду мы можем найти центральный угол АСВ. Это можно сделать по теореме косинусов. Зная центральный угол мы без труда найдём вписанный угол АСВ.

Теорема косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон, без удвоенного произведения этих сторон на косинус угла между ними.


Следовательно, второй центральный угол равен 360 0 – 90 0 = 270 0 .

Угол АСВ по свойству вписанного угла равен его половине, то есть 135 градусам.

Ответ: 135

Найдите хорду, на которую опирается угол 120 градусов, вписанный в окружность радиуса корень из трёх.

Соединим точки А и В с центром окружности. Обозначим её как О:

Нам известен радиус и вписанный угол АСВ. Мы можем найти центральный угол АОВ (больший 180 градусов), затем найти угол АОВ в треугольнике АОВ. А далее по теореме косинусов вычислить АВ.

По свойству вписанного угла центральный угол АОВ (который больше 180 градусов) будет равен вдвое больше вписанного, то есть 240 градусам. Значит, угол АОВ в треугольнике АОВ равен 360 0 – 240 0 = 120 0 .

По теореме косинусов:


Ответ:3

Найдите вписанный угол, опирающийся на дугу, которая составляет 20% окружности. Ответ дайте в градусах.

По свойству вписанного угла он вдвое меньше центрального угла, опирающегося на ту же дугу, в данном случае речь идёт о дуге АВ.

Сказано, дуга АВ составляет 20 процентов от окружности. Это означает, что центральный угол АОВ составляет так же 20 процентов от 360 0 . *Окружность это угол в 360 градусов. Значит,

Таким образом, вписанный угол АСВ равен 36 градусам.

Ответ: 36

Дуга окружности AC , не содержащая точки B , составляет 200 градусов. А дуга окружности BC, не содержащая точки A , составляет 80 градусов. Найдите вписанный угол ACB. Ответ дайте в градусах.

Обозначим для наглядности дуги, угловые меры которых даны. Дуга соответствующая 200 градусам – синий цвет, дуга соответствующая 80 градусам – красный цвет, оставшаяся часть окружности – жёлтый цвет.

Таким образом, градусная мера дуги АВ (жёлтый цвет), а значит и центральный угол АОВ составляет: 360 0 – 200 0 – 80 0 = 80 0 .

Вписанный угол АСВ вдвое меньше центрального угла АОВ,то есть равен 40 градусам.

Ответ: 40

Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Инструкция

Если известны радиус (R) круга и длина дуги (L), соответствующая искомому центральному углу (θ), рассчитать его можно как в градусах, так и в радианах. Полная определяется формулой 2*π*R и соответствует центральному углу в 360° или двум числам Пи, если вместо градусов использовать радианы. Поэтому исходите из пропорции 2*π*R/L = 360°/θ = 2*π/θ. Выразите из нее центральный угол в радианах θ = 2*π/(2*π*R/L) = L/R или градусах θ = 360°/(2*π*R/L) = 180*L/(π*R) и рассчитайте по полученной формуле.

По длине хорды (m), соединяющей точки , которые определяет центральный угол (θ), его величину тоже можно рассчитать, если известен радиус (R) круга. Для этого рассмотрите треугольник, образованный двумя радиусами и . Это равнобедренный треугольник, все известны, а найти нужно угол, лежащий напротив основания. Синус его половины равен отношению длины основания - хорды - к удвоенной длине боковой стороны - радиуса. Поэтому используйте для вычислений обратную синусу функцию - арксинус: θ = 2*arcsin(½*m/R).

Центральный угол может быть задан и в долях оборота или от развернутого угла. Например, если нужно найти центральный угол, соответствующей четверти полного оборота, разделите 360° на четверку: θ = 360°/4 = 90°. Эта же величина в радианах должна быть 2*π/4 ≈ 3,14/2 ≈ 1,57. Развернутый угол равен половине полного оборота, поэтому, например, центральный угол, соответствующий четверти от него будет вдвое меньше рассчитанных выше значений как в градусах, так и в радианах.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

Одной из распространенных геометрических задач является вычисление площади кругового сегмента - части круга, ограниченной хордой и соответствующей хорде дугой окружности.

Площадь кругового сегмента равна разности площади соответствующего кругового сектора и площади треугольника, образованного радиусами соответствующего сегменту сектора и хордой, ограничивающей сегмент.

Пример 1

Длина хорды, стягивающей окружность равна величине а. Градусная мера дуги, соответствующей хорде, равна 60°. Найти площадь кругового сегмента.

Решение

Треугольник, образованный двумя радиусами и хордой, является равнобедренным, поэтому высота, проведенная из вершины центрального угла на сторону треугольника, образованную хордой, будет также являться биссектрисой центрального угла, поделив его пополам и медианой, поделив пополам хорду. Зная, что синус угла в равен отношению противолежащего катета к гипотенузе, можно вычислить величину радиуса:

Sin 30°= a/2:R = 1/2;

Sc = πR²/360°*60° = πa²/6

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(R²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

Площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a²

Подставив числовое значение вместо величины a, можно с легкостью вычислить числовое значение площади сегмента.

Пример 2

Радиус окружности равен величине а. Градусная мера дуги, соответствующей сегменту, равна 60°. Найти площадь кругового сегмента.

Решение:

Площадь сектора, соответствующего заданному углу можно вычислить по следующей формуле:

Sc = πа²/360°*60° = πa²/6,

Площадь соответствующего сектору треугольника вычисляется следующим образом:

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(a²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

И, наконец, площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a².

Решения в обоих случаях практически идентичны. Таким образом можно сделать вывод, что для вычисления площади сегмента в простейшем случае достаточно знать величину угла, соответствующего дуге сегмента и один из двух параметров - либо радиус окружности, либо длину хорды, стягивающей дугу окружности, образующую сегмент.

Источники:

  • Сегмент - геометрия

Чаще всего процесс подготовки к ЕГЭ по математике начинается с повторения основных определений, формул и теорем, в том числе и по теме «Центральный и вписанный в окружность угол». Как правило, данный раздел планиметрии изучается еще в средней школе. Неудивительно, что многие учащиеся сталкиваются с необходимостью повторения базовых понятий и теорем по теме «Центральный угол окружности». Разобравшись с алгоритмом решения подобных задач, школьники смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена.

Как легко и эффективно подготовиться к прохождению аттестационного испытания?

Занимаясь перед сдачей единого государственного экзамена, многие старшеклассники сталкиваются с проблемой поиска нужной информации по теме «Центральный и вписанный углы в окружности». Далеко не всегда школьный учебник имеется под рукой. А поиск формул в Интернете порой отнимает очень много времени.

«Прокачать» навыки и улучшить знания в таком непростом разделе геометрии, как планиметрия, вам поможет наш образовательный портал. «Школково» предлагает старшеклассникам и их преподавателям по-новому выстроить процесс подготовки к сдаче единого госэкзамена. Весь базовый материал представлен нашими специалистами в максимально доступной форме. Ознакомившись с информацией в разделе «Теоретическая справка», учащиеся узнают, какими свойствами обладает центральный угол окружности, как найти его величину и т. д.

Затем для закрепления полученных знаний и отработки навыков мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий на нахождение величины угла, вписанного в окружность, и других параметров представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.

Готовиться к ЕГЭ, практикуясь в выполнении упражнений, к примеру, на нахождение величины центрального угла и длины дуги окружности, старшеклассники могут в онлайн-режиме, находясь в любом российском регионе.

При необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и еще раз разобрать принцип его решения.

Сегодня мы рассмотрим очередной тип задач 6 — на этот раз с окружностью. Многие ученики не любят их и считают сложными. И совершенно напрасно, поскольку такие задачи решаются элементарно , если знать некоторые теоремы. Или не решаются вообще, если их не знать.

Прежде чем говорить об основных свойствах, позвольте напомнить определение:

Вписанный угол — тот, у которого вершина лежит на самой окружности, а стороны высекают на этой окружности хорду.

Центральный угол — это любой угол с вершиной в центре окружности. Его стороны тоже пересекают эту окружность и высекают на ней хорду.

Итак, понятия вписанного и центрального угла неразрывно связаны с окружностью и хордами внутри нее. А теперь — основное утверждение:

Теорема. Центральный угол всегда в два раза больше вписанного, опирающегося на ту же самую дугу.

Несмотря на простоту утверждения, существует целый класс задач 6, которые решаются с помощью него — и никак иначе.

Задача. Найдите острый вписанный угол, опирающийся на хорду, равную радиусу окружности.

Пусть AB — рассматриваемая хорда, O — центр окружности. Дополнительное построение: OA и OB — радиусы окружности. Получим:

Рассмотрим треугольник ABO . В нем AB = OA = OB — все стороны равны радиусу окружности. Поэтому треугольник ABO — равносторонний, и все углы в нем по 60°.

Пусть M — вершина вписанного угла. Поскольку углы O и M опираются на одну и ту же дугу AB , вписанный угол M в 2 раза меньше центрального угла O . Имеем:

M = O : 2 = 60: 2 = 30

Задача. Центральный угол на 36° больше вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол.

Введем обозначения:

  1. AB — хорда окружности;
  2. Точка O — центр окружности, поэтому угол AOB — центральный;
  3. Точка C — вершина вписанного угла ACB .

Поскольку мы ищем вписанный угол ACB , обозначим его ACB = x . Тогда центральный угол AOB равен x + 36. С другой стороны, центральный угол в 2 раза больше вписанного. Имеем:

AOB = 2 · ACB ;
x + 36 = 2 · x ;
x = 36.

Вот мы и нашли вписанный угол AOB — он равен 36°.

Окружность — это угол в 360°

Прочитав подзаголовок, знающие читатели, наверное, сейчас скажут: «Фу!» И действительно, сравнивать окружность с углом не совсем корректно. Чтобы понять, о чем речь, взгляните на классическую тригонометрическую окружность:

К чему эта картинка? А к тому, что полный оборот — это угол в 360 градусов. И если разделить его, скажем, на 20 равных частей, то размер каждой из них будет 360: 20 = 18 градусов. Именно это и требуется для решения задачи B8.

Точки A , B и C лежат на окружности и делят ее на три дуги, градусные меры которых относятся как 1: 3: 5. Найдите больший угол треугольника ABC .

Для начала найдем градусную меру каждой дуги. Пусть меньшая из них равна x . На рисунке эта дуга обозначена AB . Тогда остальные дуги — BC и AC — можно выразить через AB : дуга BC = 3x ; AC = 5x . В сумме эти дуги дают 360 градусов:

AB + BC + AC = 360;
x + 3x + 5x = 360;
9x = 360;
x = 40.

Теперь рассмотрим большую дугу AC , которая не содержит точку B . Эта дуга, как и соответствующий центральный угол AOC , равна 5x = 5 · 40 = 200 градусов.

Угол ABC — самый большой из всех углов треугольника. Это вписанный угол, опирающийся на ту же дугу, что и центральный угол AOC . Значит, угол ABC в 2 раза меньше AOC . Имеем:

ABC = AOC : 2 = 200: 2 = 100

Это и будет градусная мера большего угла в треугольнике ABC .

Окружность, описанная вокруг прямоугольного треугольника

Эту теорему многие забывают. А зря, ведь некоторые задачи B8 без нее вообще не решаются. Точнее, решаются, но с таким объемом вычислений, что вы скорее уснете, чем дойдете до ответа.

Теорема. Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы.

Что следует из этой теоремы?

  1. Середина гипотенузы равноудалена от всех вершин треугольника. Это прямое следствие теоремы;
  2. Медиана, проведенная к гипотенузе, делит исходный треугольник на два равнобедренных. Как раз это и требуется для решения задачи B8.

В треугольнике ABC провели медиану CD . Угол C равен 90°, а угол B — 60°. Найдите угол ACD .

Поскольку угол C равен 90°, треугольник ABC — прямоугольный. Получается, что CD — медиана, проведенная к гипотенузе. Значит, треугольники ADC и BDC — равнобедренные.

В частности, рассмотрим треугольник ADC . В нем AD = CD . Но в равнобедренном треугольнике углы при основании равны — см. «Задача B8: отрезки и углы в треугольниках ». Поэтому искомый угол ACD = A .

Итак, осталось выяснить, чему равен угол A . Для этого снова обратимся к исходному треугольнику ABC . Обозначим угол A = x . Поскольку сумма углов в любом треугольнике равна 180°, имеем:

A + B + BCA = 180;
x + 60 + 90 = 180;
x = 30.

Разумеется, последнюю задачу можно решить по-другому. Например, легко доказать, что треугольник BCD — не просто равнобедренный, а равносторонний. Значит, угол BCD равен 60 градусов. Отсюда угол ACD равен 90 − 60 = 30 градусов. Как видите, можно использовать разные равнобедренные треугольники, но ответ всегда будет один и тот же.



2024 stdpro.ru. Сайт о правильном строительстве.