Сырые помещения по электробезопасности. Классификация помещений по опасности поражения электрическим током (пуэ и гост). Категории помещений по электробезопасности, ПУЭ

Я электрик с большим стажем. Тридцать лет работаю с электричеством. Бывает, что меня спрашивают, как отличить фазу от нуля в отсутствии приборов. Вопрос не простой. Сейчас я попытаюсь рассказать все, что об этом знаю.

Фаза и ноль. В чем разница?

Строго говоря, фазный и нулевой проводники не имеют больших различий. В цепях переменного тока за одну секунду ток меняет направление пятьдесят раз. Как тут отличишь, какую функцию выполняет тот или иной провод? Единственное отличие между фазным и нулевым проводниками состоит в том, что «ноль» (нулевой проводник) соединен с Землей. Именно так. В землю закопан электрический контур и на подстанции один из выводов трансформатора соединен с этим контуром. Такая электрическая схема называется сетью с глухо заземленной нейтралью. В такой схеме нулевой провод имеет потенциал земли. Мы с вами тоже имеем потенциал земли. Поэтому, коснувшись заземленного проводника мы не получаем удар током.

Теперь, когда вы имеете представление о «нуле» перейдем к «фазе». Напряжение фазного проводника 50 раз в секунду меня меняет свою полярность относительно «нуля». В цепи фаза-ноль ток изменяет свое направление тоже 50 раз в секунду. Если ток потечет через тело человека, то это закончится очень плохо. Поэтому проявляйте крайнюю осторожность.

На самом деле нет ни одного прибора, который бы «чувствовал» «фазу». Все приборы фиксируют, течет ли ток от данного конкретного провода на «землю» или нет. Даже однополюсный пробник, которым часто пользуются для обнаружения фазных проводов, работает по этому принципу. Сейчас мы не станем вдаваться в подробности работы таких пробников.

Ищем «фазу»

Если нам необходимо отличить фазу от ноля, то мы должны создать электрическую цепь, при помощи которой мы будем однозначно знать, течет ли ток от выбранного нами провода на «землю» или нет. На ум приходит несколько приборов, которые смогут нам помочь:

  • лампочка,
  • еще одна лампочка, неоновая,
  • светодиод.

Есть еще один способ, очень ненадежный. В последнее время провода стали маркировать по расцветке изоляции. Нулевой провод имеет синий цвет, изоляция заземляющего провода имеет желто-зеленую расцветку. Но кто поручиться, что электрик выполнил подключение согласно правилам или он не был дальтоником?

«Дедовский» способ

Многие десятилетия электрики использовали электрическую лампочку в качестве измерительного прибора. Лампа накаливания, патрон и два провода. Этот прибор назывался «контролькой». Для определения «фазы» одним выводом контрольки касались провода, другим металлического предмета, который заведомо соединен с землей. Это мог быть корпус щитка освещения, или другого распределительного устройства. По правилам они все заземляются. К сожалению, найти заземленный предмет не всегда возможно. Встречал советы, когда в качестве земли предлагали использовать трубы отопления или водопровода. Не советую категорически! Можно ударить током ни чего не подозревающего человека. Поверьте на слово. Если вы в собственном доме, на даче роль «земли» может выполнить металлический штырь забитый в землю, другие металлические предметы, имеющие надежное соединение с землей.

Контрольку запрещено использовать потому, что ее можно присоединить к двум фазным проводам. В этом случае напряжение на ней будет 1.7 раза выше напряжения сети, лампочка может просто взорваться. Если вы уверены, что один из проводов контрольки присоединен к земле, то опасаться взрыва не стоит.

Существуют более безопасные приборы. Случайно под рукой может оказаться индикаторная лампа от старой связной аппаратуры. Эти лампочки, «инки», начинают светиться, если один из выводов присоединен к фазному проводу. Однополюсные пробники оснащены подобными лампами.

Более серьезным прибором будет комбинация светодиода и соединенного с ним последовательно токоограничительного резистора. Понятно, что этот случай для людей, дружащих с паяльником, например радиолюбителей. Резистор должен иметь сопротивление несколько десятков килоомм.

Во избежание поражения током нужно следовать одному простому правилу. Во время измерений не касаться проводов и металла ни одной частью тела.

Необходимость разобраться, где расположен фазный провод, а где - нулевой может возникнуть у любого хозяина дома или квартиры. Это бывает нужно при проведении простейших электромонтажных работ, например, установке выключателей и розеток, замене светильников. Бывает это важно при проведении диагностики неисправностей домашней электросети, выполнении профилактических или ремонтных мероприятий. Да и некоторые приборы, например, терморегуляторы, при подключении к сети питания требуют четкого соблюдения расположения проводов «L» и «N» в клеммной колодке. В противном случае ничто не гарантирует ни их долговечность, ни корректность в работе.

Значит, необходимо научиться самостоятельно определять фазный и нулевой провод. Дело это не столь сложное – существуют проверенные методики с использованием простых и недорогих устройств. Но вот некоторые пользователи, непонятно по каким причинам, задают в поисковиках вопрос: как определить фазу и ноль без приборов? Ну что ж, давайте обсудим эту проблему.

В подавляющем большинстве случаев в квартирах практикуется прокладка однофазной сети питания 220 В/50 Гц. К многоэтажному дому подводится трехфазная мощная линия, но затем в распределительных щитах осуществляется коммутация на потребителей (квартиру) по одной фазе и нулевому проводу. Распределение стараются выполнить максимально равномерно, чтобы нагрузка на каждую из фаз была примерно одинаковой, без сильных перекосов.

В домах современной постройки практикуется прокладка и контура защитного заземления – современная мощная бытовая техника в своем большинстве требует такого подключения для обеспечения безопасности эксплуатации. Таким образом, к розеткам или, например, ко многим осветительным приборам подходят три провода – фаза L (от английского Lead), ноль N (Null) и защитное заземление PE (Protective Earth).

В зданиях старой постройки заземляющего защитного контура зачастую нет. Значит, внутренняя проводка ограничивается только двумя проводами – нулем и фазой. Проще, но уровень безопасности эксплуатации электрических приборов - не на высоте. Поэтому при проведении капитальных ремонтов жилищного фонда нередко включаются и мероприятия по усовершенствованию внутренних электросетей – добавляется контур РЕ.

В частных домах может практиковаться ввод и трехфазной линии. И даже некоторые точки потребления нередко организуются с подачей трехфазного напряжения 380 вольт. Например, это может быть отопительный котел или мощное технологическое станочное оборудование в домашней мастерской. Но внутренняя «бытовая» сеть все равно делается однофазной – просто три фазы равномерно распределяются по разным линиям, чтобы не допускать перекоса. И в любой обычной розетке мы все равно увидим те же три провода – фазу, ноль и заземление.

Про заземление, кстати, говорится в данном случае однозначно. И это по той причине, что хозяин частного дома ничем не связан и просто обязан его организовать, если такого контура не было, скажем, при приобретении ранее построенного зданий.

Заземление в частном доме – как можно сделать самостоятельно?

Иметь в своих жилых владениях контур защитного заземления – это значит существенно повысить уровень безопасности эксплуатации электроприборов. А по большому счету – и вообще степень безопасности проживания в доме для всей семьи. Если его еще нет, то, не откладывая надолго, необходимо организовывать . В помощь – статья нашего портала, к которой ведет рекомендованная ссылка.

Существуют ли в принципе способы определения фазы и нуля без приборов?

Прежде всего, давайте сразу «возьмем быка за рога» и ответим на это важный вопрос.

Такой способ представлен в единственном числе , да и то в определённой степени может считаться условным. Речь идет о цветовой маркировке проводов проложенных силовых кабелей и проводов.

Действительно, существует международный стандарт IEC 60446-2004 г. Его должны придерживаться и производители кабельной продукции, и специалисты, осуществляющие электротехнический монтаж

Раз речь идет об однофазной сети, то здесь вообще все должно быть просто. Изоляция проводника рабочего нуля должна быть синей или голубой. Защитное заземление чаще всего отличается зелено-желтой полосатой расцветкой. И изоляция фазного провода – каким-либо другим цветом, например, коричневым, как показано на иллюстрации.

Следует правильно понимать, что коричневый цвет для фазы – это вовсе не догма. Очень часто встречаются и иные расцветки – в широком диапазоне от белой до черной. Но в любом случае – она будет отличаться и от нулевого провода, и от защитного заземления.

Казалось бы – все очень просто и наглядно. Не ошибешься. Так почему же этот единственный способ распознания проводов без приборов все же считается условным?

Все дело лишь в том, что такой цветовой «распиновки» придерживаются, увы, далеко не везде и не всегда. Про дома старой постройки – и говорить не приходится. Там преимущественно проводка выполнена проводами в совершенно одинаковой белой изоляции, понятно, ничего никому не говорящей.

Да и в том случае, когда проложены кабели с проводами в изоляции разной расцветки, нужно быть совершенно уверенным, что проводящие электромонтажные работы специалисты строго следовали правилам. Нередко вызываемые «мастера», приглашенные со стороны, в этих вопросах проявляют вольности. Значит, уверенным можно быть, если работа контролировалась, выполнялась действительно профессиональным электриком с безупречной репутацией. Или если в ходе эксплуатации у хозяев уже была возможность убедиться, что «цветовая схема» соблюдена. Ну и, наконец, если всю прокладку хозяин жилья проводил самостоятельно, строго руководствуясь рекомендуемым стандартом.

Кроме того, бывает, что для проводки используется , расцветка изоляции проводников которого весьма далека от стандартного «набора» - синий, зелено-желтый и фазный какого-либо другого оттенка. Если нет схемы с описанием, то цвет проводов ничего определенного при таком раскладе не скажет.

Значит, придётся искать фазу и ноль другими способами, с использованием приборов.

Если читатель ждет сейчас разъяснений про другие способы определения нуля и фазы, с помощью каких-то «экзотических» приспособлений вроде сырой картошки, то совершенно напрасно. Автор статьи и сам никогда такими методами не баловался, и другим никогда и ни при каких обстоятельствах не станет рекомендовать .

Не будем даже касаться достоверности подобных проверок. Главное не в этом. Такие «опыты» - чрезвычайно опасны. Особенно для неопытного в электрическом хозяйстве человека. (А опытный, поверьте, всегда лучше воспользуется действительно достоверной и безопасной методикой). Кроме того, на грех такие манипуляции могут увидеть малолетние дети. Не тревожно ли будет потом, зная о присущем малышне стремлении во многом подражать родителям?

Да и, по большому счету, вряд ли получится представить себе ситуацию, в которой обстоятельства настолько припекли, что приходится прибегать к таким «языческим» методикам? Сложно сходить в ближайший магазин и приобрести за 30÷35 рублей простейшую индикаторную отвертку и забыть о проблеме? Если вечер, то нет никакой возможности потерпеть до утра с проведением диагностики? Да, в конце концов, нельзя попросить индикатор у соседа на несколько минут?

Кстати, картошка – это еще что… Находятся «специалисты», которые на полном серьезе рекомендует проверять наличие фазы легким касанием пальца к проводнику. Мол, если в сухом помещении, да в обуви на диэлектрической подошве – то ничего страшного не случится. Таких «советчиков» хочется спросить – а уверены ли они, что все те, кто внял их рекомендациям, живы и здоровы? Что не случилось «чрезвычайщины», когда человек, пробующий фазу «на ощупь», случайно коснулся телом заземленного предмета или другого оголённого проводника?

Чтобы понять степень опасности таких «проверок», рекомендуем ознакомиться с информацией о том, какие угрозы представляет жизни и здоровью этот «безобидный» электрический ток в сети 220 вольт. Возможно, после этого многие вопросы снимутся сами по себе.

«Бытовое» переменное напряжение 220 вольт может представлять смертельную опасность!

Жизнь современного человека невозможно представить без электричества. Но оно не всегда выступает только в роли «друга и помощника». При пренебрежении правилами эксплуатации приборов, при халатности, неаккуратности, и тем более – явно наплевательском отношении к соблюдению требований безопасности, оно способно покарать мгновенно и крайне жестоко. Об для человеческого организма подробно рассказывает отдельная публикация нашего портала.

И потому – резюмируем. Никаких способов, кроме одного упомянутого, самостоятельно опередить расположение нуля и фазы без приборов – не существует .

А вот теперь давайте пройдемся по возможным методикам такой проверки.

Определение фазы и нуля различными способами

С использованием индикаторной отвертки

Это, пожалуй, самая простая и доступная методика. Как уже говорилось, стоимость простейшего прибора –весьма невысока. А научиться работать с ним – дело нескольких минут.

Итак, как устроена обычная индикаторная отвертка:

Вся «начинка» этого пробника собрана в полом корпусе (поз.1), изготовленного из диэлектрического материала.

Рабочим органом такой отвёртки является металлическое жало (поз.2), чаще всего – плоской формы. Чтобы снизить вероятность случайного контакта с расположенными рядом с тестируемым проводом другими токопроводящими деталями, оголенный конец жала обычно невелик. Жало иди короткое само по себе, иди «одевается» в изоляционную оболочку.

Важно – жало индикаторной отвертки следует рассматривать именно как контактный наконечник при проведении тестирования. Да, при необходимости им можно выполнить и простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его именно в качестве отвертки – большая ошибка. И долго при такой эксплуатации прибор не проживет 0 он попросту не рассчитан на высокие нагрузки.

Металлический стержень жала, входящий в корпус, становится проводником, обеспечивающим контакт с внутренней схемой индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача – снизить показатели силы тока при замыкании цепи до безопасных для человека значений.

Следующий элемент – неоновая лампочка (поз. 5), способная загораться при весьма небольших показателях протекающего через нее тока. Взаимный электрический контакт всех элементов схемы обеспечивает прижимная пружина (поз. 6). А она, в свою очередь, сжимается вкручивающейся в торцевую оконечность корпуса заглушкой (поз.7), которая может быть или полностью металлической, или имеющей металлическую «пятку». То есть эта заглушка при проведении проверок играет роль контактной площадки.

При прикосновении к контактной площадке пальцем пользователь «включается» в цепь. Тело человека, во-первых, само по себе обладает определенной проводимостью, а во-вторых, представляет собой очень большой «конденсатор».

На этом и основан принцип поиска фазы и нуля. Жалом индикаторной отвёртки касаются зачищенного проводника (клеммы розетки или выключателя, другой тонконесущей детали, например, контактного лепестка патрона для лампочки). Затем контактной площадки пробника касаются пальцем.

Если жало отвертки коснулось фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать неопасный для человека ток, приводящий к свечению неоновой лампочки.

В то же случае, если проверка пришлась на нулевой контакт, свечения не возникнет. Да, там тоже бывает небольшой потенциал, особенно если в квартире (доме) в это время работают другие электрические приборы. Но ток благодаря резистору будет настолько мал, что свечения индикатора вызвать не должен.

Аналогично и на заземляющем проводнике – там, по сути, вообще не должно быть никакого потенциала.

В том же случае, если, скажем, в розетке два контакта показывают фазу – это повод искать причину такой серьезной неисправности. Но это уже тема для отдельного рассмотрения.

Несколько иначе выполняется проверка с индикаторной отверткой более усовершенствованного типа. Такие пробники позволяют не только определять фазу и ноль, но и проводить прозвонку цепей и ряд других операций.

Внешне такие отвёртки-индикаторы очень схожи с рассмотренными выше простейшими. Разница заключается лишь в том, что вместо неоновой лампочки используется светодиод. А в корпусе размещены элементы питания на 3 вольта, обеспечивающие функционирование схемы.

Если нет уверенности в том, какая конкретно отвертка имеется в распоряжении пользователя, можно провести простейший тест. Просто одновременно касаются рукой и жала, и контактной площадки. Цепь при этом замкнется, и светодиод об этом просигналит своим свечением.

Для чего это все говорится? Да просто потому, что алгоритм определения фазы и нуля при пользовании такой отверткой несколько меняется. А конкретно – прикасаться к контактной площадке не требуется. Простое касание фазного проводника вызовет свечение индикатора. На рабочем нуле и на заземлении такого свечения не будет.

В наше время в продаже широко представлены и более дорогие индикаторные отвёртки, с электронной начинкой, световой и звуковой индикацией. А нередко – даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на тестируемом проводнике. То есть, по сути, отвертка-индикатор становится упрощенным подобием

Пользоваться такими тоже не особо сложно. Руководствоваться придется прикладываемой к прибору инструкцией – в любом случае прибор должен однозначно указать на наличие напряжения на фазном проводе и отсутствие – на нулевом или заземляющем. Главное – убедиться до начала проверки, что возможности используемого прибора соответствуют напряжению в сети. Это обычно указывается непосредственно на корпусе индикатора.

Еще одним «родственником» индикаторных отверток является бесконтактный пробник напряжения. На его корпусе вообще полностью отсутствуют токопроводящие детали. А рабочая часть представляет собой вытянутый пластиковый «носик», который как раз и подводится к тестируемому проводнику (клемме).

Удобство такого прибора еще и в том, что вовсе не обязательно проводить зачистку проверяемого провода от изоляции. Прибор реагирует не на контакт, а на создаваемое проводником электромагнитное переменное поле. При определенной его напряжённости срабатывает схема, и прибор сигнализирует о том, что перед нами фазный провод, включением светового и звукового сигнала.

Определение фазы и нуля с помощью мультиметра

Еще одним контрольно-измерительным прибором, которым бы необходимо обзавестись любому мастеровитому хозяину дома, является Стоимость недорогих, но в достаточной степени функциональных моделей – в пределах 300÷500 рублей. И вполне можно один раз сделать такое приобретение – оно обязательно окажется востребованным.

Итак, как определить фазу с помощью мультиметра. Здесь могут быть различные варианты.

А. Если проводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой маркировкой или нет ясности, или отсутствует уверенность в ее достоверности, то можно применить метод исключения.

Выполняется это следующим образом:

  • Мультиметр готовится к работе. Черный измерительный провод подключается к разъему СОМ, красный – к разъему для замера напряжения.
  • Переключатель режимов работы переводится в сектор, отведенный замерам переменного напряжения (~V или ACV), и стрелкой устанавливается на значение, превышающее напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.

  • Далее, проводятся замеры напряжения между предварительно зачищенными проводниками. Всего комбинаций в данном случае может оказаться три:
  1. Между фазой и нулем напряжение должно быть близким к номиналу в 220 вольт.
  2. Между фазой и заземлением может быть такая же картина. Но, правда, если линия оснащена системой защиты от утечек тока (устройством защитного отключения - УЗО), то защита вполне может при этом сработать. Если УЗО нет, или ток утечки получается совсем незначительный, то напряжение, опять же, в районе номинала.
  3. Между нулем и заземлением напряжения быть не должно.

Вот как раз последний вариант покажет, что провод, не участвующий в этом замере, и является фазным.

После проверки необходимо выключить напряжение, заизолировать зачищенные концы проводов и произвести маркировку. Например, наклеив полоски белого лейкопластыря и сделав на них соответствующие надписи.

Б. Можно проверить провод (контакт в розетке) и непосредственным примером напряжения на нем. Выполняется это так:

  • Подготовка мультиметра к работе – по той же схеме, что показывалась выше.
  • Далее, проводится контрольный замер напряжения. Здесь преследуются сразу две цели. Во-первых, необходимо убедиться, что обрыва в линии нет, и мы не будем искать фазу и ноль, что говорится, на пустом месте. А во-вторых, тестируется и сам прибор. Если показания корректные, значит – переключение выполнено правильно, и в цепь включён мощный резистор, который обеспечит должный уровень безопасности последующим операциям.
  • Красным измерительным проводом касаются тестируемого проводника. Если это розетка, то в гнездо вставляется щуп, если зачищенный конец проводника – лучше воспользоваться зажимом-«крокодильчиком».
  • Второго щупа касаются пальцем правой руки. И - наблюдают за показаниями на дисплее мультиметра.

— Если контрольный щуп был установлен на ноль, напряжение показываться не будет. Или же его значение будет крайне невелико - измеряемое единицами вольт.

— В том же случае, когда контрольный провод оказался на фазе, индикатор покажет напряжение в несколько десятков, а то и более вольт. Конкретное значение не столь важно – оно зависит от очень большого количества факторов. Это и установленный предел измерений используемой модели мультитестера, и особенности сопротивления тела конкретного человека, и влажность, и температура воздуха, и обувь, в которую обут мастер и т.п. Главное – напряжение есть, и оно разительно отличается от второго контакта. То есть – фаза отыскана.

Наверное, не все смогут преодолеть психологический рубеж – коснуться рукой щупа, когда мультитестер подключен к розетке. Бояться-то здесь особо нечего – мы предварительно протестировали прибор замером напряжения. И ток, идущий сейчас через него при замыкании цепи – немногим отличается от того, что проходит через индикаторную отвертку. Но тем не менее – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно поступить и несколько иначе. Например, просто коснуться вторым щупом стены – штукатурки или даже обоев. Какая-никакая влажность все же есть, и это позволит замкнуть цепь. Правда, показания на индикаторе будут, скорее всего, значительно меньше. Но и таких будет достаточно, чтобы однозначно разобраться, какой же из контактов является фазным.

Ничуть не хуже будет подобная проверка, если в качестве второго контакта будет задействован какой-либо заземленный прибор или предмет, например, радиатор отопления или водопроводная труба. Подойдет и металлический каркас, даже не имеющий заземления. А иногда даже один подключенный к розетке щуп при втором, просто лежащем на полу или на столе, позволяет увидеть разницу. При тестировании фазы тестер может показать единицы или пару десятков вольт. При нулевом проводнике, естественно, будет ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть в том случае, если проводов три. То есть с фазой определились, и теперь надо выяснить, какой из двух оставшихся является нулем, а какой – защитным заземлением.

А вот это – не столь просто. Есть, конечно, несколько доступных способов. Но ни один из них не может претендовать на «истину в последней инстанции». То есть здесь требуются особые приборы, которые имеются в распоряжении профессионалов электриков.

Но иногда помогают и самостоятельные тестирования.

Про одно из них уже говорилось выше. Когда замеряется напряжение между фазой и нулем, никаких особенностей это вызывать не должно. Но при замере между фазой и землей из-за неизбежной утечки тока возможно срабатывания системы защиты – УЗО.

Другой способ выявления нуля и защитного заземления – прозвон. То есть можно попытаться, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, в обязательном порядке – отключив напряжение на щите, промерить поочередно сопротивление между этими проводниками и гарантированно заземленным объектом. На проводнике РЕ это сопротивление по идее должно быть значительно ниже.

Но, опять же, способ этот не отличается достоверностью, так как соединения практикуются разные, и значения могут получиться примерно одинаковыми, то есть ни о чем не говорящими.

Еще один вариант – можно отключить шину заземления от подводящего к ней контура. Или же снять с нее предполагаемый провод, подлежащий проверке. Затем – или выполнить прозвон, или провести поочередный промер напряжения между фазой и оставшимися двумя проводниками. Результаты часто позволяют судить о том, где ноль, а где РЕ.

Но, сказать по правде, этот способ не кажется ни действенным, ни безопасным. Опять же, по причине различных нюансов прокладки проводки и коммутации на распределительных щитах, результат может получиться не вполне достоверным.

Узнайте, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.

Так что если нужна гарантированная ясность, где же ноль и где заземление, а самому выяснить не представляется возможным, лучше обратиться квалифицированному электрику. При всей схожести этих проводников в домашней проводке путать их ни в коем случае нельзя.

Итак, были рассмотрены основные доступные способы определения фазы и нуля. Еще раз подчеркнём – если визуальный способ определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальные должны проводиться исключительно с использованием специальных приборов. Никакие «100% методики» со всяческими картошками, пластиковыми бутылками, банками с водой и иными «игрушками» – совершенно недопустимы!

Кстати, в публикации ничего не говорится и об использовании так называемой «контрольки» - лампочки в патроне с двумя проводниками. Опять же – это потому что такие тестирования напрямую запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не создавайте потенциальной угрозы своим близким!

В завершение публикации – небольшой видеосюжет, посвященный проблеме поиска фазы и нуля.

Видео: Как можно определить расположение фазы и нуля

Очень немного людей понимают суть электричества. Такие понятия как "электрический ток", "напряжение" "фаза" и "ноль" для большинства являются темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с "нуля" нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона - минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Основным видом переменного тока является синусоидальный ток . Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.


Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепиоднофазная цепь . В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или "стекает" в землю.

Провод, по которому ток идет к прибору, называется фазой , а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому - отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ - 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза - белого, черного или коричневого. Провод заземления также имеет свой окрас - желто-зеленый.


Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в . С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».

В большинстве современных кабелей проводники имеют изоляцию разных цветов. Цвета эти имеют определенное значение и выбираются не просто так. Что такое цветовая маркировка проводов и как с ее помощью определить где ноль и заземление, а где — фаза, и будем говорить дальше.

В электрике принято различать провода по цветам. Это намного облегчает и ускоряет работу: вы видите набор проводов разных цветов и, по цвету, можете предположить какой для чего предназначен. Но, если разводка не заводская и делали ее не вы, перед началом работ обязательно надо проверить соответствуют ли цвета предполагаемому назначению.

Для этого берут мультиметр или тестер, проверяют на каждом проводнике наличие напряжения, его величину и полярность (это при проверке сети электропитания) или просто прозванивают куда и откуда идут провода и не меняется ли «в пути» цвет. Так что знание цветовой маркировки проводов — один из необходимых навыков домашнего мастера.

Цветовая маркировка провода заземления

По последним правилам проводка в доме или квартире должна иметь заземление. Последние годы вся бытовая и строительная техника выпускается с заземляющим проводом. Причем заводская гарантия сохраняется только при условии подачи электропитания с работающим заземлением.

Чтобы не путаться для провода заземления принято использовать желто-зеленую окраску. Жесткий одножильный провод имеет зеленый основной цвет с желтой полосой, а мягкий многожильный — основное поле желтого цвета с зеленой продольной полосой. Изредка могут встречаться экземпляры с горизонтальными полосками или просто зеленые, но это — нестандарт.

Цвет провода заземления — одножильного и многожильного

Иногда в кабеле есть только ярко-зеленый или желтый провод. В таком случае именно их используют как «земляной». На схемах «земля» обычно рисуется зеленым цветом. На аппаратуре соответствующие контакты подписываются латинскими буквами PE или в русскоязычном варианте пишут «земля». К надписям часто добавляется графическое изображение (на рисунке ниже).

В некоторых случаях на схемах шина «земля» и подключение к ней обозначается зеленым цветом

Цвет нейтрали

Еще один проводник, который выделяют определенным цветом — нейтраль или «ноль». Для него выделен синий цвет (ярко-синий или темно-синий, изредка — голубой). На цветных схемах эта цепь также прорисовывается синим, подписывается латинской буквой N. Так же подписываются контакты, к которым необходимо подключить нейтраль.

Цвет нейтрали — синий или голубой

В кабелях с гибкими многожильными проводами, как правило, используется более светлые оттенки, а одножильные жесткие проводники имеют оболочку более темных, насыщенных тонов.

Окраска фазы

С фазными проводниками несколько сложнее. Их окрашивают в разные цвета. Исключены уже используемые — зеленый, желтый и синий — а все остальные могут присутствовать. При работе с этими проводами надо быть особенно аккуратными и внимательными, ведь именно на них присутствует напряжение.

Цветовая маркировка проводов: какого цвета фаза — возможные варианты

Итак, наиболее часто встречающаяся цветовая маркировка проводов фазы — красный, белый и черный. Еще могут быть коричневый, бирюзовый оранжевый, розовый, фиолетовый, серый.

На схемах и клеммах фазные провода подписываются латинской буквой L, в многофазных сетях рядом стоит номер фазы (L1, L2, L3). П кабелях с несколькими фазами они имеют разную окраску. Так проще при разводке.

Как определить правильно ли подключены провода

При попытке установить дополнительную розетку, подключить люстру, бытовую технику, требуется знать, какой именно провод является фазным, какой нулевым, а какой — заземляющим. При неправильном подключении техника выходит из строя, а неосторожное прикосновение к токоведущим проводам может окончиться печально.

Надо убедиться что цвета проводов — земля, фаза, ноль — совпадают с их разводкой

Проще всего ориентироваться по цветовой маркировке проводов. Но не всегда все просто. Во-первых, в старых домах проводка обычно однотонная — торчат два-три провода белого или черного цвета. В этом случае надо разбираться конкретно, после чего навешивать бирки или оставлять цветные метки. Во-вторых, даже если в кабеле проводники окрашены в разные цвета, и вы визуально можете найти нейтраль и землю, правильность своих предположений надо проверить. Случается, что при монтаже цвета перепутаны. Потому сначала перепроверяем правильность предположений, потом начинаем работы.

Для проверки понадобятся специальные инструменты или измерительные приборы:

  • индикаторная отвертка;
  • мультиметр или тестер.

Найти фазный провод можно при помощи индикаторной отвертки, для определения нуля и нейтрали нужен будет тестер или мультиметр.

Проверка с индикатором

Индикаторные отвертки бывают нескольких видов. Есть модели, на которых светодиод зажигается при прикосновении металлической частью к токоведущим частям. В других моделях для проверки требуется дополнительно нажать кнопку. В любом случае при наличии напряжения зажигается светодиод.

При помощи индикаторной отвертки можно найти фазы. Металлической частью прикасаемся к оголенному проводнику (при необходимости наживаем на кнопку) и смотрим, горит ли светодиод. Горит — это фаза. Не горит — нейтраль или земля.

Работаем аккуратно, одной рукой. Второй к стенам или металлическим предметам (трубам, например) не прикасаемся. Если провода в проверяемом кабеле длинные и гибкие, можно придержать их второй рукой за изоляцию (держитесь подальше от оголенных концов).

Проверка с мультиметром или тестером

На приборе выставляем шкалу, которая немного больше предполагаемого напряжения в сети, подключаем щупы. Если позваниваем бытовую однофазную сеть 220В, ставим переключатель в положение 250 В. Одним щупом прикасаемся к оголенной части фазного провода, вторым — к предполагаемой нейтрали (синего цвета). Если при этом стрелка на приборе отклоняется (запоминаем ее положение) или на индикаторе загорается цифра, близкая к 220 В. Проделываем ту же операцию со вторым проводником — который по цвету определили как «землю». Если все верно, показания прибора должны быть ниже — меньше чем те, которые были перед этим.

В случае, если цветовая маркировка проводов отсутствует, придется перебирать все пары, определяя назначение проводников по показаниям. Пользуемся тем же правилом: при прозвонке пары «фаза-земля» показания ниже, чем при прозвонке пары «фаза-ноль».



2024 stdpro.ru. Сайт о правильном строительстве.