Муфта электромагнитная порошковая. Порошковая муфта сцепления с приводом управления. Различают муфты электромагнитные

Модельный ряд муфт Helistar: POC, POB, PFB, PHC, PHB, PLB

Основной функцией электромагнитных муфт является передача крутящего момента с ведущего вала на ведомый. При этом отсутствует необходимость в механическом контакте, поскольку принцип их работы основан на взаимодействии магнитных полей. Представленный в данном разделе каталога модельный ряд муфт Helistar (POC, POB, PFB, PHC, PHB, PLB) не создает шумов, вибраций, не имеет изнашивающихся элементов конструкции и рассчитаны на продолжительный срок службы.

Соединение между ведущей и ведомой элементами конструкции осуществляется за счет повышения степени вязкости смесей, которые заполняют зазор между поверхностью сцепления муфт при увеличении магнитного потока в данном зазоре. Главный компонент таких смесей — ферромагнитный порошок (к примеру, карбонильное железо). Для предотвращения механического разрушения частиц железа вследствие постоянного воздействия силы трения или их слипания добавляются специальные жидкие или сыпучие наполнители.

Муфты марки Helistar отличает высокая скорость срабатывания, однако эксплуатационные показатели их надежности не являются достаточными для использования в такой сфере промышленной деятельности, как станкостроение. Среди сфер, в которых они получили наиболее широкое распространение — пищевая, полиграфическая, упаковочная.

Модельный ряд порошковых электромагнитных муфт Helistar

Модель Название Кгс-м
POC Обеспечивают плавность при разгоне и торможении, уменьшает перегрузку, а также разделяет пуск двигателей и механизмов POC Наименее подвержены воздействию абразивных включений (используемый для охлаждения сжатый воздух должен быть сухим и не загрязненным маслом) POB За счет изменения напряжения в обмотке возбуждения обеспечивают плавное регулирование крутящего момента POB Принцип действия тормоза основан на использовании электромагнитных сил, которые действуют в заполненном ферромагнитным порошком зазоре. Под постоянным воздействием магнитного поля происходит втягивание порошка в рабочие зазоры тормоза и создается механическая связь между статором и ротором PFB Обеспечивают точную регулировку тормозного момента вне зависимости от количества оборотов и имеют высокий диапазон регулировки тормозного момента PHC Конструкция с одной фрикционной поверхностью позволяет избежать тормозного момента и работать в условиях высоких температур PHB Конструкция позволяет разделять пуск двигателей и механизмов, уменьшать время пускового тока, устранять удары и обеспечить плавность разгона электродвигателей, устранять перегрузки, проскальзывания и т.д. 1.2~20

PLB Находящийся между полумуфтами защитный экран обеспечивает герметичность при перекачивании продукта (агрессивные, высокотоксичные, пожаро- и взрывоопасные, резко пахнущие и другие типы жидкостей) POC Компактного исполнения со средним крутящим моментом муфты. Подходят для использования в составе среднего и маломощного оборудования POB Компактного исполнения с небольшим крутящим моментом муфты. Применяются в маломощном оборудовании 5~50


Выбор подходящей модели муфты (крутящий момент муфты и мощность привода) осуществляется в индивидуальном порядке и зависит от вязкости среды и интенсивности перемешивания продукта.

Если вас интересует приобретение любой из представленных выше моделей электромагнитных муфт Helistar, свяжитесь с нами наиболее удобным способом. Мы гарантируем квалифицированную помощь в подборе отвечающего вашим требованиям запчастей и расходных материалов, а также с готовностью ответим на любые ваши вопросы. Доставка осуществляется в максимально сжатые сроки во все регионы России и страны ближайшего зарубежья.

25.6. Электромагнитные муфты и тормоза

25.6.1. Электромагнитная муфта ЭМС-750

Электромагнитная муфта ЭМС-750 пред-натачена для оперативного управления приводом буровой лебедки и защиты его механизмов от механических перегрузок. Режим работы - S4. ПВ - 60 %. Климатическое исполнение п категория размещения - У2 по ГОСТ 15150-69.

Группа условий эксплуатации - М8 по ГОСТ 17516-72

Основные технические данные муфгы

Передаваемый момент, Н ■ м.

номинальный..... 7350

максимальный..... 15 700

Homhiw Чвный 1 ок возбуждения, А......... 70

Максимальный кратковременный ток возбуждения, А. . 110

Показатель

Э290-12АМ-В5

Мощность, кВт

Напряжение, В

Ток номинальный, А

Частота сети, Гц

Частота вращения синхронная, об/мин

Скольжение, %

Коэффициент мощности

Момент, Н ■ м:

номинальный

максимальный

пусковой

Ток пусковой, А

Габаритные размеры:

диаметр D, мм

длина L, мм

Масса, кг

Рис. 25.27. Габаритные и установочно-присоединительные размеры муфты ЭМС-750

Номинальное напряжение возбуждения, В.......56

Частота вращения ведущего вала, об/мин.......750

Номинальное скольжение, %. .5+1,25

Масса, кг.........3400

Наружной частью муфты является якорь, представляющий собой стальной цилиндр с кольцевыми ребрами на внешней поверхности для увеличения теплоотдачи. К якорю болтами крепятся подшипниковые щиты, на одном из них монтируется вентилятор, а к другому крепится полуось, выходной конец которой непосредственно соединяется с валом двигателя. Индуктор, находящийся внутри якоря, выполнен из трех когтеобраз-ных частей, скрепленных между собой и насаженных на вал. Выводные концы катушек возбуждения выводятся на контактные кольца через отверстия в валу.

При подаче напряжения на катушки возбуждения в индукторе возникает электромагнитный поток, который индуктирует во вращающемся якоре вихревые токи. В результате этого взаимодействия создается электромагнитный момент, под действием которого индуктор начинает вращаться в сторону вращения якоря с определенным скольжением. Значение передаваемого момента регулируется током возбуждения.

Станина муфты - сварная. Со стороны ведомого вала на станине располагается тахогенератор для контроля частоты вращения ведомого вала. Муфта в сборе закрывается съемным кожухом. Общий вид, габаритные и установочно-присоединительные размеры муфты показаны на рис. 25.27.

25.6.2. Электромагнитный порошковый тормоз ТЭП 45

Электромагнитный порошковый тормоз типа ТЭП 45 предназначен для торможения и удержания на весу груза, спускаемого через исполнительный механизм. Режим работы - S4. Климатическое исполнение и категория размещения - У1 по ГОСТ 15150-69. Предназначен для работы в невзрывоопасной окружающей среде, не содержащей химически агрессивных примесей, вредно действующих на изоляцию тормоза.

Группа условий эксплуатации - М18 по ГОСТ 17516-72.

Технические данные тормоза

Тормозной момент, кНм:

номинальный..... 45

максимальный при двукратной форсировке тока возбуждения....... 65

Ток, А.......... 20/5

Потребляемая мощность, кВт 1,27

Принцип действия тормоза основан на использовании электромагнитных сил, действующих в заполненном ферромагнитным порошком зазоре тормоза. Под действием постоянного магнитного потока, создаваемого катушками возбуждения при прохождении через них постоянного тока, порошок втягивается в рабочие зазоры тормоза,


Рис. 25.28. Габаритные и усгановочно-при-соединительные размеры тормоза ТЭП-45

создавая механическую связь между статором и ротором. После отключения катушек возбуждения магнитный поток исчезает, порошок выбрасывается из воздушных зазоров и происходит расцепление ротора со статором.

Тормоз состоит из двух скрепленных между собой индукторов и Т-образного якоря, насаженного на вал. Внутри индукторов размещены катушки возбуждения, выводные концы которых выведены на коробку контактных зажимов. Для отвода тепла из активной зоны в теле индукторов имеются аксиальные каналы, а в торцах - кольцевые проточки. Во внутренние отверстия индукторов вварены подшипниковые щиты со смотровыми отверстиями, закрытыми крышками. Скрепленные между собой индукторы образуют корпус тормоза. На статоре тормоза монтируется тахогенератор, привод которого осуществляется через цепную передачу. Для удаления порошка из тормоза в нижней части предусмотрены два отверстия, закрытые крышками.

При эксплуатации порошкового тормоза необходим тщательный контроль за его работой во избежание случаев заклинивания ротора и спекания порошка. В связи с изменением метеорологических условий в ра-

бочей полости тормоза возможно отпотевание, увлажнение порошка, поэтому перед началом работы необходимо проверять порошок на влажность и при необходимости просушивать его. В периоды вероятного выпадения росы или инея рекомендуется ссыпать порошок из тормоза. В процессе эксплуатации порошок изнашивается, в связи с чем уменьшаются его сыпучесть, магнитная проницаемость и объемная масса. Показателями износа порошка являются его цвет и объемная масса, поэтому в процессе эксплуатации не реже одного раза в месяц берется проба порошка и измеряется его объемная масса.

Габаритные, установочные и присоединительные размеры тормоза приведены на рис. 25.28.

25.6.3. Электромагнитный тормоз с водяным охлаждением ЭМТ-4500

Электромагнитный тормоз предназначен для интенсивного торможения при спуске бурового инструмента. Тормоз устанавливается на раме буровой лебедки.

Режим работы - S4, ПВ = 40 %. Климатическое исполнение и категория размещения-VI или Т2 по ГОСТ 15150-69. Группа условий эксплуатации - М18 по ГОСТ 17516-72.

Технические данные тормоза

Номинальный тормозной момеш, Н - м........... 45

Максимальный кратковременный (до 10 с) момент, Нм. . . .57 - 60

Номинальный ток возбуждения, А 135

Максимальный кратковременный ток возбуждения, А.....180

Номинальное напряжение возбуждения, В.........120

Частота вращения, об/мин. . . 500

Масса, кг..........6300

Ситор тормоза выполнен из 5 колец, каждое из которых имеет 30 кот теобразных полюсов. Полюсы имеют Т-образную (3 кольца) и Г-образную (2 коиьца) форму. Кольца скреплены таким образом, чю полюсы одного кольца входят в паз другого. Между кольцами в специальных пазах размещаются катушки возбуждения. Для стока конденсата в нижней части статора под катушками

возбуждения предусмотрены дренажные отверстия.

Рогор - сварной конструкции, в которой имеются два цилиндра, прирарсн г;ы\ с помощью щитов к сгупиис на вачу По лость между отлиндрзми по окружности разделена на чешре отсека, в каждом из которых имеются входное и яыходное сн-веретия.

Со стороны водораспре хзлп гельной * >-робки вал имеет пя1ь продольных камлоу четыре концентрично расположенных - вхол-ные и центральный - выходной. В центра То-ный канал встроена труба, через которую подается воздух в шинопневматическую муфту Полость, образованная трубой и каналом вала, служит для прохождения охлаждающей воды. Каналы вала соединены с отвергшими ротора шлангами. На вату имеется деа роликоподшипника. Подшипниковые щиты сварные. На одном из пгатов монтируется тахогснератор, являющийся датчиком частоты вращения ротора тормоза.

Приниип действия тормоза заключаема в следующем при подаче постоятаю! о напряжения на катушки возбуждения в ста юре появляется магнитный поток и в массивном вращающемся роторе наводятся вихревые токи. Взаимодействие вихревых токов ро-


Рис. 25.29. Габаритные и установоч-но-присоединительные размеры тормоза ЭМТ-4500

тора с магнитным потоком статора создает тормозной момент, при этом энергия в тормозе превращается в тепло, для отвода которого подается охлаждающая вода. Тормозной момент можно плавно регулировать изменением тока возбуждения.

Габаритные, установочные и присоединительные размеры тормоза приведены на рис. 25.29.

Электромагнитная муфта по принципу действия напоминает асинхронный двигатель, в то же время отличаясь от него тем, что магнитный поток в ней создастся не трехфазной системой, а возбуждаемыми постоянным током вращающимися полюсами.

Электромагнитные муфты применяют для замыкания и размыкания кинематических цепей без прекращения вращения, например в коробках скоростей и передач, а также для пуска, реверсирования и торможения приводов станков. Применение муфт позволяет разделить пуск двигателей и механизмов, уменьшить время пускового тока, устранить удары как в электродвигателях, так и в механических передачах, обеспечить плавность разгона, устранить перегрузки, проскальзывания и др. Резкое уменьшение пусковых потерь в двигателях снимает ограничение по допустимому числу включений, что очень важно при цикличной работе двигателя.

Электромагнитная муфта является индивидуальным регулятором скорости и представляет собой электрическую машину, служащую для передачи вращающего момента от ведущего вала к ведомому при помощи электромагнитного поля, и состоит из двух основных вращаюших частей: якоря (в большинстве случаев представляет собой массивное тело) и индуктора с обмоткой возбуждения. Якорь и индуктор механически жестко не связаны между собой. Как правило, якорь соединяется с приводным двигателем, а индуктор - с рабочей машиной.

При вращении приводным двигателем ведущего вала муфты в случае отсутствия тока в обмотке возбуждения индуктор, а вместе с ним и ведомый вал остаются неподвижными. При подаче постоянного тока в обмотку возбуждения в магнитной цепи муфты (индуктор - воздушный зазор-якорь) возникает магнитный поток. При вращении якоря относительно индуктора в первом наводится ЭДС и возникает ток, взаимодействие которою с магнитным полем воздушного зазора обусловливает появление электромагнитного вращающего момента.

Электромагнитные индукционные муфты можно подразделить по следующим признакам:

    по принципу вращающего момента (на асинхронные и синхронные);

    по характеру распределения магнитной индукции в воздушном зазоре;

    по конструкции якоря (с массивным якорем и с якорем, имеющим обмотку типа беличьей клетки);

    по способу подачи питания в обмотку возбуждения; по способу охлаждения.

Наибольшее распространение получили муфты панцирного и индукторного типа благодаря простоте конструкции. Такие муфты состоят в основном из зубчатого индуктора с обмоткой возбуждения, насаженного на один вал с токопроводящими контактными кольцами, и гладкого цилиндрического массивного ферромагнитного якоря, соединенного с другим валом муфты.

Устройство, принцип действия и характеристики электромагнитных муфт.

Электромагнитные муфты, применяемые для автоматического управления, разделяются на муфты сухого и вязкого трения и муфты скольжения.

Муфта сухого трения производит передачу мощности с одного вала на другой через диски трения 3. Диски имеют возможность перемещаться по шлицам оси вала и ведомой полумуфты. При подаче тока в обмотку 1 якорь 2 сжимает диски, между которыми возникает сила трения. Относительные механические характеристики муфты приведены на рис 1, б.

Муфты вязкого трения имеют постоянный зазор δ между ведущей 1 и ведомой 2 полумуфтами. В зазоре с помощью обмотки 3 создаётся магнитное поле, которое воздействует на заполнитель (ферритовое железо с тальком или графитом) и образует элементарные цепочки магнитов. При этом заполнитель как бы схватывает ведомую и ведущую полумуфты. При выключении тока магнитное поле пропадает, цепочки разрушаются и полумуфты проскальзывают относительно друг друга. Относительная механическая характеристика муфты приведена на рис. 1, д. Эти электромагнитные муфты позволяют плавно регулировать скорость вращения при больших нагрузках на выходном валу.

Электромагнитные муфты: а - схема муфты сухого трения, б - механическая характеристика муфты трения, в - схема муфты вязкого трения, г - схема схватывания ферритового наполнителя, д - механическая характеристика муфты вязкого трения, е - схема муфты скольжения, ж - механическая характеристика муфты скольжения.

Муфта скольжения состоит из двух зубовидных полумуфт (см. рис. 1, е) и катушки. При подаче тока в катушку образуется замкнутое магнитное поле. При вращении муфты проскальзывают одна относительно другой, в результате чего образуется переменный магнитный поток, это и является причиной возникновения э. д. с. и токов. Взаимодействие образовавшихся магнитных потоков приводит во вращение ведомую полумуфту.

Характеристика фрикционной полумуфты приведена на рис. 1, ж. Основное назначение таких муфт - создавать наиболее благоприятные условия пуска, а также сглаживать динамические нагрузки при работе двигателя.

Электромагнитные муфты скольжения имеют ряд недостатков: низкий коэффициент полезного действия при малых скоростях, малый передаваемый момент, низкая надежность при резком изменении нагрузки и значительная инертность.
На рисунке ниже приведена принципиальная схема управления муфтой скольжения при наличии обратной связи по скорости с помощью тахогенратора, связанного с выходным валом электропривода. Сигнал с тахогенератора сравнивается с задающим сигналом, и разность этих сигналов подается на усилитель У, с выхода которого питается обмотка возбуждения муфты ОВ.


П ринципиальная схема управления муфты скольжения и искусственные механические характеристики при автоматическом регулировании

Эти характеристики располагаются между кривыми 5 и 6, которые соответствуют практически минимальному и номинальному значениям токов возбуждения муфты. Однако увеличение диапазона регулирования частоты вращения привода связано со значительными потерями в муфте скольжения, которые в основном складываются из потерь в якоре и в обмотке возбуждения. Причем потери якоря, особенно с увеличением скольжения, значительно преобладают над другими потерями и составляют 96 - 97 % максимальной мощности, передаваемой муфтой. При постоянном моменте нагрузки частота вращения ведущего вала муфты постоянна, т. е. n = const, ω = const.

У электромагнитных порошковых муфт соединение между ведущей и ведомой частями осуществляется за счет повышения вязкости смесей, заполняющих зазор между поверхностями сцепления муфт при увеличении магнитного потока в этом зазоре. Главным компонентом таких смесей являются ферромагнитные порошки, например карбонильное железо. Для устранения механического разрушения частиц железа из-за сил трения или их слипания добавляют специальные наполнители - жидкими (синтетические жидкости, индустриальные масло или сыпучими (оксиды цинка или магния, кварцевый порошок). Такие муфты обладают высокой скоростью срабатывания, однако эксплуатационная надежность их является недостаточной для широкого применения в станкостроении.

Рассмотрим одну из схем плавного регулирования скорости вращения исполнительным двигателем ИД, работающего через муфту скольжения М на исполнительный механизм ИМ.

Схема включения муфты скольжения для регулирования скорости вращения исполнительного механизма

При изменении нагрузки на валу исполнительного механизма выходное напряжение тахогенератора ТГ также будет изменяться, в результате чего разность магнитных потоков Ф1 и Ф2 электромашинного усилителя будет увеличиваться или уменьшаться, изменяя тем самым напряжение на выходе ЭМУ и величину силы тока в обмотке муфты.

Электромагнитные муфты ЭТМ

Электромагнитные муфты трения ЭТМ (сухие и масляные) позволяют производить пуск, торможение и реверсирование за время до 0,2 с, а также осуществлять десятки включений в течение 1 с. Управление муфтами и их питание осуществляется постоянным током напряжением 110, 36 и 24 В. Мощность управления составляет не более 1 % мощности, передаваемой муфтой. По конструкции муфты бывают одно- и многодисковые, нереверсивные и реверсивные.

Электромагнитные муфты серии ЭТМ с магнитопроводящими дисками выполняют контактного исполнения (ЭТМ2), бесконтактные (ЭТМ4) и тормозные (ЭТМ6). Муфты с контактным токоироводом отличаются невысокой надежностью из-за наличия скользящего контакта, поэтому в наиболее качественных приводах используют электромагнитные муфты с неподвижным токопроводом. Они имеют дополнительные воздушные зазоры.

Муфты бесконтактного исполнения отличаются наличием составного магнитопровода, образуемого корпусом и катушкодержателем, которые разделены так называемыми балластными зазорами. Катушкодержатель смонтирован неподвижно, при этом исключаются элементы контактного токопровода. За счет зазора снижается теплопередачи от фрикционных дисков к катушке, что повышает надежность муфты в тяжелых режимах работы.

В качестве ведущих целесообразно использовать муфты исполнения ЭТМ4, если это допустимо по условиям встройки, а в качестве тормозных - муфты исполнения ЭТМ6.

Муфты ЭТМ4 надежно работают при высокой частоте вращения и частых включениях. Эти муфты менее чувствительны к загрязнению масла, чем ЭТМ2, наличие у которых твердых частиц в масле может вызвать абразивный износ щеток, поэтому муфты ЭТМ2 могут применяться, если указанные ограничения отсутствуют и монтаж муфт ЭТМ4 по условиям конструкции узла затруднителен.

В качестве тормозных необходимо применять муфты исполнения ЭТМ6. Муфты ЭТМ2 и ЭТМ4 не следует применять для торможения по «обращенной» схеме, т. е. при вращающейся муфте и неподвижно закрепленном поводке. Для выбора муфт необходимо оценить: статический (передаваемый) момент, динамический момент, время переходного процесса в приводе, средние потери, единичную энергию и остаточный момент покоя.

Наши электромагнитные порошковые муфты и тормоза прошли успешную CE сертификацию и используются в Китайском центре запуска спутников Jiuquan.

Наша компания располагает полным набором испытательного оборудования, включая системы измерения крутящего момента, скорости и мощности для обеспечения надежности продукции. Мы прошли сертификацию ISO9001: 2000 системы управления качеством, а также строго следуем национальным промышленным стандартам JB/T 5988-1992 и JB/T5989-1922.

Характеристика продукции
1.Крутящий момент изменяется линейно с током возбуждения.
Крутящий момент передается через цепь магнитного порошка, образуемую электромагнитным полем. При нормальных условиях, ток возбуждения находится в линейном соотношении с крутящим моментом, и передается в диапазоне 5-100% от номинального крутящего момента, который показан на рис. A. Таким образом, при изменении тока возбуждения, крутящий момент, соответственно, изменяется.

2. Крутящий момент не зависит от скорости скольжения при постоянном токе возбуждения.
Когда ток возбуждения остается неизменным, передаваемый крутящий момент не зависит от скорости скольжения между трансмиссионной частью и ведомым звеном, т.е. нет никакой разницы между статическим моментом и динамическим. (См. рис. B) Таким образом, постоянный крутящий момент передается стабильно. При использовании данной особенности при регулировании натяжения, Вы можете точно контролировать и передавать желаемый крутящий момент всего лишь при помощи регулирования тока возбуждения. Это представляет отличную выгоду и удобство при контроле натяжения рулонных материалов.

Применение
Как универсальный, высокопроизводительный компонент автоматического управления, муфты и тормоза широко используются при регулировании натяжения размотки-намотки при процедурах окрашивания, печати, прядении, производстве бумаги, изготовлении таблеток, пластика, резины, проводов и кабелей, в металлургии и прочих областях, включающих обработку намотки. Электромагнитная муфта также может быть использована для буферного запуска, защиты от перегрузок, регулирования скорости и т.д., а электромагнитный порошковый тормоз применяется для нагрузки и торможения трансмиссии механизмов оборудования.

Выбор модели
1.Выбор электромагнитных порошковых муфт и тормозов, как правило, зависит от показателя максимального крутящего момента, необходимого для передачи. При этом рекомендуем обращать внимание на то, чтобы фактическая мощность скольжения была меньше допустимой
Формула расчета:
Фактическая мощность скольжения P=2×3.14×M×n/60=F·V
M----действительный крутящий момент, Н·м
n----скорость скольжения, об/мин
F----напряжение, Н
V----линейная скорость, м/с
При отсутствии механизма регулирования скорости, требуется устройство с максимальным натяжением для намотки материала, при этом максимальный радиус намотки должен быть меньше номинального крутящего момента электромагнитного порошкового тормоза.
2.Выбор электромагнитной порошковой муфты также зависит от ее положения. При соответствующей мощности скольжения подходит небольшая муфта, если она устанавливается в высокоскоростное устройство. Это позволяет значительно сократить затраты. При невозможности установить малогабаритную муфту, необходимо изделие большего размера, которое устанавливается в середине или задней части трансмиссионного механизма для увеличения рабочего крутящего момента и уменьшения скорости скольжения.
3. При определенных условиях охлаждения, мощность скольжения электромагнитной порошковой муфты или тормоза фиксирована. Таким образом, фактический крутящий момент и скорость будут компенсировать друг друга, что означает, что при увеличении скорости скольжения, допустимый крутящий момент будет соответственно уменьшаться. Однако максимальная скорость не должна превышать допустимого значения.

Пример. Электромагнитный порошковый тормоз FZ100, его номинальный крутящий момент M=100 Н·м, а мощность скольжения P=7 кВт.
Таким образом, номинальная скорость n=9550×P/M=9550×7/100=668.5 об/мин.
При действительной скорости скольжения n=1500 об/мин, допустимый крутящий момент M=9550×P/n=9550×7/1500=44.6 Н·м.
Примечание: 9550 – постоянный коэффициент.

Как профессиональный производитель электромагнитных порошковых муфт и тормозов в Китае, наша компания также реализует следующий ассортимент продукции: комплектующие лифтов/эскалаторов, оборудование для обработки токопроводящих шин, судовые установки для очистки сточных вод, зубофрезерные станки и пр.

Муфта - передатчик вращающейся энергии от одного конца вала другому. Это устройство есть в большинстве электрических двигателей для распределения Универсальной муфты по конструкции не существует. Она может иметь различные формы и конструктивные особенности.

Устройство

Муфта электромагнитная, как и любая другая, представляет собой соединение следующих частей:

  • ведущей, собирающей на себя двигательную мощность;
  • ведомой, передающей эту мощность дальше органам регулирования.

Если эти части соединить, не смещая, то получится деталь постоянно соединительная.

В автомобилестроении широко применяются муфты, две главные части которых соединены под действием электрического поля и магнитного.

Благодаря этому возникает подключение к двигателю без применения механической силы, также это дает возможность подключения в независимых друг от друга положениях. Иногда муфта электромагнитная позволяет регулирование вращательных частот в управляющей системе.

Типы

Муфты подразделяются следующим образом:

  • связь ведомой и ведущей частей осуществляется механически;
  • связь между основными частями осуществляется с помощью индукции. Такая связь возможна за счет магнитного поля.

К механическим относят:

  • фрикционную. Основные части этой муфты скрепляются электромагнитными усилиями. Они могут быть исполнены с различным числом дисков, а также иметь различную поверхность трения (коническую или цилиндрическую формы);
  • порошковую. В этих конструкциях ведомая с ведущей частью соединяются специальным ферромагнитным порошком, который заполняет пространство между составляющими механизма. Этот порошок намагничивается и плотно скрепляет части;
  • зубчатую (еще одно название - «кулачковая»). Под действием электромагнита основные две части скрепляются находящимися на них зубчиками.

К индукционным относится:

  • асинхронная. В этом механизме, благодаря вращательным движениям ведущей части, образуется электромагнитное воздействие в части ведомой. Данную деталь еще называют муфтой скольжения;
  • синхронная. За счет действия у разных концов этой детали, под воздействием пускания тока через катушку, происходит возникновение поля, скрепляющего обе ее части;
  • гистерезисная муфта электромагнитная. Как следует из названия, скрепление частей происходит явлением гистерезиса, когда магнитотвердое тело перемагничивается.

Любой их вышеперечисленных принципов работы не меняет главного назначения муфты: преобразования на входе механической энергии в нее же на выходе.

Для управляющих и автоматических систем могут использоваться все

Работа индукционных элементов соответствует работе электрическому двигателю. Поэтому наибольшее распространение получили следующие устройства:

  • ферропорошковые с электромагнитным управлением;
  • электромагнитные фрикционные муфты.

Ферропорошковая с электромагнитным управлением

У такой детали можно осуществить соединение частей как жестко, так и с проскальзыванием ведомой от ведущей.

За счет этого возможна регулировка частоты вращения механизма привода без вмешательства в саму частоту вращения приводного двигателя.

Конструкция элемента следующая. Обе части муфты - это стальные цилиндры, которые представляют собой магнитопроводы. В ведомой части имеется паз, к которому подводят обмотку возбуждения. Она, в свою очередь, подключается к источнику питания при помощи контактных колец совместно со щеткой. Пространство между частями заполняют ферромагнитной смесью. Она может быть порошкообразной или жидкой.

Принцип работы

Когда к обмотке подают постоянное напряжение, то происходит образование тока, который образует возбуждающий поток. Проходит он по ферромагнетику и происходит намагничивание последнего, его частицы создают намагниченные цепочки.

Располагаются цепочки по направлению магнитного поля и его силовых линий. Образовавшаяся сила притяжения от цепочек и скрепляет части муфты. Сцепляющая сила зависит от величины тока, который протекает по цепочкам. С увеличением воздействия тока происходит перенасыщение материала, сцепляющая сила уменьшается, таким образом, можно создать элемент с проскальзыванием.

Фрикционная

Когда происходит замыкание силы в механической связи, тогда деталь можно назвать фрикционной или муфтой трения. Соединить такую деталь возможно с двигателями, которые приводятся в действие под большой нагрузкой. Конструктивно данные элементы можно выполнить из одного или нескольких дисков с разной конструкцией поверхности трения: в форме цилиндра или конуса.

Принцип работы

Поверхности, подверженные трению, соединяются Регулировать вращающий момент такой фрикционной муфты нельзя, он постоянный. Изменению под действием изменения величины тока он не подвержен. Усиливать мощность данная муфта может с коэффициентом более 30.

Электромагнитные элементы имеют подразделение в зависимости от области их применения.

Электромагнитная муфта ЭТМ

Защитить устройства и различные механизмы от перегрузок импульсных способна только эта деталь.

Она уменьшает потери холостого хода. Это комплексно увеличивает вероятность пуска двигателя даже при повышенных нагрузках. Муфта электромагнитная подразделяется по исполнению на:

  • бесконтактную;
  • контактную;
  • тормозную.

Муфта компрессора кондиционера

В передней части компрессора устанавливают именно ее. Состоит она из основных элементов: пластины, шкива, электромагнитной катушки.

Пластина присоединяется напрямую к валу, а катушка и шкив имеют расположение на передней крышке. Когда начинается подача питания, создающая магнитное поле, пластина притягивается к шкиву и вал компрессора приходит в движение. Шкив вращается совместно с пластиной.

Если сломалась электромагнитная муфта, ремонт ее можно осуществить самостоятельно.

Для успешного ремонта надо правильно диагностировать причину неисправности. При поломке муфты компрессора может ощущаться запах горелого и слышаться шум. Обычно стук возникает при необходимости замены подшипника. Бывают такие неисправности, которые диагностировать сможет только мастер при наличии специального оборудования.

Если встал вопрос о замене такой детали, как электромагнитная муфта ("ГАЗель" не исключение), то проблем с поиском необходимого оборудования не должно возникнуть. Хорошо, если поломка обнаружилась вовремя. Это позволит избежать дополнительных затрат при выходе из строя других, связанных частей двигателя.
Муфты на разное оборудование тоже разные, и чтобы не ошибиться при самостоятельной покупке, можно обратиться в сервисный центр.

Если электромагнитные муфты компрессора выходят из строя, то причины этому могут быть следующие:

  • поломка прижимной пластины, когда она неверно вставлена в зазор;
  • неисправна полностью муфта, она может «сгореть» и диагностика причины этого очень сложна;
  • подшипники шкива требуют замены.

Электромагнитная муфта вентилятора применяется в охлаждении компрессоров автомобилей или для поддержания определенной температуры двигателя.

Также она применяется для поддержания температуры в период холодного времени года, особенно если включен вентилятор. Помогает она снизить расход топлива путем сокращения мощности на приводе вентилятора.



2024 stdpro.ru. Сайт о правильном строительстве.