Лабораторная работа испытание ректификационной колонны периодического действия. Дайджест - промышленная безопасность. Аналогичные главы в дргуих документах

Мы предлагаем лабораторные ректификационные колонны из стекла или нержавеющие стали (возможно смешанное исполнение). Стеклянные ректификационные колонны собираются на базе немецкого боросиликатного стекла LENZ (каталог стекла можно загрузить с нашего стайта - см. раздел КАТАЛОГИ). Мы предлагаем готовые решения, которые могут быть модифицированы с учетом пожеланий заказчика.

В ректификационной колонне осуществляется постоянный массо- и теплообмен между восходящими парами и нисходящим конденсатом. За счёт такого контакта можно получить продукт высокой чистоты, свободный от примесей. Лабораторные ректификацонные колонны, как правило, собирают на базе боросиликатного стекла (до 10 л). Полупромышленные ректификационные колонны делают из нержавеющей стали и специальных сплавов.

Лабораторные ректификацонные колонны имеют испарительную ёмкость (куб) сферической формы от 1 л до 10 л. Длина самой колонны лимитируется высотой потолка, может состоять из нескольких секций и иметь отбор продукта с нескольких тарелок. Колонна имеет зеркальную вакуумную рубашку, что обеспечивает термоизоляцию содержимого. По умолчанию предлагаются колонны насыпного типа, лабораторные колонны тарельчатого типа поставляются редко из-за более высокой стоимости и меньшей эффективности.

В качестве насадки мы предлагаем стеклянные кольца Рашига или спирально-призматическую стальную насадку. Металлическая насадка более эффективна из-за большой поверхности контакта, но если необходимо исключить контакт продукта с металлом, используют стеклянные кольца Рашига.

Управление потоком флегмы проводится вручную, в этом случае пользователь настраивает степень открытия клапана отвода флегмы так, чтобы он захлёбывался и часть флегмы возвращалась в колонну. При комплектации колонны флегмоделителем с пневмо- или электроклапаном работу колонны можно задавать через контроллер. В этом случае оператору достаточно задать флегмовое число, и контроллер откроет/закроет клапан в нужное время.


Ректификационную колонну можно установить на химическом реакторе перед конденсатором. В этом случае можно провести сразу синтез и отгонку растворителя (или продукта) с очисткой.

Пример по ректификации 1

Исходная смесь этанол - вода

Расход смеси GF = 5000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 34% масс.
Концентрация легколетучего компонента в дистилляте, xD = 76% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 3% масс.

(607.11 Кб) скачиваний202 раз(а)

Пример по ректификации 2

Исходная смесь этанол - вода
Расход смеси GF = 8000 т/ч.

Концентрация легколетучего компонента в дистилляте, xD = 80% масс.

Греющий пар под давлением – 4 атм.

(610.42 Кб) скачиваний195 раз(а)

Введение

2. Технологический расчет

3. КОНСТРУКТИВНЫЙ РАСЧЕТ

4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища

5.4 Расчёт опор аппаратов
Заключение
Техника безопасности

Заключение





коррозия и эрозия корпуса,
механические повреждения.


Хлороформ-бензол

Цена за курсовой проект по ректифкации от 2000р

Пример по ректификации 3

Расход смеси GF = 6000 т/ч.


Концентрация легколетучего компонента в кубовом остатке, xW = 4,5% масс.
Греющий пар под давлением – 4 атм.

(935.21 Кб) скачиваний246 раз(а)

Пример по ректификации 4

Исходная смесь хлороформ-бензол
Расход смеси GF = 5000 т/ч.

Концентрация легколетучего компонента в дистилляте, xD = 95% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 5,5% масс.
Греющий пар под давлением – 4 атм.

(604.31 Кб) скачиваний178 раз(а)

Пример по ректификации 5

Исходная смесь хлороформ-бензол
Расход смеси GF = 12000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 45% масс.
Концентрация легколетучего компонента в дистилляте, xD = 88% масс.

Греющий пар под давлением – 4 атм.

(992.92 Кб) скачиваний305 раз(а)

Введение
1. Описание технологической схемы
2. Технологический расчет
2.1 Расчет ректификационной колонны
3. КОНСТРУКТИВНЫЙ РАСЧЕТ
3.1 Расчёт оптимальных диаметров трубопроводов
4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища
5.3 Расчёт фланцевых соединений и крышки
5.4 Расчёт опор аппаратов
Заключение
Техника безопасности
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Заключение

В данном курсовом проекте в результате проведённых инженерных расчетов была подобрана ректификационная установка для разделения бинарной смеси этанол – вода, с ректификационной колонной диаметром D, высотой H, в которой применяется ситчатые тарелки, расстояние между которыми h = 0,5 (м). Колонна работает в нормальном режиме.
Одно из основных условий безопасной эксплуатации ректификационных колонн – обеспечение их герметичности. Причинами нарушения герметичности могут быть:
повышение давления в аппарате сверх допустимого,
недостаточная компенсация увеличения линейных размеров при температурных нагрузках,
коррозия и эрозия корпуса,
механические повреждения.
Наиболее опасной причиной резкого повышения давления в колонне может быть попадание в нее воды. Мгновенное испарение воды вызывает столь быстрое порообразование и повышение давления, что предохранительные клапаны, в силу своей инерционности, не успевают сработать, и может произойти разрыв стенок аппарата. Для исключения попадания воды в колонну необходимо следить, чтобы сырье и орошения не содержали воду, периодически проверять целостность трубок в подогревателе куба, в оросительных холодильниках. Повышение давления в колонне может произойти также вследствие нарушения температурного режима процесса ректификации и превышения пропускной способности колонны по сырью.
На случай недопустимого повышения давления колонны оборудуются предохранительными клапанами, сбрасывающими часть продукта в факельную линию. Если число тарелок более 40, то по правила ПБВХП – 74, учитывая возможность резкого сопротивления, предохранительные клапаны рекомендуется устанавливать в кубовой части колонны.
При входе в колонны парожидкостная струя продукта имеет большие скорости, что может вызвать эрозию стенок аппарата. Для защиты корпуса аппарата сырье вводят в полость специального устройства – улиты, которая снабжена отбойным местом, принимающим удар струи и защитной гильзой, заменяемой по мере износа

Толуол-четыреххлористый углерод

Пример по ректификации 6

Исходная смесь толуол-четыреххлористый углерод
Расход смеси GF = 9000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 30% масс.
Концентрация легколетучего компонента в дистилляте, xD = 90% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 3,5% масс.

(703.25 Кб) скачиваний261 раз(а)

Введение
1. Описание технологической схемы
2. Технологический расчет
2.1 Расчет ректификационной колонны
3. КОНСТРУКТИВНЫЙ РАСЧЕТ
3.1 Расчёт оптимальных диаметров трубопроводов
4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища
5.3 Расчёт фланцевых соединений и крышки
5.4 Расчёт опор аппаратов
Заключение
Техника безопасности
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Заключение

В данном курсовом проекте в результате проведённых инженерных расчетов была подобрана ректификационная установка для разделения бинарной смеси этанол – вода, с ректификационной колонной диаметром D, высотой H, в которой применяется ситчатые тарелки, расстояние между которыми h = 0,5 (м). Колонна работает в нормальном режиме.
Одно из основных условий безопасной эксплуатации ректификационных колонн – обеспечение их герметичности. Причинами нарушения герметичности могут быть:
повышение давления в аппарате сверх допустимого,
недостаточная компенсация увеличения линейных размеров при температурных нагрузках,
коррозия и эрозия корпуса,
механические повреждения.
Наиболее опасной причиной резкого повышения давления в колонне может быть попадание в нее воды. Мгновенное испарение воды вызывает столь быстрое порообразование и повышение давления, что предохранительные клапаны, в силу своей инерционности, не успевают сработать, и может произойти разрыв стенок аппарата. Для исключения попадания воды в колонну необходимо следить, чтобы сырье и орошения не содержали воду, периодически проверять целостность трубок в подогревателе куба, в оросительных холодильниках. Повышение давления в колонне может произойти также вследствие нарушения температурного режима процесса ректификации и превышения пропускной способности колонны по сырью.
На случай недопустимого повышения давления колонны оборудуются предохранительными клапанами, сбрасывающими часть продукта в факельную линию. Если число тарелок более 40, то по правила ПБВХП – 74, учитывая возможность резкого сопротивления, предохранительные клапаны рекомендуется устанавливать в кубовой части колонны.
При входе в колонны парожидкостная струя продукта имеет большие скорости, что может вызвать эрозию стенок аппарата. Для защиты корпуса аппарата сырье вводят в полость специального устройства – улиты, которая снабжена отбойным местом, принимающим удар струи и защитной гильзой, заменяемой по мере износа

Сероуглерод-четыреххлористый углерод

Цена за курсовой проект по ректифкации от 2000р

Пример по ректификации 7

Исходная смесь сероуглерод-четыреххлористый углерод
Расход смеси GF = 7000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 20% масс.
Концентрация легколетучего компонента в дистилляте, xD = 85% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 1,4% масс.
Греющий пар под давлением – 1 атм.

(994.3 Кб) скачиваний193 раз(а)

Метанол-вода

Цена за курсовой проект по ректифкации от 2000р

Пример по ректификации 8

Исходная смесь метанол-вода колпачки
Расход смеси GF = 3000 кг/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 22% масс.
Концентрация легколетучего компонента в дистилляте, xD = 82% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 0,5% масс.
Греющий пар под давлением – 4 атм.

(315.89 Кб) скачиваний285 раз(а)

Пример по ректификации 9

Исходная смесь метанол-вода
Расход смеси GF = 13000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 24% масс.
Концентрация легколетучего компонента в дистилляте, xD = 97% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 0,8% масс.
Греющий пар под давлением – 4 атм.

(945.76 Кб) скачиваний329 раз(а)

Пример по ректификации 10

Исходная смесь метанол-вода
Расход смеси GF = 3700 кг/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 25% масс.
Концентрация легколетучего компонента в дистилляте, xD = 96% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 1% масс.
Греющий пар под давлением – 4 атм.

(926.64 Кб) скачиваний215 раз(а)

Пример по ректификации 11

Исходная смесь метанол-вода
Расход смеси GF = 6500 кг/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 27% масс.
Концентрация легколетучего компонента в дистилляте, xD = 98% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 2% масс.
Греющий пар под давлением – 4 атм.

(948.82 Кб) скачиваний241 раз(а)

Введение
1. Описание технологической схемы
2. Технологический расчет
2.1 Расчет ректификационной колонны
3. КОНСТРУКТИВНЫЙ РАСЧЕТ
3.1 Расчёт оптимальных диаметров трубопроводов
4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища
5.3 Расчёт фланцевых соединений и крышки
5.4 Расчёт опор аппаратов
Заключение
Техника безопасности
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Заключение

В данном курсовом проекте в результате проведённых инженерных расчетов была подобрана ректификационная установка для разделения бинарной смеси этанол – вода, с ректификационной колонной диаметром D, высотой H, в которой применяется ситчатые тарелки, расстояние между которыми h = 0,5 (м). Колонна работает в нормальном режиме.
Одно из основных условий безопасной эксплуатации ректификационных колонн – обеспечение их герметичности. Причинами нарушения герметичности могут быть:
повышение давления в аппарате сверх допустимого,
недостаточная компенсация увеличения линейных размеров при температурных нагрузках,
коррозия и эрозия корпуса,
механические повреждения.
Наиболее опасной причиной резкого повышения давления в колонне может быть попадание в нее воды. Мгновенное испарение воды вызывает столь быстрое порообразование и повышение давления, что предохранительные клапаны, в силу своей инерционности, не успевают сработать, и может произойти разрыв стенок аппарата. Для исключения попадания воды в колонну необходимо следить, чтобы сырье и орошения не содержали воду, периодически проверять целостность трубок в подогревателе куба, в оросительных холодильниках. Повышение давления в колонне может произойти также вследствие нарушения температурного режима процесса ректификации и превышения пропускной способности колонны по сырью.
На случай недопустимого повышения давления колонны оборудуются предохранительными клапанами, сбрасывающими часть продукта в факельную линию. Если число тарелок более 40, то по правила ПБВХП – 74, учитывая возможность резкого сопротивления, предохранительные клапаны рекомендуется устанавливать в кубовой части колонны.
При входе в колонны парожидкостная струя продукта имеет большие скорости, что может вызвать эрозию стенок аппарата. Для защиты корпуса аппарата сырье вводят в полость специального устройства – улиты, которая снабжена отбойным местом, принимающим удар струи и защитной гильзой, заменяемой по мере износа

Сложные ректификационные колонны.

Если исходную сырьевую смесь нужно разделить на несколько компонентов или фракций, то нужно использовать несколько последовательно соединенных простых колонн.

Технологическая схема получается достаточно громоздкой, а установка – металлоемкой. Поэтому для разделения многокомпонентной смеси целесообразно использовать сложные ректификационные колонны. Они представляют собой тарельчатые аппараты, работающие совместно с отпарной колонной (стриппингами). Стриппинговая секция представляет собой колонны малого диаметра, установленные одна на другую и объединенные в общем, корпусе. Стриппинговые, также как и основные колонны, снабжены тарелками. Помимо верхнего и нижнего продукта, по высоте колонны, отбирают ряд боковых фракций (погонов). Эти фракции отправляются в соответствующую секцию стриппинговой колонны, где делятся на две части. Верхний продукт, при этом, возвращается в основную колонну в качестве бокового орошения, нижний продукт является целевой боковой фракцией. Использование стриппингов позволяет отбирать несколько фракций по высоте колонны, которые являются целевыми наряду с верхним и нижним продуктом, уходящим из ректификационной колонны. Колонны данного типа широко используют в нефтепереработке для получения из нефти топливных фракций. Конструктивное оформление может быть различно, в зависимости от целевых продуктов.

Основными эксплуатационными параметрами являются давление и температура. Давление прямо пропорционально температуре и рост давления будет связан с повышением температуры в колонне. Для предотвращения аварийной основной ситуации для колонных аппаратов

(Разгерметизация с взрывом) необходимо поддерживать температурный режим в колонне, чтобы избежать роста давления. Температурный режим поддерживается в соответствии с нормами технологического режима, которые отмечены в технологическом регламенте. Поддержание необходимого температурного режима обеспечивается путем подогрева куба колонны и снятием тепла верхней части колонны. Варьировать температуру верха и низа можно путем изменения количества и температуры соответствующих потоков. Для поддержания необходимой температуры в колонне аппарат покрывают слоем тепло изоляции. Тепло изоляционный материал должен обладать малой теплопроводностью, должен быть стойким к высоким температурам среды и стойким к колебаниям окружающей среды и не должен разрушаться в процессе эксплуатации. Материал не должен быть гигроскопичным, чтобы предотвратить возможность коррозии стенки корпуса. Толщина слоя изоляции рассчитывается в зависимости от температуры среды и свойств изоляционного материала. При проведении ремонта тепловая изоляция осматривается для обнаружения повреждений. Это могут быть трещины, сколы, разрывы элементов изоляции и т.д. Наиболее часто повреждение изоляции происходит в месте установки штуцеров, люков, кронштейнов, площадок. Обнаруженные дефекты во время ремонта должны быть устранены. Не реже одного раза в квартал необходимо производить температурные замеры на внешней поверхности изоляции. Если температура ниже допустимой, то необходимо провести капитальный ремонт изоляции.

Цель работы:

    Исследование работы лабораторной насадочной колонны периодического действия при максимальном (полном) и рабочем орошениях.

    Определение числа ступеней изменения концентрации (теоретических тарелок) в колонне при различных режимах её работы.

    Определение высоты насадки, эквивалентной теоретической тарелке (ВЭТТ).

    Определение коэффициента орошения.

    Определение температуры верха и низа колонны.

1. Описание лабораторной установки

Лабораторная установка (рисунок 1) включает насадочную колонну 1, колбонагреватель 2, обратный конденсатор – холодильник 3 и холодильник дистиллята 4. В качестве насадки в колонне используются металлические спиральки. Для обеспечения адиабатности процесса ректификации колонна имеет боковой электрообогрев 5. Инлатром 6. Куб колонны 1, помещенный в колбонагреватель, имеет пробоотборник кубового остатка 7. Для конденсации паровой фазы служит конденсатор – холодильник 3. Отбор дистиллята регулируется краном 8. Отбираемый дистиллят охлаждается в холодильнике 4 и поступает приемник 9. Для поддержания атмосферного давления в колонне предназначен воздушник 10.

1- ректификационная колонна; 2 – колбонагреватель; 3 – обратный конденсатор – холодильник; 4 – холодильник дистиллята; 5 – боковой электрообогрев; 6 – ЛАТР; 7 – пробоотборник; 8 – кран; 9 - приемник

Рисунок 3 – Схема лабораторной установки

2. Методика проведения эксперимента.

Приготавливается исходная смесь, содержащая НКК и ВКК, 50 мл смеси загружается в куб колонны.

Пуск установки начинается с подачи воды в конденсатор – холодильник. Затем включается колбонагреватель. После закипания смеси и появления орошения в нижней части насадки включается боковой обогрев. Интенсивность бокового обогрева поддерживается такой, чтобы вверху насадки появился слой жидкости. Это явление называется «захлебыванием» колонны. «Захлебывание» необходимо для смачивания насадки и соответственно интенсификации процесса массообмена. Затем боковой обогрев уменьшается до получения заданной величины орошения (числа капель в минуту выше и ниже насадки). При этом слой жидкости, находящийся выше насадки, стекает в куб колонны. Уменьшать боковой обогрев следует постепенно, чтобы не прекратилось орошение. Если же орошение прекратится, то необходимо снова «захлебнуть» колонну. Так устанавливается режим колонны, соответствующий режиму полного орошения. Дистиллят при этом не отбирается.

После выдержки режима полного орошения в течении 30-40 минут производится отбор 3-4 капель дистиллята и остатка на анализ. Далее устанавливается рабочий режим с отбором дистиллята со скоростью 6-10 капель в минуту. После получения 2,5 – 4 мл дистиллята отбираются 3-4 капли дистиллята и столько же остатка на анализ, и работа на колонне заканчивается. Прекращается колбонагреватель и боковой обогрев. Подача воды в конденсатор холодильник прекращается через 15-20 минут после выключения нагревателей.

Отобранные в ходе эксперимента четыре пробы (дистиллята и остатка при полном орошении и рабочем режиме работы колонны) анализируются на рефрактомере при 20 о С. По графической зависимости «показатель преломления - состав» определяется содержание НКК во всех пробах в объемных долях.

Результаты эксперимента записываются в журнал. Необходимо иметь в виду, что число капель в минуту выше и ниже насадки не обязательно равны друг другу. Однако они должны быть близки и постоянны во времени при установившихся режимах работы колонны.

Экспериментальные данные:

Режим полного орошения:

n дист = 1,392

n куба = 1,433

Объемные доли:

дистиллята – 0,95

куба – 0,56

Рабочий режим:

Верх колонны – 135

При отборе – 18

n дист = 1,3925

n куба = 1,44

Объемные доли:

дистиллята – 0,92

куба – 0,51

3. Обработка результатов эксперимента

Объемные составы дистиллята и остатка пересчитываются в мольные.

При полном орошении:

При рабочем орошении:

Определим флегмовое число:

Коэффициент избытка орошения:

По графику определим:

откуда

Число ступеней при полном орошении – 15

При рабочем режиме – 23

Высота насадки, эквивалентная одной теоретической тарелке:

При полном орошении:

При рабочем режиме:

Находим температуру верха и низа колонны:

При полном орошении: t 1 = 98,8 0 C и t 2 = 102,0 0 C

При рабочем режиме: t 1 = 99,0 0 C и t 2 = 102,5 0 C

При рабочем режиме количество теоретических тарелок больше, чем при полном орошении, поэтому высота насадки соответственно меньше.

Лабораторная работа №5

«Изучение работы решетчатых тарелок провального типа»

Цель работы:

    Изучение влияния гидродинамических характеристик на положение дисперсной точки и точки «захлебывания» на модели колонны с использованием системы воздух-вода.

1,2 - ротаметр; 3 - компрессор; 4 - распределительная решетка; 5 - манометр;

6 - тарелка; 7 - колонна; 8 - регулировочный вентиль.

Рисунок 4 - Схема лабораторной установки

1 Методика проведения работы

Включают компрессор, создавая небольшой поток воздуха через модель. Измеряют перепад давления по манометру 5 на тарелке без орошения с целью определения коэффициента сопротивления сухой тарелки. Затем уменьшают расход воздуха до).

Устанавливают по ротаметру заданный расход воды и создают небольшой поток воздуха через модель. При установившемся режиме работы тарелки замеряют сопротивление тарелки, причем замеряют максимальную величину перепада, которая наблюдается при заданных расходах жидкости и газа, и высоту пены на тарелке. Затем несколько увеличивают расход воздуха вентилем на ротаметре. При новом расходе воздуха через 3-5 минут работы тарелки вновь замеряют перепад и высоту пены. Записывают расход воды и воздуха при начальном вступлении тарелки в работу. Увеличивают расход воздуха. Данные заносят в таблицу 1.1

Таблица 1.1- Результаты эксперимента

Номер опыта

Перепад давления
,

Расход воды Q 1

Расход воздуха Q 2

Высота пены h ж

2 Обработка результатов эксперимента

      Определить относительное свободное сечение тарелки по формуле:

      По расходу воздуха определить скорость воздуха в полном сечении колонны

Рассчитаем коэффициенты сопротивления «сухой» тарелке, учтя что при расходе воздуха Q 2 =0,007 м­­ 3 /с сопротивление тарелки
=80 Па

      По перепаду давления на «сухой» тарелке определить коэффициент сопротивления «сухой тарелки»:

Таблица 2.2- Результаты расчета

Номер опыта

Перепад давления
эксперим.

Расход воздуха Q 2

Скорость воздуха

Перепад давления
расчет.,

Погрешность

Изучили влияние гидродинамических характеристик на положение дисперсной точки и точки «захлебывания» на модели колонны с использованием системы воздух-вода. Рассчитали перепад давления на тарелке, сравнили его с опытным значением.

Теоретические основы перегонки и ректификации

Перегонка – это процесс разделения однородных смесей жидкостей по признаку их летучести. Лету­чими называют жидкости, давление насыщенных паров над которыми су­щественно отличается от нуля при обычных температурах.

В основе теории перегонки лежат представления о жидких растворах и образовании смеси паров над ними. При кипении смесей летучих веществ пары жидкостей обогащаются более летучим компонентом. При частичной конденсации таких паров они разделяются на паровую фазу и жидкость (флегму). При температуре перегонки более летучая жидкость кипит, а менее летучая жидкость испаряется без кипения. Такие смеси называются раздельнокипящими. В идеальных растворах такое положение реализуется при любых концентрациях.

В неидеальных растворах существуют области концентраций, в которых оба компонента бинарной смеси кипят одновременно. Это так называемые области азеотропии или области нераздельнокипящих жидкостей. Здесь концентрации жидкой и паровой фаз бинарных смесей одинаковы, и потому при их перегонке повысить концентрацию жидкой фазы невозможно.

Сложная перегонка , или ректификация – это многократная перегонка дистиллята. Применяется для повышения эффективности простой перегонки. Осуществляется в тарелочных или насадочных колоннах. Для успешного разделения флегмы, стекающей вниз по колонне, и пара, движущегося вверх, можно использовать любые контактные элементы, увеличивающие площадь и эффективность их взаимодействия. В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой (ФТ).



2024 stdpro.ru. Сайт о правильном строительстве.