Большепролетные покрытия. Большепролетные конструкции покрытий гражданских и промышленных зданий. Мониторинг состояния объектов

КОНСПЕКТ ЛЕКЦИЙ

Макеевка 2011г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ

ДОНБАССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Кафедра “Экономика предприятий”

Разработал: к.э.н., доц. Захарченко Д.А.

КОНСПЕКТ ЛЕКЦИЙ

по курсу «Основы строительной отрасли»

для студентов специальности 6.030504 «Экономика предприятий»

№ кода _______

Утверждено на заседании кафедры

«Экономика предприятий»

ПРОТОКОЛ № __ от _______2011 р.

Макеевка 2011г.

ТЕМА 4. БОЛЬШЕПРОЛЕТНЫЕ ЗДАНИЯ И СООРУЖЕНИЯ

К большепролетным сооружениям относят такие, которые имеют пролеты более 40-80 м. Сравнительно недавно такие сооружения считались уникальными и строились крайне редко, в настоящее время быстрое развитие науки и техники, а также большая потребность в таких сооружениях в промышленности и сфере досуга и развлечения предопределили интенсивное строительство таких сооружений во многих странах.

Особый интерес представляют пространственные конструкции, которые состоят не из отдельных, независимых несущих элементов, передающих нагрузку друг друга, а представляют единую комплексную систему работающих частей конструкции.

Такой пространственный характер конструкций, широко внедряемый в строительство во всем мире - символ строительной техники 20в. И хотя некоторые виды пространственных конструкций - купола, крестовые и своды - были известны с древности, однако ни по применяемости материалов, ни по конструктивным решениям они не отвечают современным требованиям строительства, так как хотя и перекрывали значительные пролеты, но при этом были чрезвычайно тяжелы и массивны.

В пространственных конструкциях привлекает, и их способность оптимально удовлетворять функциональным и эстетическим требованиям архитектуры. Масштабы перекрываемых пролетов, возможность осуществлять гибкую планировку, разнообразие геометрических форм, материалов, архитектурная выразительность - вот далеко не полный перечень особенностей этих конструкций.

Сочетание функционального, технического и художественно-эстетического обеспечивает пространственным конструкциям широкую перспективу, не говоря уже о том, что их применение позволяет получить огромную экономию строительных материалов - на 20-30% снизить материалоемкость зданий и сооружений.


К плоскостным большепролетным сооружениям относятся балки, рамы, фермы, арки. Плоскостные конструкции работают под нагрузкой автономно, каждая в своей плоскости. Несущий элемент плоскостных конструкций, перекрывающих какую-то площадь здания (плита, балка, ферма) работает самостоятельно не участвуют в работе элементов, к которым он примыкает. Это обуславливает меньшую пространственную жесткость и несущую способность плоскостных элементов по сравнению с пространственными, а также их более высокую ресурсоемкость в первую очередь повышенный расход материалов.

Рис. 4.1. Конструктивные решения большепролетных конструкций

а - плоские конструкции; б - пространственные конструкции; в - висячие конструкции; г - пневматические конструкции; 1- фермы; 2 - рамы; 3-4 шарнирные арки; 5- цилиндрические оболочки; 6- оболочки двоякой кривизны; 7- купола; 8- структуры; 9- вантовые конструкции; 10- мембранные конструкции; 11- тентовые конструкции; 12- пневмоопорные конструкции; 13- пневмокаркасные конструкции;

Монтаж рам сплошной конструкции производят двумя самоходными стреловыми кранами. Сначала на фундамент устанавливают стойки рамы с частью ригеля , опирающиеся на временную опору, а затем монтируют средний участок ригеля. Соединение частей ригеля производится на временных опорах сваркой или крепкой. После монтажа первой рамы конструкции расчаливают с помощью растяжек.

В ряде случаев рамные конструкции целесообразно монтировать методом надвижки. Такой метод применяют, если рамные конструкции невозможно сразу установить в проектное положение (внутри ведутся работы либо уже возведены конструкции, не позволяющие расположить краны).

Блок собирают в торце здания в специальном кондукторе из 2-3 или 4 ферм. Собранный и закрепленный блок по рельсовым путям поднимают в проектное положение. Устанавливают при помощи домкратов или с помощью легких кранов.

Арочные конструкции бывают 2-х типов: в виде 2-х шарнирной арки с затяжкой и 3-х шарнирной арки. При монтаже арочных конструкций, имеющих несущую часть в виде двухшарнирной арки, производится аналогично монтажу рамных конструкций с помощью самоходных стреловых кранов . Основное требование - это высокая точность монтажа, гарантирующая совмещение пятого (опорного) шарнира с опорой.

Монтаж трехшарнирных арок отличается некоторыми особенностями, связанными с наличием верхнего шарнира. Сборка последнего выполняется при помощи временной монтажной опоры, устанавливаемой посередине пролета. Монтаж производиться методом вертикального подъема, методами скольжения или поворота.

Рис. 4.3. Монтаж рам

а - монтаж целиком двумя кранами; б - монтаж рам частями с использованием временных опор; в - монтаж рам методом поворота; 1-монтажный кран; 2-рама в сборе; 3-части рамы; 4-временные опоры; 5-лебедки; 6-монтажные стрелы.

Каждую полуарку стропят у центра тяжести и устанавливают так, чтобы пятовый шарнир был заведен на опору, а второй конец на временную опору. То же с другой полуаркой. Вращением в пятовом шарнире достигается совмещением осей замковых отверстий верхнего шарнира.

В пространственных конструкциях все элементы связаны между собой и участвуют в работе. Это приводит к значительному снижению расхода металла на единицу площади. Однако до последнего времени такие пространственные системы (купольные, вантовые, структурные, оболочки) не получали развития из-за высокой трудоемкости изготовления и монтажа.

Рис. 4.4. Монтаж купола с помощью временной центральной опоры

А - система разрезки купола; Б - монтаж купола; 1-временная опора с растяжками; 2-радиальнае панели; 3-опорное кольцо;

Купольные системы монтируются из отдельных стержней или из отдельных пластин. В зависимости от конструктивного решения, монтаж купольных конструкций может быть выполнен и с использованием временной стационарной опоры, навесным способом или в целом виде.

Сферические купола возводят кольцевыми ярусами, навесным способом. Каждый такой ярус обладает после полной сборки статистической устойчивостью и несущей способностью и служит основанием для вышележащего яруса. Сборные купола могут монтироваться при помощи кондукторных устройств и временных креплений - купол цирка в Киеве, или купол целиком собирается на земле и затем поднимается на проектный горизонт краном, пневмотранспортом или подъемником. Используется метод подращивания снизу.

Висячие конструкции стали применять со 2-й половины 19 века. И одним из первых примеров является покрытие павильона Всероссийской Нижегородской ярмарки, выполненное в 1896г. выдающимся советским инженером Шуховым .

Опыт применения таких систем доказал их прогрессивность, поскольку они позволяют максимально использовать высокопрочные стали и легкие ограждающие конструкции из пластиков и алюминиевых сплавов, что дает возможность создавать покрытия значительных пролетов.

Рис. 4.5. Монтаж висячих конструкций

1-башенный кран; 2-траверса; 3-тросовая полуферма; 4-центральный барабан; 5-временная опора; 6-смонтированная полуферма; 7- опорное кольцо.

В последнее время широкое распространение получили рамные висячие конструкции. Особенность устройства висячих конструкций заключается в том, что вначале возводятся несущие опоры, на которые укладывается опорный контур, воспринимающий натяжение от нитей вант. После их полной раскладки, покрытие загружают временной нагрузкой с учетом полной расчетной нагрузки. Такой прием предварительной напряженности исключает появление трещин в оболочке после полной ее нагрузки во время эксплуатации.

Разновидностью висячих вантовых конструкций являются мембранные покрытия. Мембранное покрытие представляет собой висячую систему в виде тонкой металлической листовой конструкции натянутой на железобетонный опорный контур. Один конец рулона закрепляется на опорном контуре, а рулон при помощи специального траверса краном разматывают на всю длину, натягивают лебедками и закрепляют на противоположном участке опорного контура.

Недостатком мембранных покрытий является необходимость сварки тонких листов по длине и монтажных элементов между собой с нахлестом в 50 мм. При этом практически невозможно получить сваркой шов равнопрочный с основным металлом, поэтому толщина листа искусственно завышается. Эта проблема в какой-то мере решается системой переплетенных лент из алюминиевых сплавов .

Первые длинные цилиндрические оболочки впервые были применены в 1928г. в Харькове при сооружении почтамта.

Длинные цилиндрические оболочки поставляются в полностью законченном виде или укрупняют по месту. Вес монтажных элементов 3х12 около 4 тонн. До подъема производится укрупнение в передвижном кондукторе двух плит вместе с затяжкой в один элемент. При укрупнении производят сварку закладных деталей в стыке, натяжение затяжки и замоноличивание швов.

Установив 8 укрупненных секций, образующих пролет 24м, их выверяют, чтобы совпадали и отверстия, далее сваривают все закладные детали и выпуски продольной арматуры , производят натяжение арматуры и бетонирование швов. После выдержки бетона оболочку раскружаливают и переставляют подмости.

В строительной практике пространственные, перекрестные, ребристые и стержневые конструкции обычно объединяют под названием структурные конструкции.

Перекрестные системы конструктивных различных форм покрытий с прямоугольными и диагональными решетками получили широкое распространение сравнительно недавно со второй половины 20 века в таких странах как США, Германия, Канада, Англия, бывший СССР.

Определенное время структурные конструкции не получали широкого развития из-за высокой трудоемкости изготовления и особенностей монтажа конструкции. Усовершенствование конструкции, особенно с использованием ЭВМ, позволило обеспечит переход на поточное их изготовление, снизить трудоемкость их расчета, повысить его точность и, следовательно, надежность.

Рис.4.6. Покрытие здания из крупноразмерных плит

1-плита размером 3х24м; 2-зенитный фонарь; 3-подстропильная ферма; 4- колонна.

В основе перекрестно-стержневых систем лежит опорная геометрическая форма. Отличительная особенность разных типов структурных конструкций - пространственный узел сопряжения стержней, который и определяет в значительной мере трудоемкость изготовления и сборки этих конструкций.

Структурные конструкции обладают рядом преимуществ по сравнению с традиционными плоскостными решениями в виде рам и балочных конструкций:

  • являются сборно-разборными и могут использоваться многократно;
  • могут изготавливаться на поточных автоматизированных линиях, чему способствует высокая типизация и унификация структурных элементов (часто необходим один тип стержней и один тип узла);
  • сборка не требует высокой квалификации;
  • имеют компактную упаковку и удобны при перевозке.

Наряду с отмеченными преимуществами структурные конструкции имеют и ряд недостатков:

  • укрупнительная сборка требует применения значительного объема ручного труда;
  • ограниченная несущая способность отдельных типов конструкций;
  • низкая заводская готовность поступающих на монтаж конструкций.

Пневмоконструкции используются для временного укрытия или для использования в каких-то вспомогательных целях, например в качестве опорных конструкций при возведении оболочек и других пространственных конструкций.

Пневматические покрытия могут быть 2-х видов - воздухоопрные и воздухонесущие. В первом случае небольшое избыточное давление мягкой оболочки сооружения обеспечивает получение необходимой формы. И эта форма будет сохраняться, пока будет поддерживаться подача воздуха и необходимое избыточное давление.

Во втором случае - несущий конструкцией служат заполненные воздухом трубы из эластичного материала, образующие как бы каркас сооружения. Иногда их называют пневматическими сооружениями высокого давления, потому что давление воздуха в трубах намного выше, чем под воздухоопорной пленкой.

Возведение воздухоопорных сооружений начинают с подготовки площадки, на которую укладывают бетон или асфальт. По контуру сооружения устраивают фундамент с анкерными и уплотняющими устройствами. Под действием воздушного давления оболочка распрямляется и приобретает проектную форму.

Воздухонесущие или пневмокаркасные конструкции сооружаются аналогично воздухоопорным, лишь с той разницей, что воздух подают от компрессора по резиновым трубами и через специальные вентили закачивается в замкнутые каналы так называемого каркаса сооружения. Благодаря высокому давлению в камерах каркас занимает проектное положение (чаще всего в виде арок) и поднимает за собой ограждающую ткань.

Федеральное агентство по образованию

Уфимский государственный нефтяной технический университет

Архитектурно-строительный факультет

И.В. Федорцев, Е.А. Султанова

Технология возведения

конструкций покрытия

большепролетных зданий

(учебное пособие)

Утверждено решением Ученого Совета УГНТУ в качестве

учебного пособия (протокол от _________№ _______)

Рецензенты:

____________________________________________________________________________________________________________________

Федорцев И.В., Султанова Е.А.

Технология возведения конструкций покрытия большепролетных зданий: Учебное пособие / И.В.Федорцев, Е.А. Султанова. – Уфа: Изд-во УГНТУ, 2008. – с. ______

ISBN – 5 – 9492 – 055 – 1.

Учебное пособие «Технология возведения конструкций покрытия большепролетных зданий» разработано в качестве основного учебно-методического руководства для студентов специальности – «Промышленное и гражданское строительство» при изучении специальной дисциплины «Технология возведения зданий и сооружений» (ТВЗС).

Содержит систематизированный материал имеющегося опыта строительства таких большепролетных конструкций как: балочные, рамные, арочные, вантовые, мембранные, структурные плиты, купольные, тентовые и др. Организация и технология монтажных процессов при строительстве этих зданий и сооружений изложена в виде четкого технологического регламента работ, выполняемого в определенной технологической последовательности с достаточной «детализацией» монтажных процессов в виде «технологических карт» и схем механизации работ. Последние могут быть использованы как принципиальные рекомендации для разработки организационно-технологической документации при проектировании проекта производства работ для конкретных объектов.

Определенный интерес представляет изложенный в «Пособии» опыт монтажа арочного покрытия ледового дворца в г. Уфе, метод возведения которого был впервые в практике строительства подобных большепролетных зданий реализован строительно-монтажными подразделениями Башкортостана по проекту и силами ОАО «Востокнефтезаводмонтаж». Пособие содержит по каждому типу конструкций выводы и контрольные вопросы, позволяющие пользователю осуществлять самостоятельную оценку усвоения изложенного в нем материала.

Предназначено для студентов строительных специальностей УГНТУ при изучении курсов ТВЗС, ТВБзд и ТСМР, слушателей ИПК УГНТУ и строительных организаций и подразделений, так или иначе, связанных с вопросами возведения большепролетных зданий и сооружений.

И.В. Федорцев, Е.А. Султанова

ISBN – 5 – 9492 – 055 – 1 УДК 697.3

Введение. . . . . . . . . . . . . . . . . . . . . .

1. Классификация большепролетных конструкций. . . . . . .

2. Классификация методов монтажа большепролетных

конструкций. . . . . . . . . . . . . . . . . . . .

3. Технология монтажа блочных покрытий. . . . . . . . . .

3.1 Конструктивная схема зданий с балочными покрытиями. .

3.2 Технология монтажа балочного покрытия. . . . . . .

3.3 Выводы по балочным покрытиям. . . . . . . . . .

3.4 Контрольные вопросы к разделу «Технология монтажа балочных покрытий. . . . . . . . . . . . . . . .

3.5 Литература. . . . . . . . . . . . . . . . . .

4. Монтаж арочных покрытий. . . . . . . . . . . . . .

4.1 Конструктивные схемы арок и ее опорных узлов. . . . .

4.2 Обоснование типа фундамента арок. . . . . . . . .

4.2.1 Расчет «затяжки» арочного покрытия. . . . . .

4.2.2 Расчет размера нижней ступени фундамента. . . .

4.3 Монтаж двух- и трехшарнирных арок. . . . . . . . .

4.3.1 Технология возведения двух- и трехшарнирных арок.

4.3.2 Монтаж двухшарнирной арки методом «поворота» . .

4.3.3 Монтаж арок методом «надвига» . . . . . . . .

4.3.4 Технология монтажа арочного покрытия ледового

дворца «Уфа-арена» . . . . . . . . . . . . . .

4.3.4.1 Конструктивная схема арочного покрытия и обоснование метода монтажа. . . . . . . . .

4.3.4.2 Технология монтажа арочного покрытия

«Уфа-арена» . . . . . . . . . . . . . . .

4.3.5 Обоснование схем механизации монтажных работ при возведении арок. . . . . . . . . . . . . . .

4.3.5.1 Обоснование средств механизации монтажных работ при возведении двухшарнирных арок. . . .

4.3.5.2 Обоснование средств механизации монтажных работ при возведении трехшарнирных арок. . . .

4.3.5.3 Обоснование средств механизации монтажных работ при возведении арок методом «поворота» . . .

4.3.5.4 Обоснование средств механизации монтажных работ при возведении арок методом «надвига» . . .

4.3.5.5 Обоснование средств механизации метода «надвига» арочного покрытия ледового дворца «Уфа-арена» . . . . . . . . . . . . . . .

4.3.5.6 Расчет «оттяжек», обеспечивающих устойчивость арок в монтажном блоке при монтаже их методом «надвига» . . . . . . . . . . . . . . . .

4.3.5.7 Расчет такелажного оборудования для «надвига» монтажного блока арок. . . . . . . . . . . .

4.4 Организация строительных потоков при возведении арочных покрытий. . . . . . . . . . . . . . .

4.5 Выводы по разделу «Монтаж арочных покрытий» . . . .

4.6 Контрольные вопросы по разделу «Монтаж арочных покрытий» . . . . . . . . . . . . . . . . .

4.7Литература. . . . . . . . . . . . . . . .

5. Монтаж структурных плит. . . . . . . . . . . . . . .

5.1 Конструктивные схемы структурных плит и узлов решетки структуры. . . . . . . . . . . . . . . . . . .

5.1.1 Структурная плита конструкции ЦНИИСК. . . . .

5.1.2 Структурная плита «Кисловодск» . . . . . . . .

5.1.3 Структурная плита «Берлин» . . . . . . . . .

5.2 Технико-экономические показатели структурных плит покрытия. . . . . . . . . . . . . . . . . . . .

5.3 Классификация методов монтажа структурных плит. . . .

5.3.1 Поэлементный монтаж. . . . . . . . . . .

5.3.2 Монтаж структурных плит укрупненными блоками. .

5.3.3 Обоснование комплекта средств механизации для укрупненного метода монтажа. . . . . . . . . . .

5.3.4 Конвейерный метод монтажа структурных плит. . .

5.3.5 Обоснование средств механизации при монтаже «структур» конвейерным методом. . . . . . . . . .

5.3.5.1 Обоснование потребности в средствах механицации. . . . . . . . . . . . . . . . . . .

5.3.6 Расчет темпоритма работы конвейерной линии. . . .

5.3.7 Методика технико-экономического обоснования монтажа структурных плит конвейерным методом. . . . . . .

5.4 Выводы по разделу «Монтаж структурных плит покрытия» . .

5.5 Контрольные вопросы к разделу «Монтаж структурных плит покрытия» . . . . . . . . . . . . . . . . . . .

5.6 Литература. . . . . . . . . . . . . . . . . .

6. Монтаж купольных покрытий. . . . . . . . . . . . . .

6.1 Конструктивные схемы купольных покрытий. . . . . . .

6.2 Узлы сопряжения купольной оболочки с опорными контурами.

6.3 Классификация методов монтажа купольных покрытий. . .

6.3.1 Технология поэлементного монтажа купольного покрытия. . . . . . . . . . . . . . . . . .

6.3.2 Конструктивная характеристика цирка с купольным покрытием пролетом 64,5 м. . . . . . . . . . . .

6.3.3 Технология монтажа купольного покрытия цирка в

г. Москве. . . . . . . . . . . . . . . . .

6.4 Обоснование средств механизации при монтаже купольных покрытий. . . . . . . . . . . . . . . . . . . . . .

6.4.1 Обоснование средств механизации для поэлементного монтажа купола. . . . . . . . . . . . . . . . .

6.4.2 Обоснование средств механизации при монтаже купольного покрытия крупноблочным методом. . . . .

6.5 Выводы по разделу «Монтаж купольных покрытий» . . . .

      Контрольные вопросы к разделу «Монтаж купольных

6.7 Литература. . . . . . . . . . . . . . . . . .

7. Монтаж вантовых покрытий. . . . . . . . . . . . . .

7.1 Конструктивные схемы вантовых покрытий. . . . . .

7.2 Технология возведения вантовых покрытий. . . . . . .

7.2.1 Технология устройства опалубки опорного контура. .

7.2.2 Технология бетонирования опорного контура. . . .

7.2.3 Методика расчета технологических параметров бетонирования опорного контура. . . . . . . . .

7.3 Технология монтажа вантовой системы. . . . . . . .

7.3.1 Монтаж «прототипа» вантовой системы. . . . . .

7.3.2 Изготовление вант. . . . . . . . . . . .

7.3.3 Монтаж вантовой системы. . . . . . . . . .

7.3.4 Монтаж плит покрытия. . . . . . . . . . .

7.4 Выводы по разделу «Монтаж вантовых покрытий» . . . .

7.5 Контрольные вопросы к разделу «Монтаж вантовых

покрытий» . . . . . . . . . . . . . . . . . . .

7.6 Литература. . . . . . . . . . . . . . . . . .

8. Мембранные покрытия. . . . . . . . . . . . . . . .

8.1 Конструктивные характеристики мембранных покрытий. .

8.2 Принципы методов монтажа мембранных покрытий. . . .

8.3 Возведение мембранного покрытия пролетом 228 м Олимпийского стадиона в г. Москве. . . . . . . . . .

8.3.1 Организация строительства мембранного покрытия. .

8.4 Технология монтажных работ при устройстве мембранного покрытия

8.4.1 Технология возведения опорного контура. . . .

8.4.2 Технология возведения конструкции мембранного покрытия. . . . . . . . . . . . . . . . .

8.5 Выводы по разделу «Мембранные покрытия» . . . .

8.6 Контрольные вопросы к разделу «Мембранные покрытия» . .

8.7 Литература. . . . . . . . . . . . . . . . . .

9. Монтаж рамных покрытий. . . . . . . . . . . . . .

9.1 Конструктивные схемы рамных покрытий. . . . . . .

9.2 Технология возведения рамных покрытий. . . . . . .

9.3 Выводы по разделу «Монтаж рамных покрытий» . . . .

9.4 Контрольные вопросы к разделу «Монтаж рамных покрытий» .

9.5 Литература. . . . . . . . . . . . . . . . . .

10. Монтаж шатровых покрытий. . . . . . . . . . . . .

10.1 Конструктивная схема шатровых покрытий. . . . . .

10.2 Технология возведения шатровых покрытий. . . . . .

10.3 Выводы по разделу «Монтаж шатровых покрытий» . . .

10.4 Контрольные вопросы к разделу «Монтаж шатровых

покрытий» . . . . . . . . . . . . . . . . . . .

10.5 Литература. . . . . . . . . . . . . . . . .

11. Монтаж тентовых покрытий. . . . . . . . . . . . .

11.1 Конструктивные схемы тентовых покрытий. . . . . .

11.2 Технология монтажа тентовых покрытий. . . . . . .

11.2.1 Раскладка оболочки в монтажной зоне. . . . .

11.2.2 Оснащение краевых зон оболочки контурными элементами и монтаж опорной мачты. . . . . . . .

11.2.3 Монтаж тентовой оболочки. . . . . . . . .

11.2.4 Обоснование средств механизации для монтажа тентового покрытия. . . . . . . . . . . . . .

11.3 Выводы по разделу «Монтаж тентовых покрытий» . . .

11.4 Контрольные вопросы к разделу «Монтаж тентовых

покрытий» . . . . . . . . . . . . . . . . . . .

11.5 Литература. . . . . . . . . . . . . . . . .

ВВЕДЕНИЕ

Большепролетными считаются здания, у которых расстояние между опорами несущих конструкций покрытия составляет более 40м.

Системы, перекрывающие большие пролеты, проектируются чаще всего однопролетными, что вытекает из основного фундаментального требования – отсутствие промежуточных опор.

В промышленном строительстве это, как правило, сборочные цеха судостроительных, авиационных, машиностроительных заводов. В гражданском – выставочные залы, павильоны, концертные залы и спортивные сооружения. Опыт проектирования и строительства большепролетных покрытий показывает, что наиболее сложной задачей их возведения является монтаж конструкций покрытия.

Несущие конструкции покрытий больших пролетов по статической схеме подразделяются на балочные, рамные, арочные, структурные, купольные, складчатые, висячие, комбинированные и сетчатые. Все они выполняются, главным образом, из стали и алюминия, железобетона, дерева, пластмасс и воздухонепроницаемых тканей. Возможности и область применения пространственных конструкций обусловлены их конструктивной схемой и величиной пролета.

При выборе типа здания и сооружения важным, зачастую решающим фактором, является метод их возведения. Это обусловлено тем, что существующие средства механизации и традиционные методы монтажа не всегда пригодны для большепролетных конструкций. Поэтому затраты на строительство таких зданий в значительной мере превышают затраты на возведение типовых традиционных конструкций. Теория и практика строительства большепролетных сооружений у нас в стране и за рубежом показали, что наибольший резерв повышения эффективности такого строительства в современных условиях заключен в совершенствовании организационно-технологических аспектов строительства, монтажной технологичности и архитектурно-конструктивных решений. Под монтажной технологичностью понимается свойство конструкции, определяющее соответствие ее требованиям технологии монтажных работ и позволяющее наиболее просто, с наименьшими затратами труда, времени и средств производства, осуществить их изготовление, транспортировку и монтаж при соблюдении требований безопасности и качества продукции. Примером такого комплексного инженерно-обоснованного организационно-технологического решения монтажа большепролетного здания в «Пособии» является приведенный опыт возведения юбилейного объекта в Башкортостане – ледового дворца «Уфа-арена». Уникальность монтажа арочного покрытия сооружения заключается в предложенной ОАО «Востокнефтезаводмонтаж» оригинальной организации сборочно-монтажных процессов, выполняемых не на земле, как обычно, а на проектных отметках (20м) с последующим «надвигом» полностью укрупненного блока весом более 500т с помощью системы гидродомкратов. Такой метод монтажа, впервые разработанный ОАО ВНЗМ, обеспечил «оптимальные» сроки возведения юбилейного объекта и, главное, позволил имеющимся у подрядчика комплекта тяжелой строительной техники осуществить сборку и монтаж массивных конструкций непосредственно в проектном положении. Использование альтернативного, в этом случае, как вариант, традиционного метода «надвига» потребовал бы привлечения более мощных монтажных кранов (СКГ-160), что в условиях сложившейся инфраструктуры микрорайона города, где строился ледовый дворец, было практически неосуществимо.

Характеристика большепролетных конструкций как совокупность их конструктивных параметров, материала изготовления и габаритных размеров рассматривается ниже согласно следующего типажа этих конструкций, а именно:

Балочные;

Арочные;

Структурные плиты;

Вантовые системы;

Мембранные покрытия;

Тентовые сооружения;

Шатровые покрытия.

1 Классификация большепролетных конструкций

Классификация большепролетных конструкций по типам конструктивных схем покрытия зданий и сооружений приведена в табл. 1, содержащей основные сведения, характеризующие область их применения и диапазон пролетов, перекрываемых этими системами. Краткая аннотация по каждому из типов большепролетных конструкций, дифференцированных по величине пролетов, позволяет систематизировать присущие им преимущества и недостатки и, в конечном итоге, определить возможный «рейтинг» того или иного решения «кровельного» покрытия проектируемого здания.

Балочные покрытия - состоят из главных поперечных пространственных и плоских промежуточных балок конструкций – прогонов. Характеризуются отсутствием распора от конструкции покрытия, что существенно «упрощает» характер работы несущих элементов каркаса и фундаментов. Главный недостаток – большой расход стали и значительная строительная высота самих пролетных конструкций. Поэтому они могут применяться в пролетах до 100 м и, главным образом, в производствах, характеризующихся необходимостью применения тяжелых мостовых кранов.

Рамные покрытия характеризуются по сравнению с балочными меньшей массой, большей жесткостью и меньшей строительной высотой. Могут применяться в зданиях пролетом до 120 м.

Арочные покрытия по статической схеме подразделяются на 2 х, 3 х и бесшарнирные. Они имеют меньшую массу чем балочные и рамные, но более

Возможности применения пространственных конструкций

Таблица 1

Тип конструкции

Пролеты, м

Материал

пластмасса

1- плиты; 2 – контрфорсы опор; 3 – арки покрытия; L– пролет;b– шаг конструкции в здании.

1 – колонны; 2 – фермы; 3 – плиты; L– пролет;b– шаг конструкции в здании.

    Структуры размером 18х12; 24х12; 30х30; 36х30

1 – колонны; 2 – плиты структуры; L – длина плит; b – ширина плит.

1 – колонны; 2 – складки; 3 – тип профиля; L– длина складки;b– шаг (пролет) складки.

    Ребристо-кольцевой купол

1 – опорное кольцо; 2 – верхнее опорное кольцо;

3 – ребра жесткости; 4 – Кольцевые ребра жесткости;

B– пролет купола;H– высота купола.

    Вантовые покрытия с арками

1 – арки; 2 – ванты; 3 – оттяжки; 4 – анкер оттяжки;

L– длина здания;b– пролет здания, определяемый пролетом арок.

    Гиперболические параболоиды

1 – опорные колонны; 2 – железобетонная оболочка.

    Вантовые с оттяжными

1 – клоны; 2 – ванты; 3 – стойки-распорки; 4 – оттяжки; 5 – анкерные устои оттяжек.

    Ребристые купола

1 – опорный контур; 2 – опорное верхнее кольцо; 3 – продольные ребра жесткости.

    Пневматические конструкции

Размеры оболочек: 36х25, 42х36, 48х36, 72х48

L– длина оболочки;B– пролет оболочки.

    Тентовые покрытия

1 – мачта, поддерживающая оболочку; 2 – оттяжки мачты; 3 – анкеры оттяжек мачты; 4 – оттяжки тентовой оболочки; 5 – тентовая оболочка; 6 – анкер натяжения тентовой оболочки.

    Мембранные покрытия

1 – колоны; 2 – опорный контур; 3 – фермы стабилизирующие; 4 – мембраны из стального листа; B– пролет мембранной оболочки;H– высота здания.

    Цилиндрические оболочки

1 – колонны; 2 - контурный элемент из ж/б балок: 3 – контурный элемент – затяжка; 4 – оболочка из сборных плит; L – длина здания; b – пролет оболочки.

    Висячие вантовые покрытия

1 – колонны каркаса; 2 – опорный контур; 3 – внутренне опорное кольцо; 4 – вантовая система; B– пролет здания;H– высота здания

Условные обозначения:

Область рационального применения;

Область возможного применения;

Наиболее применяемый материал изготовляемой конструкции;

Возможный вариант материала изготовления конструкции.

сложны в изготовлении и монтаже. Качественная характеристика арок в основном зависит от их высоты и очертания. Оптимальная высота арки – 1/4 …1/6 пролета. Наилучшее очертание, если геометрическая ось совпадает с кривой давления.

Сечения арок делают решетчатыми или сплошными высотой соответственно 1/30 … 1/60 и 1/50 … 1/80 пролета. Арочные покрытия используются при величине пролета до 200 м.

Пространственные покрытия характерны тем, что оси всех несущих элементов не лежат в одной плоскости. Они подразделяются на: купола и оболочки, характеризующиеся как трехмерные несущие конструкции, отличающиеся пространственной работой и состоящие из поверхностей одинарной или двойной кривизны. Под оболочкой понимается структура, форма которой представляет криволинейную поверхность с достаточно малой ее толщиной по сравнению с самой поверхностью. Основное отличие оболочек от сводов состоит в том, что в них возникают и растягивающие и сжимающие усилия.

Ребристые купола состоят из системы плоских ферм, связанных понизу и поверху опорными кольцами. Верхние пояса ферм образуют поверхность вращения (сферическую, параболическую). Такой купол является распорной системой, в которой нижнее кольцо подвергается растяжению, а верхнее – сжатию.

Ребристо-кольцевые купола образуются ребристыми полуарками, опирающимися на нижнее кольцо. Ребра по высоте связывают горизонтальными кольцевыми балками. По несущим ребрам могут быть уложены криволинейные плиты из легкого бетона или стальной настил. Опорное кольцо, как правило, железобетонное и преднапряженное.

Ребристо-кольцевые купола с решетчатыми связями проектируются, главным образом, из металлоконструкций. Введение в систему ребристо-кольцевых элементов диагональных связей позволяет более рационально распределить сжато-растянутые и изгибающие усилия, что обеспечивает малый расход металла и стоимость самого купольного покрытия.

Структурные покрытия применяются для перекрытия больших пролетов промышленного и гражданского назначения. Это пространственно - стержневые системы, отличающиеся тем, что при их формировании появляется возможность применения многократно повторяющихся элементов. Наибольшее распространение получили структуры типа: ЦНИИСК, «Кисловодск», «Берлин», «МАРХИ» и др.

Висячие покрытия (ванты и мембраны ) – основными несущими элементами являются гибкие стальные канаты или тонкостенные листовые металлические конструкции ортогонально растянутые на опорные контуры.

Ванты и мембраны существенно отличаются от традиционных конструкций. К их достоинствам относится: растянутые элементы эффективно используются по всей площади сечения; обеспечивается малая масса несущей конструкции, возведение этих конструкций не требует устройства лесов и подмостей висячих покрытий. Чем больше пролет здания, тем более экономична конструкция покрытия. Однако им присуще и свои недостатки:

    Повышенная деформативность покрытия. Для обеспечения жесткости покрытия приходится принимать дополнительные конструктивные решения за счет введения стабилизирующих элементов;

    Необходимость устраивать специальную опорную конструкцию в виде опорного контура для восприятия «распора» от вант или мембраны, что увеличивает стоимость покрытия.

Общие положения

Большепролетными считаются здания, у которых расстояние между опорами (несущих конструкций) покрытий составляет более 40 м.

К таким зданиям относятся:

− цехи заводов тяжелого машиностроения;

− сборочные цехи судостроительных, машиностроительных заводов, ангары и т.п.;

− театры, выставочные залы, крытые стадионы, вокзалы, крытые стоянки автотранспорта и гаражи.

1. Особенности большепролетных зданий:

а) большие размеры зданий в плане, превосходящие радиус действия монтажных кранов;

б) специальные способы монтажа элементов покрытия;

в) наличие в отдельных случаях под покрытием больших частей и конструкций здания, этажерок, трибун крытых стадионов, фундаментов под оборудование, громоздкого оборудования и т.п.

2. Методы возведения большепролетных зданий

Применяются следующие методы:

а) открытый;

б) закрытый;

в) комбинированный.

2.1. Открытый метод заключается в том, что сначала возводят все конструкции здания, находящиеся под покрытием, т.е.:

− этажерки (одно – или многоярусное сооружение под покрытием промзданий для технологического оборудования, контор и т.п.);

− конструкции для размещения зрителей (в театрах, цирках, крытых стадионах и т.п.);

− фундаменты под оборудование;

− иногда громоздкое технологическое оборудование.

Затем устраивают покрытие.

2.2. Закрытый метод состоит в том, что сначала устраняют покрытие, а потом возводят все конструкции, находящиеся под ним (рис. 18).

Рис. 18. Схема возведения спортзала (поперечный разрез):

1 – вертикальные несущие элементы; 2 – мембранное покрытие; 3 – встроенные помещения с трибунами; 4 – передвижной стреловой кран

2.3. Комбинированный метод состоит в том, что на отдельных участках (захватках) на каждом выполняют сначала все конструкции, находящиеся ниже покрытия, а потом устраивают покрытие (рис. 19).


Рис. 19. Фрагмент стройгенплана:

1 – смонтированное покрытие здания; 2 – этажерка; 3 – фундаменты под оборудование; 4 – подкрановые пути; 5 – башенный кран

Применение методов возведения большепролетных зданий зависит от следующих основных факторов:

− от возможности расположения грузоподъемных кранов в плане по отношению к возводимому зданию (вне здания или в плане);

− от наличия и возможности применения кранбалок (мостовых кранов) для возведения внутренних частей конструкций здания;

− от возможности устройства покрытий при наличии выполненных частей здания и конструкций, находящихся под покрытием.

При возведении большепролетных зданий особую трудность составляет устройство покрытий (оболочек, арочных, купольных, вантовых, мембранных).

Технология устройства остальных конструктивных элементов обычно не составляет трудностей. Производство работ по их устройству расмотрено в курсе "Технология строительных процессов".

Рассмотрена в курсе ТСП и не будет рассматриваться в курсе ТВЗ и С и технология устройства балочных покрытий.

3.1.3.1. ТВЗ в виде оболочек

За последние годы разработано и внедрено большое количество тонкостенных пространственных железобетонных конструкций покрытий в виде оболочек, складок, шатров и т.п. Эффективность таких конструкций обусловлена более экономным расходом материалов, меньшим весом и новыми архитектурными качествами. Уже первый опыт эксплуатации таких сооружений позволил обнаружить два основных достоинства пространственных тонкостенных железобетонных покрытий:

− экономичность, являющуюся следствием более полного, по сравнению с плоскостными системами, использования свойств бетона и стали;

− возможность рационального применения железобетона для покрытия больших площадей без промежуточных опор.

Железобетонные оболочки по методу возведения разделяют на монолитные, сборочно-монолитные и сборные. Монолитные оболочки целиком бетонируются на месте строительства на стационарной или передвижной опалубке. Сборно-монолитные оболочки могут состоять из сборных контурных элементов и монолитной скорлупы, бетонируемой на передвижной опалубке, чаще всего подвешиваемой к смонтированным диафрагмам или бортовым элементам. Сборные оболочки собирают из отдельных, заранее изготовленных элементов, которые после установки их на место стыкуются между собой; причем соединения должны обеспечить надежную передачу усилий от одного элемента к другому и работу сборной конструкции как единой пространственной системы.

Сборные оболочки могут быть разделены на следующие элементы: плоские и криволинейные плиты (гладкие или ребристые); диафрагмы и бортовые элементы.

Диафрагмы и бортовые элементы могут быть как железобетонными, так и стальными. Следует отметить, что выбор конструктивных решений оболочек находится в тесной взаимосвязи со способами строительства.

Оболочки двоякой (положительной гауссовой) кривизны , квадратные в плане, образуются из сборных железобетонных ребристых скорлуп и контурных ферм . Геометрическое очертание оболочек двоякой кривизны создает выгодные условия статической работы, так как 80 % площади скорлупы оболочки работает только на сжатие и лишь в угловых зонах имеются растягивающие усилия. Скорлупа оболочки имеет форму многогранника с ромбовидными гранями. Поскольку плиты плоские, квадратные, ромбовидная форма граней достигается замоноличиванием швов между ними. Средние типовые плиты формуют размером 2970×2970 мм, толщиной 25, 30 и 40 мм, с диагональными ребрами высотой 200 мм, а с бортовыми – 80 мм. Контурные и угловые плиты имеют диагональные и бортовые ребра той же высоты, что и средние, а у бортовых ребер, примыкающих к краю оболочки, сделаны утолщения и пазы для выпусков арматуры контурных ферм. Соединение плит между собой осуществляется сваркой выпусков каркасов диагональных ребер и замоноличиванием швов между плитами. В угловых плитах оставлен треугольный вырез, который замоноличивается бетоном.

Контурные элементы оболочки изготавливают в виде цельных ферм или предварительно напряженных раскосных полуферм, стык которых в верхнем поясе выполняется сваркой накладок, а в нижнем – сваркой выпусков стержневой арматуры с последующим их обетонированием. Оболочки целесообразно использовать для покрытия больших площадей без промежуточных опор. Железобетонные оболочки, которым практически можно придать любую форму, способны обогатить архитектурные решения как общественных, так и производственных зданий.



На рис. 20 представлены геометрические схемы сборных железобетонных оболочек, прямоугольных в плане.

Рис. 20. Геометрические схемы оболочек:

а – разрезка плоскостями, параллельными контуру; б – радиально-кольцевая разрезка; в – разрезка на ромбовидные плоские плиты

На рис. 21 представлены геометрические схемы покрытия зданий с прямоугольной сеткой колонн оболочками из цилиндрических панелей.

В зависимости от типа оболочки, размера ее элементов, а также размеров оболочки в плане монтаж осуществляют различными методами, отличающимися в основном наличием или отсутствием монтажных лесов.


Рис. 21. Варианты образования сборных цилиндрических оболочек:

а – из криволинейных ребристых панелей с бортовыми элементами; б – то же с одним бортовым элементом; в – из плоских ребристых или гладких плит, бортовых балок и диафрагм; г – из криволинейных панелей больших размеров, бортовых балок и диафрагм; д – из арок или ферм и сводчатых или плоских ребристых панелей (короткая оболочка)

Рассмотрим пример возведения двухпролетного здания с покрытием из восьми квадратных в плане оболочек двоякой положительной гауссовой кривизны. Габариты элементов конструкций покрытия представлены на рис. 22, а . Здание имеет два пролета, каждый из которых содержит по четыре ячейки размером 36 × 36 м (рис. 22, б ).

Значительный расход металла на опорные леса при монтаже оболочек двоякой кривизны снижает эффективность применения этих прогрессивных конструкций. Поэтому для возведения таких оболочек размером до 36 × 36 м применяют катучие телескопические кондукторы с сетчатыми кружалами (рис. 22, в ).

Рассматриваемое здание является однородным объектом. Монтаж оболочек покрытия включает следующие процессы: 1) установку (перестановку) кондуктора; 2) монтаж контурных ферм и панелей (установку, укладку, выверку, сварку закладных деталей); 3) замоноличивание оболочки (заливку швов).


Рис. 22. Возведение здания с покрытием из сборных оболочек:

а – конструкция оболочки покрытия; б – схема расчленения здания на участки; в – схема работы кондуктора; г – последовательность монтажа элементов покрытия одного участка; д – последовательность возведения покрытия по участкам здания; I–II – номера пролетов; 1 – контурные фермы оболочки, состоящие из двух полуферм; 2 – плита покрытия размером 3×3 м; 3 – колонны здания; 4 – телескопические башни кондуктора; 5 – сетчатые кружала кондуктора; 6 – шарнирные опоры кондуктора для временного крепления элементов контурных ферм; 7 – 17 – последовательность монтажа контурных ферм и плит покрытия.

Поскольку при монтаже покрытия используют катучий кондуктор, перемещаемый лишь после выдерживания раствора и бетона, то за монтажный участок принимается одна ячейка пролета (рис. 22, б ).

Монтаж панелей оболочки начинают с наружных, опирающихся на кондуктор и контурную ферму, затем монтируют остальные панели оболочки (рис. 22, г , д ).

3.1.3.2. Технология возведения зданий с купольными покрытиями

В зависимости от конструктивного решения монтаж куполов выполняют с использованием временной опоры, навесным способом или в целом виде.

Сферические купола возводят кольцевыми ярусами из сборных железобетонных панелей навесным способом. Каждый из кольцевых ярусов после полной сборки обладает статической устойчивостью и несущей способностью и служит основанием для вышележащего яруса. Таким способом монтируют сборные железобетонные купола крытых рынков.

Панели поднимают башенным краном, установленным в центре здания. Временное крепление панелей каждого яруса осуществляют при помощи инвентарного приспособления (рис. 23, б ) в виде стойки с оттяжками и стяжной муфтой. Число таких приспособлений зависит от числа панелей в кольце каждого яруса.

Работы производят с инвентарных подмостей (рис. 23, в ), устраиваемых снаружи купола и перемещаемых по ходу монтажа. Смежные панели соединяют между собой болтами. Швы между панелями заделывают цементным раствором, который сначала укладывают по краям шва, а затем растворонасосом нагнетают в его внутреннюю полость. По верхней кромке панелей собираемого кольца устраивают железобетонный пояс. После того как раствор швов и бетон пояса приобретут требуемую прочность, стойки с оттяжками снимают, а цикл монтажа повторяют на следующем ярусе.

Сборные купола навесным способом монтируют также последовательной сборкой кольцевых поясов при помощи передвижной металлической фермы-шаблона и стоек с подвесками для удерживания сборных плит (рис. 23, г ). Этот способ применяют при монтаже сборных железобетонных куполов цирков.

Для монтажа купола в центре здания устанавливают башенный кран. На башню крана и кольцевой рельсовый путь, расположенный по железобетонному карнизу здания, устанавливают передвижную ферму-шаблон. Башню крана для обеспечения большей жесткости расчаливают четырьмя расчалками. При недостаточном вылете стрелы и грузоподъемности одного крана на кольцевом пути возле здания устанавливают второй кран.

Сборные панели купола монтируют в следующем порядке. Каждую панель в наклонном положении, соответствующем ее проектному положению в покрытии, поднимают башенным краном и устанавливают нижними углами на наклонно приваренные накладки узла, а верхними - на установочные винты фермы-шаблона.


Рис. 23. Возведение зданий с купольными покрытиями:

а – конструкция купола; б – схема временного крепления панелей купола; в – схема крепления подмостей для возведения купола; г – схема монтажа купола при помощи передвижной фермы-шаблона; 1 – нижнее опорное кольцо; 2 – панели; 3 – верхнее опорное кольцо; 4 – стойка инвентарного приспособления; 5 – оттяжка; 6 – стяжная муфта; 7 – монтируемая панель; 8 – смонтированные панели; 9 – подкос с отверстиями для изменения уклона кронштейна подмостей; 10 – стойка для перил; 11 – ригель кронштейна; 12 – проушина для крепления кронштейна к панели; 13 – монтажные стойки; 14 – расчалки стоек; 15 – подвески для удержания плит; 16 – ферма-шаблон; 17 – расчалки крана; 18 – панелевоз

Далее производят выверку верхних кромок закладных деталей верхних углов панели, после чего стропы снимают, панель крепят подвесками к монтажным стойкам и подвески натягивают при помощи стяжных муфт. Затем установочные винты фермы-шаблона опускают на 100 – 150 мм и передвигают ферму-шаблон в новое положение для монтажа смежной панели. После монтажа всех панелей пояса и сварки узлов стыки замоноличивают бетоном.

Следующий пояс купола монтируют после приобретения бетоном стыков нижележащего пояса требуемой прочности. По окончании монтажа верхнего пояса снимают подвески с панелей нижележащего пояса.

В строительстве применяют также метод подъема в целом виде забетонированных на земле покрытий диаметром 62 м при помощи системы домкратов, установленных на колоннах.

3.1.3.3. Технология возведения зданий с вантовыми покрытиями

Наиболее ответственным процессом при возведении таких зданий является устройство покрытия. Состав и последовательность выполнения монтажа вантовых покрытий зависит от их конструктивной схемы. Ведущим и наиболее сложным процессом при этом является монтаж вантовой сети.

Конструкция висячего покрытия с системой вантов состоит из монолитного железобетонного опорного контура; закрепленной на опорном контуре вантовой сети; сборных железобетонных плит, уложенных на вантовой сети.

После проектного натяжения вантовой сети и замоноличивания швов между плитами и вантами оболочка работает как единая монолитная конструкция.

Вантовая сеть состоит из системы продольных и поперечных вант, расположенных по главным направлениям поверхности оболочки под прямым углом друг к другу. В опорном контуре ванты закрепляют при помощи анкеров, состоящих из гильз и клиньев, с помощью которых обжимают концы каждого ванта.

Вантовую сеть оболочки монтируют в следующей последовательности. Каждую ванту с помощью крана устанавливают на место в два приема. Сначала с помощью крана один ее конец, снятый с барабана траверсой, подают к месту установки. Анкер ванты протягивают сквозь закладную деталь в опорном контуре, потом закрепляют и раскатывают оставшуюся на барабане часть ванты. После этого двумя кранами поднимают ванту до отметки опорного контура, одновременно подтягивая лебедкой второй анкер к опорному контуру (рис. 24, а ). Анкер протягивают через закладную деталь в опорном контуре и закрепляют гайкой с шайбой. Ванты поднимают вместе со специальными подвесками и контрольными грузами для последующей геодезической выверки.


Рис. 24. Возведение здания с вантовым покрытием:

а – схема подъема рабочей ванты; б – схема взаимоперпендикулярного симметричного натяжения вант; в – схема выверки продольных вант; г – детали окончательного крепления вант; 1 – электролебедка; 2 – оттяжка; 3 – монолитный железобетонный опорный контур; 4 – поднимаемая ванта; 5 – траверса; 6 – нивелир

По окончании монтажа продольных вант и предварительного натяжения их на усилие 29,420 – 49,033 кН (3 – 5 тс) выполняют геодезическую поверку их положения путем определения координат точек вантовой сети. Заранее составляют таблицы, в которых для каждой ванты указывают расстояние точек крепления контрольных грузов на гильзе анкера от начала отсчета. В этих точках на проволоке подвешивают контрольные грузы массой 500 кг. Длины подвесок различны и подсчитаны заранее.

При правильном провисании рабочих вант контрольные грузы (риски на них) должны находиться на одной отметке.

После выверки положения продольных вант устанавливают поперечные. Места их пересечения с рабочими вантами закрепляют постоянными сжимами. Одновременно с этим устанавливают временные оттяжки, закрепляющие положение мест пересечения вант. Затем повторно проверяют соответствие проекту поверхности вантовой сети. После этого вантовую сеть натягивают в три этапа при помощи 100-тонных гидравлических домкратов и траверс, присоединенных к гильзоклиновым анкерам.

Последовательность натяжения определяют из условий натяжения вант группами, одновременного натяжения групп в перпендикулярном направлении, симметричности натяжения групп относительно оси здания.

По окончании второго этапа натяжения, т.е. при достижении усилий, определенных проектом, на вантовую сеть укладывают сборные железобетонные плиты в направлении от нижней отметки к верхней. При этом на плитах до их подъема устанавливают опалубку для замоноличивания швов.

3.1.3.4. Технология возведения зданий с мембранными покрытиями

К металлическим висячим покрытиям относят тонколистовые мембранные, совмещающие несущие и ограждающие функции.

Достоинствами мембранных покрытий являются их высокая технологичность изготовления и монтажа, а также характер работы покрытия на двухосное растяжение, что позволяет перекрывать 200-метровые пролеты стальной мембраной толщиной всего 2 мм.

Висячие растянутые элементы обычно закрепляют за жесткие опорные конструкции, которые могут быть в виде замкнутого контура (кольца, овала, прямоугольника), опирающегося на колонны.

Рассмотрим технологию монтажа мембранного покрытия на примере покрытия спорткомплекса “Олимпийский” в Москве.

Спортивный комплекс "Олимпийский" решен в виде пространственной конструкции эллиптической формы 183×224 м. По наружному контуру эллипса с шагом 20 м расположены 32 стальные решетчатые колонны, жестко связанные с наружным опорным кольцом (сечением 5×1,75 м). К наружному кольцу подвешено мембранное покрытие – оболочка со стрелой провисания 12 м. Покрытие имеет 64 радиально расположенные с шагом по наружному контуру 10 м стабилизирующие фермы высотой 2,5 м, соединенные кольцевыми элементами – прогонами. Лепестки мембраны крепили между собой и к радиальным элементам "постели" высокопрочными болтами. В центре мембрана замыкается внутренним металлическим кольцом эллиптической формы размером 24×30 м. Мембранное покрытие крепилось к наружному и внутреннему кольцам высокопрочными болтами и сваркой.

Монтаж элементов мембранного покрытия производили крупными пространственными блоками башенным краном БК – 1000 и двумя шеврами-установщиками (грузоподъемностью 50 т), перемещавшимися по наружному опорному кольцу. По длинной оси на двух стендах производилась сборка одновременно двух блоков.

Все 64 стабилизирующие фермы покрытия были объёдинены попарно в 32 блока девяти типоразмеров. Один такой блок состоял из двух радиальных стабилизирующих ферм, прогонов по верхним и нижним поясам, вертикальных и горизонтальных связей. В блок были вмонтированы трубопроводы систем вентиляции и кондиционирования. Масса блоков стабилизирующих ферм в сборе достигала 43 т.

Поднимали блоки покрытия с помощью траверсы-распорки, которая воспринимала усилие распора от стабилизирующих ферм (рис. 25).

Перед подъемом блоков ферм выполняли предварительное напряжение верхнего пояса каждой фермы на усилие около 1300 кН (210 МПа) и закрепляли их при этом усилии к опорным кольцам покрытия.

Установка преднапряженных блоков производилась поэтапно путем симметричной установки нескольких блоков по радиусам одного диаметра. После монтажа восьми симметрично установленных блоков вместе с траверсами-распорками производилось одновременное их раскружаливание с передачей усилий распора равномерно наружному и внутреннему кольцам.

Блок стабилизирующих ферм поднимали краном БК – 1000 и шевром-установщиком примерно на 1 м выше наружного кольца. Затем шевр перемещали к месту установки данного блока. Расстроповку блока производили только после его полного проектного закрепления на внутреннем и наружном кольцах.

Мембранная оболочка массой 1569 т состояла из 64 секторных лепестков. Лепестки мембраны монтировали после окончания монтажа системы стабилизации и закрепляли высокопрочными болтами диаметром 24 мм.

Полотнища мембраны поступали на монтажную площадку в виде рулонов. Стеллажи для раскатывания располагались на месте сборки стабилизирующих ферм.


Рис. 25. Схема монтажа покрытия укрупненными блоками:

а – план; б – разрез; 1 – шевр-установщик; 2 – стенд для укрупнительной сборки блоков; 3 – траверса-распорка для подъема блока и предварительного напряжения верхних поясов ферм с помощью рычажного устройства (5); 4 – укрупненный блок; 6 – монтажный кран БК – 1000; 7 – центральное опорное кольцо; 8 – центральная временная опора; I – V – последовательность монтажа блоков и демонтажа траверс-распорок

Монтаж лепестков выполняли в последовательности установки стабилизирующих ферм. Натяжение лепестков мембраны осуществляли двумя гидравлическими домкратами усилием по 250 кН каждый.

Параллельно с укладкой и натяжением лепестков мембраны вели сверление отверстий и установку высокопрочных болтов (97 тыс. отверстий диаметром 27 мм). После сборки и проектного закрепления всех элементов покрытия производилось его раскружаливание, т.е. освобождение центральной опоры и плавное включение в работу всей пространственной конструкции.

Большепролетные конструкции играют значительную роль в мировой архитектуре. И заложено это ещё в давние времена, когда собственно и появилось это особое направление архитектурного проектирования.

Идея и реализация большепролетных проектов неразрывно связана с основным стремлением не только строителя и архитектора, но и всего человечества в целом - стремлением покорения пространства. Именно поэтому, начиная со 125 года н. э., когда появилось первое известное в истории большепролетное строение, Пантеон Рима (диаметр основания - 43 м), и заканчивая творениями современных архитекторов, большепролетные конструкции пользуются особой популярностью.

История большепролетных конструкций

Как уже говорилось выше - первым был Пантеон в Риме построенный в 125 году н. э. Позднее появились и другие величественные строения с большепролетными купольными элементами. Ярким примером можно считать храм Святой Софии построенный в Константинополе в 537 году н. э. Диаметр купола составляет 32 метра, а сам он придаёт всему сооружению не только величественность, но и удивительную красоту, которой и по сей день восхищаются и туристы, и архитекторы.

В те и более поздние времена из камня невозможно было построить легкие сооружения. Поэтому купольные строения характеризовались большой массивностью а их строительство требовало серьёзных временных затрат - до ста и более лет.

Позже, для обустройства перекрытий больших пролетов начали использоваться и деревянные конструкции. Здесь яркий примером является достижение отечественной архитектуры - бывший Манеж в Москве был построен в 1812 году и имел в своей конструкции деревянные пролеты длиной 30 м.

XVIII-XIX столетия характеризуются развитием черной металлургии, что дало новые и более прочные материалы для строительства - сталь и чугун. Это ознаменовало появление во второй половине 19-го столетия большепролетных стальных конструкций, получивших большое применение в российской и мировой архитектуре.

Следующим строительным материалом, существенно расширившим возможности архитекторов, стали железобетонные конструкции. Благодаря появлению и совершенствованию ЖБК мировая архитектура 20-го столетия пополнилась тонкостенными пространственными конструкциями. Параллельно, во второй половине ХХ столетия, стали широко использоваться висячие покрытия, стержневые и пневматические системы.

Во второй половине ХХ столетия появилась и клееная древесина. Развитие этой технологии позволило «вернуть к жизни» деревянные большепролетные конструкции, достичь особых показателей легкости и невесомости, завоевать пространство, не идя при этом на компромисс с прочностью и надежностью.

Большепролетные конструкции в современном мире

Как показывает история - логика развития большепролетных конструктивных систем была направлена на повышение качества и надежности строительства, а также архитектурной ценности строения. Применение данного типа конструкций позволило в наибольшей мере использовать весь потенциал несущих свойств материала, создать благодаря этому легкие, надежные и экономичные перекрытия. Всё это особо важно для современного архитектора, когда на первый план в современном строительстве выдвинулось снижение массы конструкций и сооружений.

Но что же представляют собой большепролетные конструкции? Здесь мнения экспертов расходятся. Единого определения нет. По одной из версий - это любая конструкция с длиной пролета более 36 м. По другой - конструкции с безопорным покрытием длиной более 60 м, хотя они уже относятся к категории уникальных. К последним относятся и строения с длиной пролета больше ста метров.

Но в любом случае, независимо от определения, современная архитектура однозначна в том, что большепролетные строения являются сложными объектами. А это означает и высокий уровень ответственности архитектора, необходимость в принятии дополнительных мер безопасности на каждом из этапов - архитектурное проектирование, строительство, эксплуатация.

Важным моментом является выбор строительного материала - дерева, ЖБК или стали. Помимо этих традиционных материалов используются и специальные ткани, тросы и углепластик. Выбор материала зависит от задач стоящих перед архитектором и специфики строительства. Рассмотрим основные материалы используемые в современном большепролетном строительстве.

Перспективы большепролетного строительства

Учитывая историю мировой архитектуры и неизбежное стремление человека к завоеванию пространства и созданию совершенных архитектурных форм, можно смело прогнозировать устойчивый рост внимания к большепролетным конструкциям. Что касается материалов, то помимо современных высокотехнологичных решений, всё большее внимание будет уделяться КДК, представляющим собой уникальный синтез традиционного материала и современных высоких технологий.

Что же касается России, то, учитывая темпы развития экономики и не удовлетворенную потребность в объектах различного назначения, в т. ч. торговой и спортивной инфраструктуры, объёмы строительства большепролетных здания и сооружений будут постоянно увеличиваться. И здесь всё большую роль будут играть уникальные конструкторские решения, качество материалов и использование инновационных технологий.

Но не забудем и об экономической составляющей. Именно она стоит и будет стоять во главе угла, и именно сквозь неё будет рассматриваться эффективность того или иного материала, технологии и конструкторского решения. И в этой связи опять хочется вспомнить про клееные деревянные конструкции. Им, по мнению многих экспертов, принадлежит будущее большепролетного строительства.

Атриум одного из американских отелей, принадлежащих «Gaylord Hotels

будущее проистекает из настоящего
и определяется той дорогой, которой мы сегодня отдаём своё предпочтение

Большепролетные светопрозрачные конструкции становятся неотъемлемой частью городской архитектуры ХХI века. Лучшие зодчие сегодня все чаще создают удивительные комплексы зданий, центром притяжения в которых, неким пространственным ядром, являются большие атриумные пространства – объемные, наполненные светом и комфортом, хорошо защищенные от негативных внешних воздействий и накрытые надежными светопрозрачными покрытиями.
Дальнейшее активное развитие таких сооружений, вероятно, способно в недалеком будущем не только максимально расширить комфортное и безопасное пространство среды обитания человека, но также позволит в перспективе изменить облик наших городов и улучшить их сегодняшнее состояние.

Зодчество эпохи глобализации

Во все времена своей истории люди стремились оградить и защитить себя от многочисленных неблагоприятных и опасных воздействий со стороны среды своего обитания. Жара и холод, дождь и ветер, хищные животные и дикие люди всегда составляли известную проблему для спокойной жизни человека. Поэтому издревле наши предки начали строить для себя укрытия, которые, создавая защищенную от внешних воздействий искусственную среду, привносили в их жизнь больше желанного комфорта и безопасности. А возникшая архитектура, как удивительный и превосходный инструмент этих созидательных действий человека, с самого своего зарождения и на всех этапах развития, старалась максимально использовать имеющиеся технические возможности и существующие эстетические воззрения в обществе для лучшего удовлетворения этих важных человеческих потребностей: и в комфорте, и в безопасности.

Сегодня наступила эпоха невиданного развития технологий, и в строительной сфере это сделало возможным реализацию практически любых, самых смелых архитектурных идей. В связи с этим, основными факторами, ограничивающими воплощение в жизнь всех значимых проектов современных архитекторов, сегодня чаще является уже не отсутствие технических возможностей для строительства большого и сложного объекта, но лишь некоторые наши субъективные представления о нем, такие как: недостаточная польза будущего сооружения, его малая востребованность и низкая рентабельность, либо слишком продолжительное время будущего строительства и высокая цена реализации. Одновременно, с начинающимся бумом внедрения во всем мире принципов «устойчивого развития» и «зеленого строительства», наличие фактора экоустойчивости зданий также приобретает для их строительства всё больший вес.

С открывшимися широкими техническими возможностями для развития архитектуры XXI века, современные зодчие в своей работе, думается, должны начинать в большей мере учитывать то существенное воздействие, которое оказывают их проекты на развитие городской среды. Очевидно, что современные мегаполисы, став заложниками прошлого пути своего развития, и продолжающегося подхода к их застройке, постепенно все больше превращаются в многофакторную проблему для спокойствия и безопасности своих жителей.

Вступив в эпоху глобализации, наш мир сильно изменился за последние годы, и сегодня уже вряд ли можно найти разумные оправдания для продолжающегося формирования скученного проживания людей в отдельных точках пространства. Наше общество начинает понимать губительность этого процесса, но городская архитектура, к сожалению, все еще продолжает идти по пути создания высотных проектов и уплотнения городской застройки, провоцируя тем самым ещё большую концентрацию населения в отдельных точках уже и так излишне перенаселённого пространства.

Вместе с тем, обладая современными технологиями и используя свое колоссальное воздействие на жизнь общества, архитектура ХХI века может не только максимально расширить комфортное и безопасное пространство среды обитания человека, но также способна и должна попытаться шаг за шагом кардинально изменить облик наших городов и улучшить их сегодняшнее состояние. Кроме того, Архитектура, как непревзойденная повелительница пространства, времени и воображения многих людей, обязательно будет всё активнее способствовать возникновению принципиально новых экогородов и экопоселений.

Город под куполом

Мечта о светопрозрачных покрытиях, защищающих улицы и городские кварталы от дождя и снега, зародилась у людей очень давно. Но только с приходом промышленной революции, принесшей широкие технические и финансовые возможности, реализация подобных проектов становится осуществима. Лишь за период второй половины ХIХ века, большие крытые стеклом пассажи-галереи с рядами дорогих магазинов и уютных кафе появились в большинстве главных городов Европы и Америки. А одной из самых первых заметных жемчужин, того периода развития больших остекленных атриумных пространств является знаменитая Галерея Виктора Эммануила II в Милане, открытая для посетителей ещё в 1877 году.

Рис.2. Галерея Виктора Эммануила II в Милане.

Так как прогресс остановить невозможно, то активно участвовать в нем, а не оставаться на задворках истории – задача всех великих стран. Именно поэтому, со второй половины ХХ века строительная наука в СССР, США и некоторых других странах уже серьезно работала над возможностью обеспечить защиту своих городов большими светопрозрачными куполами от: нежелательных явлений погоды, негативных особенностей местного климата, излишнего уровня солнечного излучения и других, неблагоприятных для человека воздействий внешней среды. За последние годы к списку факторов стимулирующих дальнейшие исследования в этом направлении, можно добавить: быстрые и непредсказуемые изменения климата на планете, угрожающее увеличение загрязнения окружающей среды, возрастающие угрозы экстремизма, а также желание людей снизить чрезвычайно высокую энергозатратность жизнедеятельности своих городов.

Сегодня создание большепролетных светопрозрачных защитных сооружений (далее БСЗС), в которых много естественного света и комфорта, активизировалось как никогда ранее. Появляются новые идеи и создаются разнообразные уникальные проекты - такие, например, как «Купол над Хьюстоном» - , а некоторые из этих удивительных проектов уже реализуются. Так, в Астане, при помощи английских инженеров и турецких строителей, построен 100-метровый (без учета высоты шпиля) светопрозрачный шатер, в котором разместился самый большой и презентабельный в Казахстане торгово-развлекательный центр.

Еще более удивительное и грандиозное сооружение создали в Германии - это центр водных развлечений «Тропические острова» , который имеет внутренний объем около 5,5 млн. куб. м и по праву является на сегодня самой большой по этому показателю светопрозрачной постройкой в мире.


Рис.3-5. Центр водных развлечений «Tropical Islands» в Германии

Важным этапом на пути развития объемных светопрозрачных сооружений явилось научное обоснование возможности их ощутимой эффективности - и в экономичности энергопотребления, и в значительном сокращении теплопотерь, при одновременном существенном расширении вновь создаваемого удобного и востребованного общественного пространства.

Заслуга в этом обосновании принадлежит английским и американским архитекторам и ученым, но, в первую очередь, можно выделить работы Терри Фаррелла и Рольфа Лебенса, которые на границе 70-80-х годов ХХ века создали концепцию «буферного мышления». Результатом этой концепции стало активное внедрение в мировую архитектурную практику "буферного эффекта" или "принципа двойного ограждения".

При исследовании вопроса, возможности создания эффективных больших атриумных пространств, были выделены согревающий, охлаждающий и трансформируемый типы атриумов. С той поры прошло лишь немногим более 30 лет, но даже за этот небольшой период времени современные атриумные пространства завоевали весь цивилизованный архитектурный мир (фото американских атриумов, приведённые в этой статье – малая толика имеющегося множества и многообразия построенных за эти годы атриумных пространств). К сожалению, современная Россия, в этом смысле, пока не имеет больших достижений.

Соглашаясь с имеющимися доводами специалистов, по целесообразности применения в современной архитектуре больших атриумных пространств, и не пытаясь оспаривать их выводы, автор статьи далее предлагает рассмотреть возможность того, как, с помощью многопоясных тросовых конструкций, создавать (перекрывать) такие пространства дешевле и надёжнее, а также особо не ограничиваться размерами атриумов, внедрив новую технологию перекрытия больших пролетов. Думается, что в условиях России, даже лишь создание самого простого второго ограждения (буферного пространства) вокруг городских кварталов позволит благоразумно использовать те многочисленные теплопотери накрываемых зданий, которые не будут безвозвратно растворятся в окружающем пространстве, а обеспечат обогрев образовавшихся атриумных пространств. Только за счет качественного светопрозрачного защитного покрытия, температура в таких атриумных пространствах в зимний период может быть на 10-15 градусов выше уличной.

В летний период, кроме разумного регулируемого частичного затенения внутреннего пространства, от излишнего солнечного излучения и перегрева, можно предусмотреть раскрытие вентиляционных проемов в светопрозрачном покрытии, а так же осуществлять другие - известные и эффективные методы создания комфортного микроклимата внутри всего светопрозрачного комплекса. Очевидно, что создание комфортного и стабильного микроклимата в одном большом замкнутом пространстве будет осуществить намного проще и дешевле, чем обеспечить такие же комфортные условия одновременно в тысячах небольших помещений.
Сама природа объемных светопрозрачных сооружений располагает к тому, чтобы мы отбросили некоторые стереотипы своего мышления, на решение подобных задач, и взглянули заново на возможность создания комфортной среды в новых условиях больших объемных пространств. При этом уже есть новые эффективные технические решения, использующие важные преимущества больших пространств и позволяющие обеспечить стабильные комфортные условия для всего внутреннего пространства БСЗС при значительно меньших энергетических затратах.

Между тем, возможности применения многопоясных тросовых покрытий, видятся, шире. Так процесс строительства экогородов, который пока еще только зарождается и робко заявляет о себе, так же нельзя представить без большепролетных светопрозрачных сооружений. Хочется думать, что ХХI век, оценив новую большепролетную светопрозрачную архитектуру, будет активно её развивать и совершенствовать, а также постарается с её помощью быстрее совершить прорыв в градостроительстве, заменив унылые, энергонеэффективные и небезопасные каменные джунгли современных мегаполисов на удобные, комфортные и экологичные города.

Рис. 6-11 Masdar City (иллюстрации Foster + Partners).

Самым амбициозным и помпезным проектом экогорода сегодня можно назвать Masdar City . Вероятно, это первая по-настоящему серьезная попытка комплексного подхода к организации города будущего - обеспечиваемого энергией из возобновляемых источников (солнце, ветер и др) и имеющего устойчивую экологическую среду с минимальными выбросами углекислого газа в атмосферу, а также системой полной переработки отходов городской деятельности.
К сожалению, место для строительства Masdar City, выбрано не самое удачное и будущим жителям и эксплуатирующим организациям еще придется ощутить на себе некоторые неудобства месторасположения этого уголка пустыни. Так очевидно, что заложенные в проект города технические решения не смогут в полной мере справиться с 50-ти градусной летней жарой (исключение составят замкнутые пространства, в том числе все атриумы). Периоды дождей в декабре-январе, а позже сезон сильных туманов также не смогут быть комфортны для жителей нового города. А если мы вспомним о довольно частых зимне-весенних песчаных бурях в той части пустыни, то поймем, что без большепролетных светопрозрачных покрытий, накрывающих и защищающих городские кварталы от этих местных природных явлений, городским жителям периодически придется испытывать определенные неудобства.
Предлагаемая ниже концепция строительства большепролетных светопрозрачных сооружений хорошо вписывается в проекты подобные Masdar City и, думается, что вполне способна помочь таким проектам сэкономить средства как на строительстве, так и на эксплуатации современных городов. А также сделать эти города защищеннее и комфортнее.

Рис.6-11. Таким можно видеть будущий Masdar City на красочных рекламных проспектах и журнальных иллюстрациях (иллюстрации Foster + Partners).


В 2012 году российскими инженерами была разработана технически доступная сегодня и эффективная в реализации концепция перекрытия больших пролетов, позволяющая обеспечить строительство разнообразных большепролетных зданий и сооружений . Идея заключается в создании над комплексом зданий многопоясного тросового покрытия, которое, перекрывая большие пролеты между опорными зданиями, сможет нести любую расчетную нагрузку и создаст для всего комплекса единое прочное и надёжное светопрозрачное покрытие. Покрытие обеспечит возможность поддержания в замкнутом внутреннем пространстве такого объекта постоянных и комфортных для человека параметров: температуры, влажности, подвижности и чистоты воздуха, освещенности, безопасности и др.
В основу идеи многопоясных тросовых систем заложены известные принципы висячих конструкций, которые уже более полувека широко применяются в мире для строительства большепролетных зданий и сооружений. Но более широкого распространения в большепролетном строительстве висячие конструкции не получили из-за некоторых своих недостатков. Так большепролетные здания с висячими конструкциями покрытий, как правило, не могут обеспечить уклон кровли наружу здания, что создаёт дополнительные трудности с отводом атмосферных осадков с покрытия. Кроме этого, создавая очень значительные горизонтальные нагрузки в высоких опорах, вантовые конструкции вынуждают строителей решать эту проблему дополнительными финансовыми вложениями в мощные контрфорсы для этих нагрузок. Но самым основным недостатком висячих конструкций является их большая деформативность под действием местных нагрузок.

Многопоясным тросовым системам удалось преодолеть перечисленные недостатки большепролетных вантовых покрытий и даже создать возможность для успешного перекрытия гораздо больших пролетов, что сегодня может дать новый импульс в развитие большепролетного строительства.

Известно, что перекрытие больших пролетов во все времена развития нашей цивилизации интересовало и привлекало внимание не только архитекторов и строителей, но и обычных людей. Создание величественных сооружений с большепролетными пространствами всегда являлось показателем передового развития инженерного искусства, а также технического и финансового могущества стран, способных построить такие сооружения.


Что такое многопоясное тросовое покрытие и как оно работает?

Чтобы понять, как работает многопоясное тросовое покрытие надо представить конструкцию любого известного большепролётного покрытия, которым перекрыли пролёт между двумя опорными зданиями. (например, пространственную перекрёстно-стержневую плиту). Если пролёт достаточно большой, то это покрытие под собственным весом неизбежно прогнётся, а при воздействии на него дополнительных внешних нагрузок (от снега, ветра и др) может разрушиться. Но, чтобы этого не произошло и большепролётное покрытие не обрушилось, мы натягиваем под ним высокопрочные стальные тросы в несколько рядов (поясов), от одного опорного здания до другого, выполняем их натяжение и устанавливаем (через определённые расстояния по длине тросов) между поясами образовавшейся тросовой системы, распорные стойки, а между соседними тросами во всех поясах тросовой системы – распорки и/или растяжки. Многопоясность помогает добиться того, что на любой длине пролета тросовая система является двояковыпуклой и подпирает собой снизу рассматриваемое прогнувшееся покрытие.

При этом, в покрытии, за счёт натяжения тросов и работы распорных стоек, не только исчезнет образовавшийся прогиб, но и возникнет прогиб с обратным знаком – вверх. Это позволяет покрытию не только не разрушится под воздействием на него предельных нагрузок, но, напротив, будет способствовать возможности восприятия им значительных дополнительных нагрузок, в соответствие тем расчётными характеристиками тросовой системы, которые ей будут заданы проектом.
Специалистам понятно, что система преднапряжённых тросовых конструкций, несущих жёсткое, прочное и устойчивое покрытие, невозможна без мощных опорных элементов (воспринимающих горизонтальные составляющие от распора тросовой системы), а также стабилизирующей системы, воспринимающей все временные нагрузки на покрытие, в том числе отрицательное давление ветра. Поэтому предлагаемая концепция строительства БСЗС учитывает все необходимые для этих сооружений условия.
Так, чтобы придать многопоясному тросовому покрытию неизменяемость под действием временных нагрузок, дополнительно предусмотрено, с помощью оттяжек, догрузить покрытие на расчетную величину. При этом, оттяжки покрытия крепятся к фундаментам опорных зданий, что позволяет избежать увеличения нагрузки на эти фундаменты от дополнительного веса большепролетного покрытия, вызванного натяжением оттяжек.

В результате совместной работы многопоясной тросовой системы и расположенного на ней остекленного рамного покрытия образовалось единое, легкое и надёжное большепролётное светопрозрачное тросовое покрытие, которое уже сегодня способно перекрывать пролёты в 200-350 и более метров.
Понятно, что кровельное покрытие, основой для которого являются большепролетные многопоясные тросовые системы, по желанию, можно выполнить из любого гидро-теплоизоляционного материала,в том числе и светопрозрачного. Например, в условиях низких температур окружающего воздуха, лучшим на сегодня светопрозрачным материалом являются многокамерные стектопакеты.

Преимущества многопоясных тросовых систем перед известными сегодня техническими решениями, применяющимися при перекрытии больших пролетов, очевидны. Это очень значительная прочность и надежность таких систем, превосходная несущая способность, легкость конструкций, возможность перекрывать существенно бОльшие пролеты, лучшая светопропускная способность покрытия, в несколько раз меньшая металлоемкость конструкций и, как следствие, относительно невысокая стоимость всего покрытия.

Применение многопоясных тросовых систем.

Надо отметить, что технология перекрытия больших и сверхбольших пролетов с помощью многопоясных тросовых систем позволит строить самые разнообразные по объему, форме и назначению сооружения. Это могут быть: самые большие по размерам ангары и производственные цеха, крытые легкоатлетические и футбольные стадионы, большепролетные общественные пространства, развлекательные и торговые центры, жилые кварталы под светопрозрачной оболочкой, большие стеклянные пирамиды и купола (в которых можно размещать самые разнообразные многофункциональные комплексы объектов недвижимости или корпоративные центры). Многопоясные тросовые системы также могут пригодиться в строительстве большепролетных висячих мостов нового дизайна, особенно в тех местах, где строительство других типов мостов невозможно, либо слишком дорого .


Рис.12. Светопрозрачное сооружение в виде ПИРАМИДЫ высотой 200м.

Представляется, что строительство большепролетных светопрозрачных комплексов должно развиваться как квартальная застройка. А одним из самых эффектных и оптимальным первоначальным вариантом для такой функциональной застройки может послужить, например, форма светопрозрачного квартала в виде правильной четырёхугольной ПИРАМИДЫ (рис. 11) со следующими параметрами:

  • высота пирамиды – 200 м;
  • размеры основания - 300х300 м;
  • площадь основания (территория, защищаемая светопрозрачными покрытиями) – 9,0 Га;
  • площадь ограждающих конструкций - 150 000 м 2 ;
  • геометрический объём пирамиды (П200) - 6,0 миллионов кубических метров.

В таком застекленном квартале, чтобы не перенаселять внутреннее пространство комплекса, разумно иметь лишь 320-450 тыс.кв.м полезных площадей (надземных), занятых под коммерческую и/или жилую недвижимость и расположенных, в основном, в опорных зданиях этого светопрозрачного комплекса. Остальной объем сооружения (более 4,0 млн.куб.м) – это многофункциональные атриумы.

Для сравнения, при увеличении высоты такой пирамиды П200 (геометрически идеальная пирамида имеет соотношения 3:4:5) всего на 50 метров, параметры П250 составят: основание – 375х375 м; Sосн = 14,1 га, Sостекл = 235,0 тыс.кв.м. Произойдёт почти двукратное увеличение внутреннего объёма светопрозрачного сооружения, который в этом случае будет равен - 11,7 млн. куб м., а количество площадей занятых под коммерческую недвижимость может возрасти до 0,8 - 1,0 млн. квадратных метров. При этом, что является особенно привлекательным, площадь ограждающих конструкций пирамиды П250 будет почти вдвое! меньше суммарной площади ограждающих конструкций внутренних опорных зданий. Для специалистов должна быть понятна важность этого соотношения.
При дальнейшем увеличении внутреннего объема БСЗС и придания ему куполообразной формы, уменьшение коэффициента соотношения площади ограждающих конструкций светопрозрачного комплекса, к сумме всех полезных площадей внутренних помещений (как и к сумме площадей ограждающих конструкций внутренних зданий), будет изменяться в очень приятной глазу прогрессии, т.е. процесс такого строительства будет становиться экономически всё более привлекательным!

Спортивные центры со светопрозрачным покрытием.
Другим перспективным направлением применения многопоясных тросовых светопрозрачных покрытий, сегодня видится строительство крытых футбольных стадионов и других большепролетных спортивных сооружений. С каждым годом спрос на крытые спортивные стадионы в мире возрастает (например, уже не только европейцы и североамериканцы строят для себя большие крытые стадионы, но и менее богатые страны, такие как Аргентина и Казахстан недавно построили такие сооружения, а Филиппины сегодня возводят, как уверяют, самый большой крытый стадион в мире). В преддверии подготовки к футбольному чемпионату 2018 года востребованность подобных объектов может наметиться и в России.

Уникальность и высокая стоимость ныне существующих большепролётных спортивных сооружений (с пролетом 120-150 м и более) состоит том, что каждое такое сооружение выполняется на максимуме возможностей строительной индустрии места своего строительства, сопряжено с многочисленными сложными и точными расчётами несущих конструкций, повышенной ответственностью и значительной материалоёмкостью реализуемых решений. Недостатки перекрытий всех этих большепролетных сооружений одни и те же: они сложны, громоздки, металлоёмки, и поэтому нерациональны и чрезвычайно дороги. Кроме этого, из-за мощных несущих металлоконструкций покрытия, инсоляция всех крытых стадионов сегодня чрезвычайно низка, что сильно затрудняет поддержание натурального травяного покрытия современных спортивных арен в надлежащем состоянии.

Рис.13.Футбольный стадион в Польше. На ЕВРО-2012.
Рис.14. Стадион Уэмбли – самый знаменитый стадион Англии

Думается, что применение светопрозрачных многопоясных тросовых покрытий должно кардинально изменить такое неблагоприятное положение дел при строительстве большепролётных спортивных объектов (на эскизах Рис.15-19 показан один из возможных вариантов для строительства относительно недорогого крытого многофункционального спорткомплекса).




Рис. 15-18 эскизные решения большого крытого стадиона.
.
1 и 2 – здания, служашие опорными конструкциями для светопрозрачного покрытия;
4 – многопоясные тросовые системы;
10 – оттяжки-пригрузы;
11 – 3-х поясное тросовое светопрозрачное покрытие;
18 и 19 – зрительские трибуны;
21 – самонесущие светопрозрачные конструкции


Рис. 19. Разрез 3-х поясного тросового светопрозрачного покрытия (см. обознач 4 и 11, на рис. 17)

5 - высокопрочный металический трос;
6 - пояс тросового покрытия;
7 - распорная стойка;
8 - горизонтальная распорка-растяжка:
12 - светопрозрачное элементы покрытия;
13 - рамная конструкция светопрозрачного покрытия.

Многопоясные тросовые системы (4) (перекрывающие пролет между опорами (1 и 2) наклонены наружу сооружения за счет разницы высот опорных зданий и являются основанием для размещения поверх них раздвижного светопрозрачного покрытия (11), выполненного из рамных конструкций (13) и светопрозрачных элементов (12) .
Многопоясность тросовой системы, оттяжки (10) и др специальные технические решения обеспечат тросовому покрытию необходимую жесткость и устойчивость к восприятию всех расчётных нагрузок.
Между опорными зданиями (1 и 2), по контуру наружных стен стадиона, предусмотрены самонесущие светопрозрачные конструкции (21), которые делают контур наружных стен замкнутым.
Применение многопоясных тросовых покрытий, сможет обеспечить всем новым стадионам самую простую, надежную и относительно недорогую конструкцию светопрозрачного покрытия, одновременно, обеспечивающую лучшую инсоляцию арены, чем на всех построенных до сего дня крытых стадионах.

Возведение большепролетных многопоясных тросовых светопрозразных покрытий сегодня не является сверхсложной задачей, так как в строительной практике существует многолетний опыт применения большепролетных вантовых покрытий, которые, в основном, используют теже самые технические решения, материалы, изделия и оборудование, и тех же самых технических специалистов.

Большой и красивый, крытый и комфортный современный спортивный центр необходим каждому развивающемуся городу не только для проведения в достойных условиях спортивных соревнований в течение всего года, но и для широкого вовлечения городского населения в активные занятия спортом и своим личным здоровьем. Для этого многофункциональный спортивный комплекс может включать в себя не только высококлассное футбольное поле, многочисленные спортивные залы, бассейны и фитнес-центры, но любой на выбор перечень объектов для оздоровительных и учебно-тренировочных занятий различными видами спорта, а высотная часть спорткомплекса, при желании, может принять, близкие профилю объекта, гостиничные и офисные центры.

С помощью лучших специализированных строительных компаний (например, французской «Freyssinet International & Cie» или японской «TOKYO ROPE MFG.CO, LTD.» , которые являются мировыми лидерами в проектировании и изготовлении вантовых конструкций) можно уже сегодня начинать строить предложенные большепролетные светопрозрачные объекты.


Рис.20.Защитное сооружение куполообразной формы со светопрозрачным покрытием.


Перспективы архитектуры большепролетных светопрозрачных комплексов.

Огромные атриумные пространства БСЗС могут объединять множество задач. Например, в атриумах с объемами в миллионы кубических метров смогут разместиться и самый большой роскошный аквапарк, и полноценный спортивный стадион, и многое другое одновременно. Но, думается, что в перспективе, большинство БСЗС предпочтет возможность размещения в своих атриумных пространствах обширных и уютных ландшафтных садов со спортивными и детскими площадками, фонтанами и водопадами, вольерами с экзотическими животными и живописными прудами, открытыми бассейнами и кафе на лужайках. Ведь каждый такой вечнозеленый цветущий сад даст возможность жителям и гостям БСЗС ежедневно общаться с живой природой - и в самые жаркие летние месяцы, и долгие дождливые дни осени, и в снежные холодные месяцы зимы.

Борцам за сохранение природы должен понравиться тот факт, что при строительстве БСЗС активизируется процесс проникновения живой природы внутрь огромных рукотворных светопрозрачных сооружений. Занимая в БСЗС специально подготовленные для нее пространства и образовывая в них (при активной помощи человека) устойчивые экосистемы, природа сможет качественно наполнить собой архитектурные объекты будущего, делая их функциональнее и привлекательнее для людей. При этом, в организованных людьми атриумных пространствах, лучших БСЗС, несомненно, произойдет мутуализм (взаимовыгодное сожительство) природы и человека.


Рис.21-22. Атриумы американских отелей, принадлежащие знаменитой «Gaylord Hotels.

Положительные результаты, которые будут получены при строительстве БСЗС, полностью отвечают запросам современного градостроительства. Это экономическая и экологическая привлекательность сооружений; интенсивное развитие искусственной среды обитания человека, тесно связанное с природным окружением и обеспечением высокого качества жизни людей; образование нового типа экогородов и улучшение экологической обстановки в существующих мегаполисах; появление новых востребованных направлений для развития технического прогресса и существенная экономия природных ресурсов.

БСЗС по многим критериям наилучшим образом соответствуют принципам «Зеленого строительства» (GreenBuildings), и будут способствовать не только улучшению качества строительных объектов, но и сохранению окружающей среды.

Строительство БСЗС поможет решить следующие важные задачи «устойчивого развития» и требований «зеленых» стандартов LEED, BREEAM, DGWB:
- снижение уровня потребления энергетических и материальных ресурсов зданиями;
- снижение неблагоприятного воздействия на природные экосистемы;
- обеспечение гарантированного уровня комфорта среды обитания человека;
- создание новых энергоэффективных и энергосберегающих продуктов, новых рабочих мест в производственном и эксплуатационном секторах;
- формирование общественной потребности в новых знаниях и технологиях в сфере возобновляемой энергетики.

Атриумы светопрозрачных сооружений обязательно вернут нашим дворам их былую актуальность и востребованность, как вновь созданное очаровательное во многих отношениях общественное пространство, освобожденное от автомобилей и наполненное солнечным светом, уютом, комфортом.

Конструктивные особенности БСЗС и разумное их использование, в перспективе позволят так оптимизировать строительство таких сооружений, что построить комплекс зданий накрытых светопрозрачным куполом окажется значительно дешевле, чем строительство в идентичных условиях такого же комплекса зданий, но без защитного купола.
Так, очевидно, что стоимость светопрозрачного покрытия и эксплуатационные расходы (при правильном и целенаправленном движении в этом направлении) будут уменьшаться при увеличении объёма сооружения (не в абсолютном измерении, но относительно расходов на 1 кв метр полезной площади). Этот естественный вывод подтверждают: и обычная логика, и здравый смысл, и математика.
А снижение в несколько раз площади ограждающий конструкций БСЗС, относительно суммы площадей ограждающих конструкций внутренних зданий, неминуемо приведёт к снижению расхода потребляемой энергии на отопление комплекса БСЗС и на его кондиционирование, относительно такого же объема обычных зданий, не защищённых светопрозрачной оболочкой.
При этом, все внутренние здания БСЗС будут иметь упрощенную отделку внешних стен (без дорогостоящих покрытий и отсутствия утеплителей), а оконные проемы - будет необязательно остеклять стеклопакетами, что неизбежно отразится и на стоимости фундаментов. Основные системы отопления и кондиционирования внутренних зданий могут быть вынесены в атриумные пространства, что сделает внутренние жилые и офисные помещения более простыми, эффективными и т.д.

Новые экогорода в будущем, думается, вполне могут состоять, в основном, из расположенных вблизи друг к другу и максимально автономных БСЗС. Такие светопрозрачные сооружения будут построены среди живой природы и вписаны в естественный ландшафт, а также связаны между собой и с другими городами самыми современными высокоскоростными транспортными коммуникациями. Вероятно, это приведет не только к полному отказу многими жителями экогородов будущего от личных транспортных средств, из-за их ненадобности, но так же сможет навсегда устранить места опасного пересечения потоков людей с потоками автомобилей.

Но самый главный результат строительства экоустойчивых большепролетных светопрозрачных сооружений - расширение и улучшение комфортной среды обитания человека, без негативных последствий для природы.

Санкт-Петербург
09.06.2013 г

Примечания :
. Купол над Хьюстоном" - http://youtu.be/vJxJWSmRHyE ;
. Самый большой шатёр в мире
- http://yo www.youtube.com/watchutu.be/W3PfL2WY5LM ;
. "Tropical Islands" - www.youtube.com/watch ;
. Masdar City - www.youtube.com/watch;
. Большепролетный висячий мост -
.

Список используемой литературы :
1. Marcus Vitruvius Pollio, de Architectura - труд Витрувия в английском переводе Гвилта (1826);
2. Л Г. Дмитриев, А. В. Касилов. «Вантовые покрытия». Киев. 1974 г;
3. Зверев А.Н. Большепролетные конструкции покрытий общественных и промышленных зданий. СПб ГАСУ - 1998 г;
4. Кирсанов Н.М. Висячие и вантовые конструкции. Стройиздат - 1981 г;
5. Смирнов В.А. Висячие мосты больших пролетов. Высшая школа.1970 г;
6. Евразийский патент № 016435 - Защитное сооружение с большепролётным светопрозрачным покрытием - 2012 г;
7.


Рис.23-28. Атриумы американской сети высококлассных отелей «Gaylord Hotels".



2024 stdpro.ru. Сайт о правильном строительстве.