Автоматизация технологических процессов и производств. Технологии автоматизация производства. Курс лекций по дисциплине «Технические средства автоматизации и Современные технические средства систем автоматизации

Средства автоматизации – это технические средства, предназначенные для оказания помощи должностным лицам органов управления в решении информационных и расчетных задач. Применение средств автоматизации повышает оперативность управления, снижает трудозатраты должностных лиц органов управления, повышает обоснованность принимаемых решений. К средствам автоматизации относятся следующие группы средств (рис. 3.4):

электронно-вычислительные машины (ЭВМ);

устройства сопряжения и обмена (УСО);

устройства сбора и ввода информации;

устройства отображения информации;

устройства документирования и регистрации информации;

автоматизированные рабочие места;

средства математического обеспечения;

средства программного обеспечения;

средства информационного обеспечения;

средства лингвистического обеспечения.


Электронно-вычислительные машины классифицируются:

а) по назначению – общего назначения (универсальные), проблемно-ориентированные, специализированные;

б) по размерам и функциональным возможностям - суперЭВМ, большие ЭВМ, малые ЭВМ, микроЭВМ.

СуперЭВМ обеспечивают решение сложных военно-технических задач и

задач по обработке больших объемов данных в реальном масштабе времени.

Большие и малые ЭВМ обеспечивают управление сложными объектами и системами. МикроЭВМ ориентированы для решения информационных и расчетных задач в интересах конкретных должностных лиц. В настоящее время широкое развитие получил класс микроЭВМ, основу которого составляют персональные ЭВМ (ПЭВМ).

В свою очередь персональные ЭВМ разделяются на стационарные и переносные. К стационарным ПЭВМ относят: настольные, портативные, блокноты, карманные. Все составные части настольных ПЭВМ выполнены в виде отдельных блоков. Портативные ПЭВМ типа ″Lоp Top″ выполняются в виде небольших чемоданчиков массой 5 – 10 килограммов. ПЭВМ-блокнот типа ″Note book″ или ″Sub Note book″ имеет размер с небольшую книгу и по характеристикам соответствует настольным ПЭВМ. Карманные ПЭВМ типа ″Palm Top″ имеют размеры записной книжки и позволяют записывать и редактировать небольшие объемы информации. К переносным ПЭВМ относятся электронные

секретари и электронные записные книжки.

Устройства сопряжения и обмена предназначены для согласования параметров сигналов внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом эти устройства выполняют как физическое согласование (форма, амплитуда, длительность сигнала), так и кодовое. К устройствам сопряжения и обмена относятся: адаптеры (сетевые адаптеры), модемы, мультиплексоры. Адаптеры и модемы обеспечивают согласование ЭВМ с каналами связи, а мультиплексоры обеспечивают согласование и коммутацию одной ЭВМ и нескольких каналов связи.

Устройства сбора и ввода информации . Сбор информации с целью ее последующей обработки на ЭВМосуществляется должностными лицами органов управления и специальными датчиками информации в системах управления оружием. Для ввода информации в ЭВМ применяются следующие устройства: клавиатура, манипуляторы, сканеры, графические планшеты, средства речевого ввода.

Клавиатура – это матрица клавиш, объединенных в единое целое, и электронный блок для преобразования нажатия клавиши в двоичный код.

Манипуляторы (координатно-указательные устройства, устройства управления курсором) совместно с клавиатурой повышают удобство работы пользователя. Повышение удобства работы связано, прежде всего, с возможностью быстро перемещать курсор по экрану дисплея. В настоящее время в ПЭВМ используются следующие разновидности манипуляторов: джойстик (рычаг, установленный на корпусе), световое перо (применяется для формирования изображений на экране), манипулятор типа «мышь», сканер – для ввода в ПЭВМ изображений, графические планшеты – для формирования и ввода в ПЭВМ изображений, средства речевого ввода.

Устройства отображения информации отображают информацию без ее долговременной фиксации. К ним относятся: дисплеи, графические табло, видеомониторы. Дисплеи и видеомониторы служат для отображения информации, вводимой с клавиатуры или других устройств ввода, а также для выдачи пользователю сообщений и результатов выполнения программ. Графические табло осуществляют визуальный вывод текстовой информации в виде бегущей строки.

Устройства документирования и регистрации информации предназначены для вывода информации на бумагу или другой носитель с целью обеспечения длительного времени хранения. К классу этих устройств относятся: печатающие устройства, внешние запоминающие устройства (ВЗУ).

Печатающие устройства или принтеры предназначены для вывода алфавитно-цифровой (текстовой) и графической информации на бумагу или подобный ей носитель. Наиболее широко применяются матричные, струйные и лазерные принтеры.

Современная ПЭВМ содержит, как минимум, два запоминающих устройства: накопитель на гибких магнитных дисках (НГМД) и накопитель на жестких магнитных дисках (НЖМД). Однако в случаях обработки больших объемов информации вышеуказанные накопители не могут обеспечить их запись и хранение. Для записи и хранения больших объемов информации используются дополнительные запоминающие устройства: накопители на магнитных дисках и лентах, накопители на оптических дисках (НОД), накопители на DVD-дисках. Накопители типа НОД обеспечивают высокую плотность записи, повышенную надежность и долговечность хранения информации.

Автоматизированные рабочие места (АРМ) – это рабочие места должностных лиц органов управления, оборудованные средствами связи и автоматизации. Основным средством автоматизации в составе АРМ является ПЭВМ.

Средства математического обеспечения – это совокупность методов, моделей и алгоритмов, необходимых для решения информационных и расчетных задач.

Средства программного обеспечения – это совокупность программ, данных и программных документов, необходимых для обеспечения функционирования самой ЭВМ и решения информационных и расчетных задач.

Средства информационного обеспечения – это совокупность информации, необходимая для решения информационных и расчетных задач. В состав информационного обеспечения входят собственно массивы информации, система классификации и кодирования информации, система унификации документов.

Средства лингвистического обеспечения – совокупность средств и способов представления информации, допускающих ее обработку на ЭВМ. Основу лингвистического обеспечения составляют языки программирования.

Автоматика - это отрасль науки и техники, охватывающая теорию и принципы построения
систем управления техническими объектами и процессами, действующих без непосредственного участия человека.
Технический объект (станок, двигатель, летательный аппарат, поточная линия, автоматизированный участок, цех и т. д.), нуждающийся в автоматическом или автоматизированном
управлении, называется объектом управления (ОУ) или техническим объектом управления
(ТОУ).
Совокупность ОУ и автоматического управляющего устройства называется системой
автоматического управления (САУ) или автоматизированной системой управления (АСУ).
Ниже приведены наиболее широко используемые термины и их определения:
элемент - простейшая составная часть устройств, приборов и других средств, в которой
осуществляется одно преобразование какой-либо величины;(мы в дальнейшем дадим более
точное определение)
узел - часть прибора, состоящая из нескольких более простых элементов (деталей);
преобразователь - устройство, преобразующее один вид сигнала в другой по форме или виду
энергии;
устройство - совокупность некоторого числа элементов, соединенных между собой
соответствующим образом, служащая для переработки информации;
прибор - общее название широкого класса устройств, предназначенных для измерений,
производственного контроля, вычислений, учета, сбыта и др.;
блок - часть прибора, представляющая собой совокупность функционально объединенных
элементов.

Любая система управления должна выполнять следующие функции:
сбор информации о текущем состоянии технологического объекта
управления (ОУ);
определение критериев качества работы ОУ;
нахождение оптимального режима функционирования ОУ и оптимальных
управляющих воздействий, обеспечивающих экстремум критериев
качества;
реализация найденного оптимального режима на ОУ.
Эти функции могут выполняться обслуживающим персоналом или ТСА.
Различают четыре типа систем управления (СУ):
информационные;
автоматического управления;
централизованного контроля и регулирования;
автоматизированные системы управления технологическими процессами.

В САУ все функции выполняются автоматически
при помощи соответствующих технических
средств.
Функции оператора включают в себя:
- техническую диагностику состояния САУ и
восстановление отказавших элементов системы;
- коррекцию законов регулирования;
- изменение задания;
- переход на ручное управление;
- техническое обслуживание оборудования.

ОПУ - операторский пункт управления;
Д - датчик;
НП - нормирующий преобразователь;
КП - кодирующие и декодирующие
преобразователи;
ЦР - центральные регуляторы;
MP - многоканальное средство
регистрации (печать);
С - устройство сигнализации
предаварийного режима;
МПП - многоканальные показывающие
приборы (дисплеи);
МС - мнемосхема;
ИМ - исполнительный механизм;
РО - регулирующий орган;
К – контроллер.

Автоматизированные системы управления технологическими
процессами (АСУТП) - это машинная система, в которой ТСА
осуществляют получение информации о состоянии объектов,
вычисляют критерии качества, находят оптимальные настройки
управления.
Функции оператора сводятся к анализу полученной информации и
реализации с помощью локальных АСР или дистанционного
управления РО.
Различают следующие типы АСУТП:
- централизованная АСУ ТП (все функции обработки информации и
управления выполняет один компьютер;
- супервизорная АСУТП (имеет ряд локальных АСР, построенных на
базе ТСА индивидуального пользования и центральным
компьютером, имеющим информационную линию связи с
локальными системами) ;
- распределенная АСУТП - характеризуется разделением функций
контроля обработки информации и управления между несколькими
территориально распределенными объектами и компьютерами.

Типовые средства автоматизации могут
быть:
-техническими;
-аппаратными;
-программно-техническими;
- общесистемными.

РАСПРЕДЕЛЕНИЕ ТСА ПО УРОВНЯМ ИЕРАРХИИ АСУ
Информационно-управляющие вычислительные комплексы (ИУВК)
Централизованные информационные управляющие системы (ЦИУС)
Локальные информационно-управляющие системы (ЛИУС)
Регулирующие устройства и устройства управления (РУ и УУ)
Вторичный
преобразователь (ВП)
Первичный преобразователь (ПП)
Чувствительный элемент (ЧЭ)
Исполнительный
механизм (ИМ)
Рабочий
орган (РО)
ОУ

ИУВК: ЛВС, серверы, ERP-, MES-системы. Здесь реализуются все цели АСУП,
вычисляется себестоимость продукции, издержки на производство.
ЦИУС: промышленные компьютеры, пульты управления, управляющие
комплексы, средства защиты и сигнализации.
ЛИУС: промышленные контроллеры, интеллектуальные контроллеры.
РУ и УУ: микроконтроллеры, регуляторы, регулирующие и сигнализирующие
устройства.
ВП: показывающие, регистрирующие (вольтметры, амперметры,
потенциометры, мосты), интегрирующие счетчики.
ИМ: двигатель, редуктор, электромагниты, электромагнитные муфты и пр.
ЧЭ: датчики тепло-технологических параметров, перемещения, скорости,
ускорения.
РО: механическое устройство, изменяющее количество вещества или
энергии, поступающей на ОУ, и несущее информацию об управляющем
воздействии. РО могут быть вентили, клапаны, нагреватели, затворы,
задвижки, заслонки.
ОУ: механизм, агрегат, процесс.

К техническим средствам автоматизации (ТСА) относят:
датчики;
исполнительные механизмы;
регулирующие органы (РО);
линии связи;
вторичные приборы (показывающие и регистрирующие);
устройства аналогового и цифрового регулирования;
программно-задающие блоки;
устройства логико-командного управления;
модули сбора и первичной обработки данных и контроля состояния
технологического объекта управления (ТОУ);
модули гальванической развязки и нормализации сигналов;
преобразователи сигналов из одной формы в другую;
модули представления данных, индикации, регистрации и выработки сигналов
управления;
буферные запоминающие устройства;
программируемые таймеры;
специализированные вычислительные устройства, устройства допроцессорной
подготовки.

К программно-техническим средствам автоматизации относят:
аналого-цифровые и цифро-аналоговые преобразователи;
управляющие средства;
блоки многоконтурного, аналогового и аналого-цифрового регулирования;
устройства многосвязного программного логического управления;
программируемые микроконтроллеры;
локально-вычислительные сети.
К общесистемным средствам автоматизации относят:
устройства сопряжения и адаптеры связи;
блоки общей памяти;
магистрали (шины);
устройства общесистемной диагностики;
процессоры прямого доступа для накопления информации;
пульты оператора.

В системах автоматического управления в качестве
сигналов обычно используются электрические и
механические величины (например, постоянный ток,
напряжение, давление сжатого газа или жидкости,
усилие и т.п.), так как они позволяют легко
осуществлять преобразование, сравнение, передачу на
расстояние и хранение информации. В одних случаях
сигналы возникают непосредственно вследствие
протекающих при управлении процессов (изменения
тока, напряжения, температуры, давления, наличия
механических перемещений и т.д.), в других случаях
они вырабатываются чувствительными элементами
или датчиками.

Элементом автоматики называется простейшая конструктивно законченная в
функциональном отношении ячейка (устройство, схема), выполняющая определенную
самостоятельную функцию преобразования сигнала (информации) в системах
автоматического управления:
преобразование контролируемой величины в сигнал, функционально связанный с
информацией об этой величине (чувствительные элементы, датчики);
преобразование сигнала одного рода энергии в сигнал другого рода энергии: электрической
в неэлектрическую, неэлектрической в электрическую, неэлектрической в неэлектрическую
(электромеханические, термоэлектрические, электропневматические, фотоэлектрические и
другие преобразователи);
преобразование сигнала по значению энергии (усилители);
преобразование сигнала по виду, т.е. непрерывного в дискретный или обратно
(аналогоцифровые, цифроаналоговые и другие преобразователи);
преобразование сигнала по форме, т.е. сигнала постоянного тока в сигнал переменного тока
и наоборот (модуляторы, демодуляторы);
функциональное преобразование сигналов (счетно-решающие элементы, функциональные
элементы);
сравнение сигналов и создание командного управляющего сигнала (элементы сравнения,
нуль-органы);
выполнение логических операций с сигналами (логические элементы);
распределение сигналов по различным цепям (распределители, коммутаторы);
хранение сигналов (элементы памяти, накопители);
использование сигналов для воздействия на управляемый процесс (исполнительные
элементы).

Комплексы различных технических устройств и элементов, входящих в состав системы
управления и соединенных электрическими, механическими и другими связями, на
чертежах изображают в виде различных схем:
электрических, гидравлических, пневматических и кинематических.
Схема служит для получения концентрированного и достаточно полного представления о
составе и связях любого устройства или системы.
Согласно Единой системе конструкторской документации (ЕСКД) и ГОСТ 2.701 электрические
схемы подразделяют на структурные, функциональные, принципиальные (полные), схемы
соединений (монтажные), подключения, общие, расположения и объединенные.
Структурная схема служит для определения функциональных частей, их назначения и
взаимосвязей.
Функциональная схема предназначена для определения характера процессов, протекающих
в отдельных функциональных цепях или установке в целом.
Принципиальная схема, показывающая полный состав элементов установки в целом и все
связи между ними, дает основное представление о принципах работы соответствующей
установки.
Монтажная схема иллюстрирует соединение составных частей установки с помощью
проводов, кабелей, трубопроводов.
Схема подключения показывает внешние подключения установки или изделия.
Общая схема служит для определения составных частей комплекса и способов их соединения
на месте эксплуатации.
Объединенная схема включает в себя несколько схем разных видов в целях более ясного
раскрытия содержания и связей элементов установки.

Обозначим через y(t) функцию, описывающую изменение во времени регулируемой
величины, т. е. у(t) - регулируемая величина.
Через g(t) обозначим функцию, характеризующую требуемый закон ее изменения.
Величину g(t) будем называть задающим воздействием.
Тогда основная задача автоматического регулирования сводится к обеспечению равенства
y(t)=g(t). Регулируемая величина y(t) измеряется с помощью датчика Д и поступает на
элемент сравнения (ЭС).
На этот же элемент сравнения от датчика задания (ДЗ) поступает задающее воздействие g(t).
В ЭС величины g(t) и y(t) сравниваются, т. е. из g(t) вычитается у (t). На выходе ЭС
формируется сигнал, равный отклонению регулируемой величины от заданной, т. е. ошибка
∆ = g(t) – y(t). Этот сигнал поступает на усилитель (У) и затем подается на исполнительный
элемент (ИЭ), который и оказывает регулирующее воздействие на объект регулирования
(ОР). Это воздействие будет изменяться до тех пор, пока регулируемая величина у (t) не
станет равна заданной g(t).
На объект регулирования постоянно влияют различные возмущающие воздействия:
нагрузка объекта, внешние факторы и др.
Эти возмущающие воздействия стремятся изменить величину y(t).
Но САР постоянно определяет отклонение y(t) от g(t) и формирует управляющий сигнал,
стремящийся свести это отклонение к нулю.

По выполняемым функциям основные элементы
автоматики делятся на датчики, усилители, стабилизаторы,
реле, распределители, двигатели и другие узлы (генераторы
импульсов, логические элементы, выпрямители и т.д.).
По роду физических процессов, используемых в основе
устройств, элементы автоматики делятся на электрические,
ферромагнитные, электротепловые, электромашинные,
радиоактивные, электронные, ионные и др.

Датчик (измерительный преобразователь, чувствительный элемент) -
устройство, предназначенное для того, чтобы информацию, поступающую
на его вход в виде некоторой физической величины, функционально
преобразовать в другую физическую величину на выходе, более удобную
для воздействия на последующие элементы (блоки).

Усилитель - элемент автоматики, осуществляющий
количественное преобразование (чаще всего усиление)
поступающей на его вход физической величины (тока,
мощности, напряжения, давления и т.п.).

Стабилизатор - элемент автоматики, обеспечивающий постоянство
выходной величины у при колебаниях входной величины х в определенных
пределах.
Реле - элемент автоматики, в котором при достижении входной величины
х определенного значения выходная величина у изменяется скачком.

Распределитель (шаговый искатель) - элемент
автоматики, осуществляющий поочередное подключение
одной величины к ряду цепей.
Исполнительные устройства - электромагниты с втяжным
и поворотным якорями, электромагнитные муфты, а также
электродвигатели, относящиеся к электромеханическим
исполнительным элементам автоматических устройств.
Электродвигатель - это устройство, обеспечивающее
преобразование электрической энергии в механическую и
преодолевающее при этом значительное механическое
сопротивление со стороны перемещаемых устройств.

ОБЩИЕ ХАРАКТЕРИСТИКИ ЭЛЕМЕНТОВ АВТОМАТИКИ
Основные понятия и определения
Каждый из элементов характеризуется какими-либо свойствами, которые
определяются соответствующими характеристиками. Некоторые из этих
характеристик являются общими для большинства элементов.
Главной общей характеристикой элементов является коэффициент
преобразования (или коэффициент передачи, представляющий собой
отношение выходной величины элемента у к входной величине х, или
отношение приращения выходной величины ∆у или dy к приращению
входной величины ∆х или dx.
В первом случае К=у/х называется статическим коэффициентом
преобразования, а во втором случае К" = ∆у/∆х≈ dy/dx при ∆х →0 -
динамическим коэффициентом преобразования.
Связь между значениями х и у определяется функциональной
зависимостью; значения коэффициентов К и К" зависят от формы
характеристики элемента или вида функции у =f(х), а также от того, при
каких значениях величин подсчитываются К и К". В большинстве случаев
выходная величина изменяется пропорционально входной и
коэффициенты преобразования равны между собой, т.е. К= К" = const.

Величина, представляющая собой отношение относительного приращения
выходной величины ∆у/у к относительному приращению входной величины
∆х/х, называется относительным коэффициентом преобразования η∆ .
Например, если изменение входной величины на 2 % вызывает изменение
выходной величины на
3 %, то относительный коэффициент преобразования η∆ = 1,5.
Применительно к различным элементам автоматики коэффициенты
преобразования К", К, η∆ и η имеют определенный физический смысл и свое
название. Например, применительно к датчику коэффициент
преобразования называется чувствительностью (статической, динамической,
относительной); желательно, чтобы она была как можно больше. Для
усилителей коэффициент преобразования принято называть коэффициентом
усиления; желательно, чтобы он был также как можно больше. Для
большинства усилителей (в том числе и электрических) величины х и у
являются однородными, и поэтому коэффициент усиления представляет
собой безразмерную величину.

При работе элементов выходная величина у может отклоняться от требуемого
значения за счет изменения их внутренних свойств (износа, старения материалов и
т.п.) или за счет изменения внешних факторов (колебания напряжения питания,
окружающей температуры и др.), при этом происходит изменение характеристики
элемента (кривая у" на рис. 2.1). Это отклонение называется погрешностью, которая
может быть абсолютной и относительной.
Абсолютной погрешностью (ошибкой) называется разность между полученным
значением выходной величины у" и расчетным (желаемым) ее значением ∆у = у"- у.
Относительной погрешностью называется отношение абсолютной погрешности ∆у к
номинальному (расчетному) значению выходной величины у. В процентах
относительная погрешность определяется как γ = ∆ у 100/у.
В зависимости от причин, вызывающих отклонение, различают температурную,
частотную, токовую и другие погрешности.
Иногда пользуются приведенной погрешностью, под которой понимается
отношение абсолютной погрешности к наибольшему значению выходной величины.
В процентах приведенная погрешность
γприв = ∆y 100/уmax
Если абсолютная погрешность постоянна, то приведенная погрешность также
постоянна.
Погрешность, вызванная изменением характеристик элемента со временем,
называется нестабильностью элемента.

Порогом чувствительности называется минимальная
величина на входе элемента, которая вызывает изменение
выходной величины (т.е. уверенно обнаруживается с помощью
данного датчика). Появление порога чувствительности
вызывают как внешние, так и внутренние факторы (трение,
люфты, гистерезис, внутренние шумы, помехи и др.).
При наличии релейных свойств характеристика элемента
может приобретать реверсивный характер. В этом случае она
также обладает порогом чувствительности и зоной
нечувствительности.

Динамический режим работы элементов.
Динамическим режимом называется процесс перехода элементов и систем из одного
установившегося состояния в другое, т.е. такое условие их работы, когда входная величина х, а
следовательно, и выходная величина у изменяются во времени. Процесс изменения величин х и у
начинается с некоторого порогового времени t = tп и может протекать в инерционном и
безинерционном режимах.
При наличии инерционности наблюдается запаздывание изменения у по отношению к изменению
х. Тогда при скачкообразном изменении входной величины от 0 до х0 выходная величина у достигает
установившегося Yуст не сразу, а по истечении промежутка времени, в течение которого происходит
переходный процесс. При этом переходный процесс может быть апериодическим (неколебательным) затухающим или колебательным затухающим.Время tуст(время установления), в течение
которого выходная величина у достигает установившегося значения, зависит от инерционности
элемента, характеризуемой постоянной времени Т.
В простейшем случае установление величины у происходит по показательному закону:
где Т - постоянная времени элемента, зависящая от параметров, связанных с его инерционностью.
Установление выходной величины у тем продолжительнее, чем больше значение Т. Время установления tycт выбирается в зависимости от необходимой точности измерения датчика и составляет
обычно (3... 5) Т, что дает ошибку в динамическом режиме не более 5... 1 %. Степень приближения ∆у
обычно оговаривается и в большинстве случаев составляет от 1 до 10 % от установившегося значения.
Разность между значениями выходной величины в динамическом и статическом режимах называется динамической погрешностью. Желательно, чтобы она была как можно меньше. В электромеханических и электромашинных элементах инерционность в основном определяется механической
инерцией движущихся и вращающихся частей. В электрических элементах инерционность
определяется электромагнитной инерцией или другими подобными факторами. Инерционность
может быть причиной нарушения устойчивой работы элемента или системы в целом.

Классификация технических средств автоматизации не является чем-то, уж слишком, сложным и нагруженным. Однако, в целом технологические средства автоматизации имеют достаточно разветвленную структуру классификации. Попробуем разобраться с ней.

Современные средства автоматизации делятся на две группы: коммутированные и некоммутированные (программированные) технические средства автоматизации:

1) Коммутированные средства автоматизации

Регуляторы

Релейные схемы

2) Программированные средства автоматизации

ADSP процессоры

ADSP процессоры – средство автоматизации, которое используются для сложного математического анализа процессов в системе. Эти процессоры имеют быстродействующие модули ввода/вывода, которые с высокой частотой могут передавать данные на центральный процессор, который с помощью сложного математического аппарата анализирует работу системы. Пример – системы вибродиагностики, которые используют для анализа ряды Фурье, спектральный анализ и счетчик импульсов. Как правило, такие процессоры исполняются в виде отдельной PCI платы, которая монтируется в соответствующий слот компьютера и использует ЦП для математической обработки.

ПЛК (программируемый логический контроллер)

ПЛК – самые распространенные средства автоматизации. Имеют собственный блок питания, центральный процессор, оперативную память, сетевую карту, модули ввода/вывода. Преимущество – высокая надежность работы системы, адаптация к промышленным условиям. Кроме того используются программы, которые выполняются циклически и имеют так называемый Watch Dog, который используется для предотвращения зависания программы. Также программа выполняется последовательно и не имеет параллельных связей и этапов обработки, которые могли бы привести к негативным последствиям.

ПКК (Программируемые компьютерные контроллеры)

ПКК – компьютер с платами ввода/вывода, сетевыми картами, которые служат для ввода/вывода информации.

ПАК

ПАК (программированные автоматизированные контроллеры ) – ПЛК+ПКК. Имеют распределенную сетевую структуру для обработки данных (несколько ПЛК и ПКК).

· Специализированные контроллеры

Специализированные контроллеры – не являются свободно программируемыми средствами автоматизации, а используют стандартные программы, в которых можно изменить только некоторые коэффициенты (параметры ПИД-регулятора, время хода исполнительного механизма, задержки и т.д.). Такие контроллеры ориентированы на заранее известную систему регулирования (вентиляция, отопление, ГВС). В начале нового тысячелетия эти технические средства автоматизации получили большое распространение.

Особенностью ADSP и ПКК является использование стандартных языков программирования: C, C++, Assembler, Pascal , - так как они созданы на базе ПК. Эта особенность средств автоматизации является одновременно и достоинством и недостатком.

Преимущество в том, что с помощью стандартных языков программирования можно написать более сложный и гибкий алгоритм. Недостаток – для работы с ними необходимо создавать драйверы и использовать язык программирования, который является более сложным. Преимуществом ПЛК и ПАК является использование инженерных языков программирования, которые стандартизованы IEC 61131-3 . Эти языки рассчитаны не на программиста, а на инженера-электрика.

Принцип преобразования информации

Принципы управления основаны на принципе преобразования информации.

Преобразователи – устройства, использующиеся в преобразовании величин одной физической природы в другую и обратно.

Датчики – устройства, вырабатывающие дискретный сигнал в зависимости от кода технологического процесса или воздействия на них информации.

Информация и способы её преобразования

Информация должна обладать следующими свойствами :

1. Информация должна быть понятной в соответствии с принятой системой кодирования или её представлении.

2. Каналы передачи информации должны быть помехозащищенными и не допускать проникновение ложной информации.

3. Информация должна быть удобной для её обработки.

4. Информация должна быть удобной для её хранения.

Для передачи информации используются каналы связи, которые могут быть искусственными, естественными, смешанными.

Рис. 3. Каналы связи

По-подробнее о каналах связи мы будем говорить чуть позже.

Технические средства автоматизации

приборы, устройства и технические системы, предназначенные для автоматизации производства (См. Автоматизация производства). Т. с. а. обеспечивают автоматическое получение, передачу, преобразование, сравнение и использование информации в целях контроля и управления производственными процессами. В СССР системный подход к построению и использованию Т. с. а. (их группировка и унификация по функциональному, информационному и конструктивно-технологическому признакам) позволил объединить все Т. с. а. в рамках Государственной системы промышленных приборов и средств автоматизации - ГСП .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Технические средства автоматизации" в других словарях:

    ТЕХНИЧЕСКИЕ СРЕДСТВА (АВТОМАТИЗАЦИИ) - 13. ТЕХНИЧЕСКИЕ СРЕДСТВА (АВТОМАТИЗАЦИИ) средства автоматизации, в составе которых не используются программные средства. Источник: РБ 004 98: Требования к сертификации управляющих систем, важных для безопасности атомных станций …

    технические средства автоматизации - приборы, устройства и технической системы для автоматизирован производства, обеспечиваюдщие автоматическое получение, передачу, преобразование, сравнение и вание информации в целях контроля и управления производственными… … Энциклопедический словарь по металлургии

    Технические средства автоматизации СКУ, техническое обеспечение СКУ - 7 Технические средства автоматизации СКУ, техническое обеспечение СКУ Совокупность всех компонентов СКУ, за исключением людей (ГОСТ 34.003 90). Совокупность всех технических средств, используемых при функционировании СКУ (ГОСТ 34.003 90) Источник … Словарь-справочник терминов нормативно-технической документации

    ПРОГРАММНО-ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ - 7. ПРОГРАММНО ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ совокупность программных и технических средств автоматизации, предназначенных для создания управляющих программно технических систем. Источник: РБ 004 98: Требования к сертификации управляющих… … Словарь-справочник терминов нормативно-технической документации

    Технические средства - 3.2 Технические средства систем автоматизации, комплекс технических средств (КТС) совокупность устройств (изделий), обеспечивающих получение, ввод, подготовку, преобразование, обработку, хранение, регистрацию, вывод, отображение, использование и… … Словарь-справочник терминов нормативно-технической документации

    Средства технические систем автоматизации - 4.8 Источник: РМ 4 239 91: Системы автоматизации. Словарь справочник по терминам. Пособие к СНиП 3.05.07 85 … Словарь-справочник терминов нормативно-технической документации

    Технические средства АСУ ТП - Средства АСУ ТП, включающие изделия государственной системы промышленных приборов и средств автоматизации (ГСП), агрегатные средства измерения (АС ИИС), средства вычислительной техники (СВТ) Источник: РД 34.35.414 91: Правила организации… … Словарь-справочник терминов нормативно-технической документации

    ТЕХНИЧЕСКИЕ СРЕДСТВА СИСТЕМ АВТОМАТИЗАЦИИ - 4.8. ТЕХНИЧЕСКИЕ СРЕДСТВА СИСТЕМ АВТОМАТИЗАЦИИ Технические средства СА Комплект средств, обеспечивающий функционирование СА различного вида и уровня приборы, функциональные блоки, регуляторы, исполнительные устройства, агрегатные комплексы,… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 13033-84: ГСП. Приборы и средства автоматизации электрические аналоговые. Общие технические условия - Терминология ГОСТ 13033 84: ГСП. Приборы и средства автоматизации электрические аналоговые. Общие технические условия оригинал документа: 2.10. Требования к питанию 2.10.1. Питание изделий должно осуществляться от одного из следующих источников:… … Словарь-справочник терминов нормативно-технической документации

    Технические - 19. Технические указания по технологии производства строительных и монтажных работ при электрификации железных дорог (устройства электроснабжения). М.: Оргтрансстрой, 1966. Источник: ВСН 13 77: Инструкция по монтажу контактных сетей промышленного … Словарь-справочник терминов нормативно-технической документации

Книги

  • Технические средства автоматизации и управления Учебник , Колосов О., Есюткин А., Прокофьев Н. (ред.). Учебник в разной степени (не претендуя на охват "необъятного")подкрепляет и дополняет материалы, излагаемые в соответствии с рабочими программами комплекса дисциплин профессионального цикла…
  • Технические средства автоматизации. Учебник для академического бакалавриата , Рачков М.Ю.. В учебнике рассмотрены классификация технических средств автоматизации, методы выбора технических средств по типу производства, а также системы управления оборудованием. Приводится описание…

Технические средства автоматизации (ТСА) предназначены для создания систем, выполняющих заданные технологические операции, в которых человеку отводятся, в основном, функции контроля и управления.

По виду используемой энергии технические средства автоматизации классифицируются на электрические , пневматические , гидравлические и комбинированные . Электронные средства автоматизации выделяют в отдельную группу, так как они, используя электрическую энергию, предназначены для выполнения специальных вычислительных и измерительных функций.

По функциональному назначению технические средства автоматизации можно подразделить в соответствии с типовой схемой системы автоматического регулирования на исполнительные механизмы , усилительные , корректирующие и измерительные устройства , преобразователи, вычислительные и интерфейсные устройства .

Исполнительный элемент - это устройство в системе автоматического регулирования или управления, воздействующее непосредственно или через согласующее устройство на регулирующий элемент или объект системы.

Регулирующий элемент осуществляет изменение режима функционирования управляемого объекта.

Электрический исполнительный элемент с механическим выходом - электродвигатель - применяется в качестве оконечного усилителя механической мощности. Эффект, оказываемый объектом или механической нагрузкой на исполнительный элемент, эквивалентен действию внутренних, или естественных, обратных связей. Такой подход используется в тех случаях, когда необходим детальный структурный анализ свойств и динамических особенностей исполнительных элементов с учетом действия нагрузки. Электрический исполнительный элемент с механическим выходом является составной частью автоматического привода.

Электрический привод - это электрическое исполнительное устройство, преобразующее управляющий сигнал в механическое воздействие с одновременным усилением его по мощности за счет внешнего источника энергии. Привод не имеет специального звена главной обратной связи и представляет собой совокупность усилителя мощности, электрического исполнительного элемента, механической передачи, источника питания и вспомогательных элементов, объединенных определенными функциональными связями. Выходными величинами электрического привода являются линейная или угловая скорость, тяговое усилие или вращающий момент, механическая мощность и т. д. Электрический привод должен располагать соответствующим запасом по мощности, необходимым для воздействия на управляемый объект в форсированном режиме.

Электрический сервомеханизм представляет собой следящий привод, который отрабатывает входной управляющий сигнал с усилением его по мощности. Элементы электрического сервомеханизма охватываются специальными элементами обратной связи и могут иметь внутренние обратные связи за счет нагрузки.

Механическая передача электрического привода или сервомеханизма осуществляет согласование внутреннего механического сопротивления исполнительного элемента с механической нагрузкой - регулирующим органом или объектом управления. К механическим передачам относятся различные редукторы, кривошипно-шатунные, рычажные механизмы и другие кинематические элементы, в том числе передачи с гидравлическими, пневматическими и магнитными опорами.

Электрические источники питания исполнительных элементов, устройств и сервомеханизмов подразделяются на источники с практически бесконечной мощностью, со значением их внутреннего сопротивления, близким к нулю, и источники с ограниченной мощностью со значением внутреннего сопротивления, отличным от нуля.

Пневматические и гидравлические исполнительные устройства - это устройства, в которых в качестве энергоносителя используется соответственно газ и жидкость под определенным давлением. Эти системы занимают прочное место среди других средств автоматизации благодаря своим преимуществам, к которым, в первую очередь, относятся надежность, устойчивость к механическим и электромагнитным воздействиям, высокий коэффициент отношения развиваемой мощности приводов к собственному весу и пожаровзрывобезопасность.

Основная задача исполнительного устройства состоит в том, чтобы усилить сигнал, поступающий на его вход, до уровня мощности, достаточного для того, чтобы оказать требуемое воздействие на объект в соответствии с поставленной целью управления.

Важным фактором при выборе исполнительного элемента является обеспечение заданных показателей качества системы при имеющихся энергетических ресурсах и допустимых перегрузках.

Характеристики исполнительного устройства должны определяться из анализа автоматизируемого процесса. Такого рода характеристиками исполнительных устройств и сервомеханизмов являются энергетические, статические, динамические характеристики, а также технико-экономические и эксплуатационные характеристики.

Обязательным требованием к исполнительному приводу является минимизация мощности двигателя при обеспечении требуемых значений скоростей и моментов. Это приводит к минимизации энергетических затрат. Весьма важными факторами при выборе исполнительного устройства или сервомеханизма являются ограничения по массе, габаритным размерам и надежности.

Важными составляющими систем автоматизации являются усилительные и корректирующие устройства. Общими задачами, решаемыми корректирующими и усилительными устройствами систем автоматики, являются формирование требуемых статической и частотной характеристик, синтез обратных связей, согласование с нагрузкой, обеспечение высокой надежности и унификация устройств.

Усилительные устройства усиливают по мощности сигнал до уровня, необходимого для управления исполнительным устройством.

Особые требования, предъявляемые к корректирующим элементам систем с переменными параметрами - возможность и простота перестройки структуры, программы и параметров корректирующих элементов. Усилительные устройства должны удовлетворять определенным техническим условиям по удельной и максимальной выходной мощности.

По структуре усилительное устройство представляет собой, как правило, многокаскадный усилитель со сложными обратными связями, которые вводятся для улучшения его статических, динамических и эксплуатационных характеристик.

Усилительные устройства, применяемые в системах автоматизации, можно подразделить на две группы:

1) электрические усилители, имеющие электрические источники питания;

2) гидравлические и пневматические усилители, использующие в качестве основного энергоносителя соответственно жидкость или газ.

Источник питания или энергоноситель определяет наиболее существенные особенности усилительных устройств автоматики: статические и динамические характеристики, удельную и максимальную мощность, надежность, эксплуатационные и технико-экономические показатели.

К электрическим усилителям относятся электронные вакуумные, ионные, полупроводниковые, диэлектрические, магнитные, магнитно-полупроводниковые, электромашинные и электромеханические усилители.

Квантовые усилители и генераторы составляют особую подгруппу устройств, используемых в качестве усилителей и преобразователей слабых радиотехнических и других сигналов.

Корректирующие устройства формируют сигналы коррекции статических и динамических характеристик системы.

В зависимости от вида включения в систему линейные корректирующие устройства подразделяются на три типа: последовательные, параллельные корректирующие элементы и корректирующие обратные связи. Использование того или иного типа корректирующих устройств определяется удобством технической реализации и эксплуатационными требованиями.

Корректирующие элементы последовательного типа целесообразно применять, если сигнал, величина которого функционально связана с сигналом ошибки, является немодулированным электрическим сигналом. Синтез последовательного корректирующего устройства в процессе проектирования системы управления наиболее прост.

Корректирующие элементы параллельного типа удобно использовать при формировании сложного закона регулирования с введением интеграла и производных от сигнала ошибки.

Корректирующие обратные связи, охватывающие усилительные или исполнительные устройства, находят наиболее широкое применение благодаря простоте технической реализации. В этом случае на вход элемента обратной связи поступает сигнал сравнительно высокого уровня, например, с выходного каскада усилителя или двигателя. Использование корректирующей обратной связи позволяет уменьшать влияние нелинейностей тех устройств системы, которые ими охватываются, следовательно, в ряде случаев удается улучшить качество процесса регулирования. Корректирующая обратная связь стабилизирует статические коэффициенты охватываемых устройств в условиях действия помех.

В системах автоматического регулирования и управления используются электрические, электромеханические, гидравлические и пневматические корректирующие элементы и устройства. Наиболее просто электрические корректирующие устройства реализуются на пассивных четырехполюсниках, которые состоят из резисторов, конденсаторов и индуктивностей. Сложные электрические корректирующие устройства включают также разделительные и согласующие электронные элементы.

В электромеханические корректирующие устройства, кроме пассивных четырехполюсников, входят тахогенераторы, импеллеры, дифференцирующие и интегрирующие гироскопы. В ряде случаев электромеханическое корректирующее устройство может быть реализовано в виде мостовой схемы, в одну из плеч которой включен электрический двигатель исполнительного устройства.

Гидравлические и пневматические корректирующие устройства могут состоять из специальных гидравлических и пневматических фильтров, включаемых в обратные связи основных элементов системы, или в виде гибких обратных связей по давлению (перепаду давлений), расходу рабочей жидкости, воздуха.

Корректирующие элементы с перестраиваемыми параметрами обеспечивают адаптивность систем. Реализация таких элементов осуществляется с помощью релейных и дискретных устройств, а также ЭВМ. Подобные элементы принято относить к логическим корректирующим элементам.

ЭВМ, функционирующая в реальном масштабе времени в замкнутом контуре управления, имеет практически неограниченные вычислительные и логические возможности. Основной функцией управляющей ЭВМ является вычисление оптимальных управлений и законов, оптимизирующих поведение системы в соответствии с тем или иным критерием качества в процессе ее нормальной эксплуатации. Высокое быстродействие управляющей ЭВМ позволяет, наряду с основной функцией, выполнять целый ряд вспомогательных задач, например, с реализацией сложного линейного или нелинейного цифрового корректирующего фильтра.

При отсутствии ЭВМ в системах наиболее целесообразно применять нелинейные корректирующие устройства как обладающие наибольшими функциональными и логическими возможностями.

Регулирующие устройства представляют собой сочетание исполнительных механизмов, усилительных и корректирующих устройств, преобразователей, а также вычислительных и интерфейсных блоков.

Информация о параметрах объекта управления и о возможных внешних воздействиях, оказывающих на него влияние, поступает на регулирующее устройство от измерительного устройства. Измерительные устройства в общем случае состоят из чувствительных элементов, воспринимающих изменения параметров, по которым производится регулирование или управление процессом, а также из дополнительных преобразователей, часто выполняющих функции усиления сигналов. Вместе с чувствительными элементами эти преобразователи предназначены для преобразования сигналов одной физической природы в другую, соответствующую виду энергии, используемой в системе автоматического регулирования или управления.

В автоматике преобразующими устройствами или преобразователями называют такие элементы, которые непосредственно не выполняют функций измерения регулируемых параметров, усиления сигналов или коррекции свойств системы в целом и не оказывают прямого воздействия на регулирующий орган или управляемый объект. Преобразующие устройства в этом смысле являются промежуточными и выполняют вспомогательные функции, связанные с эквивалентным преобразованием величины одной физической природы в форму, более удобную для формирования регулирующего воздействия или с целью согласования устройств, различающихся по виду энергии на выходе одного и входе другого устройства.

Вычислительные устройства средств автоматизации, как правило, строятся на базе микропроцессорных средств.

Микропроцессор - программно управляемое средство, осуществляющее процесс обработки цифровой информации и управления им, построенное на одной или нескольких интегральных микросхемах.

Основными техническими параметрами микропроцессоров являются разрядность, емкость адресуемой памяти, универсальность, число внутренних регистров, наличие микропрограммного управления, число уровней прерывания, тип стековой памяти и число основных регистров, а также состав программного обеспечения. По разрядности микропроцессоры подразделяются на микропроцессоры с фиксированной разрядностью и модульные микропроцессоры с изменяемой разрядностью слова.

Микропроцессорными средствами называются конструктивно и функционально законченные изделия вычислительной и управляющей техники, построенные в виде или на основе микропроцессорных интегральных микросхем, которые с точки зрения требований к испытаниям, приемке и поставке рассматриваются как единое целое и применяются при построении более сложных микропроцессорных средств или микропроцессорных систем.

Конструктивно микропроцессорные средства выполняются в виде микросхемы, одноплатного изделия, моноблока или типового комплекса, причем изделия нижнего уровня конструктивной иерархии могут использоваться в изделиях высшего уровня.

Микропроцессорные системы - это вычислительные или управляющие системы, построенные на основе микропроцессорных средств, которые могут применяться автономно или встраиваться в управляемый объект. Конструктивно микропроцессорные системы выполняются в виде микросхемы, одноплатного изделия, моноблока комплекса или нескольких изделий указанных типов, встроенных в аппаратуру управляемого объекта или выполненных автономно.

По области применения технические средства автоматизации можно подразделить на технические средства автоматизации работ на промышленных производствах и технические средства автоматизации других работ, важнейшим составляющим которых являются работы в экстремальных условиях, где присутствие человека опасно для жизни или невозможно. В последнем случае автоматизация осуществляется на базе специальных стационарных и мобильных роботов.

Технические средства автоматизации химических производств: Справ. изд./В.С.Балакирев, Л.А.Барский, А.В.Бугров и др.-М.: Химия, 1991. –272 с.



2024 stdpro.ru. Сайт о правильном строительстве.