Расчетно-графическая работа по фэн-шуй: правильное оформление РГР. Порядок оформления расчетно-графической работы

Ох, не о том думал студент, когда выбирал себе вуз. Кто ж хотел для себя такой доли, как написание РГР? А тем временем выполнить работу все же придется, причем по всем правилам. Без паники, дорогие друзья, да прибудем с вами мы! Читаем и впитываем.

Итак, вот основные правила оформления расчетно-графической работы по ГОСТ:

  1. Выполнять и сдавать РГР нужно поэтапно.
  2. РГР выполняется и сдается на белых листах формата А4. В некоторых случаях допускается использование листов в клетку.
  3. У каждого листа должны быть четко очерченные поля шириной 2-3 см.
  4. Все вычисления, текст и графические материалы должны выполняться вручную. Приводится любая информация лишь с одной стороны листа.
  5. Каждая новая РГР должна выполняться на новом листе сверху каждого листа должна быть «шапка». К листу с каждой РГР должно быть прикреплено свое задание.
  6. Нумерация РГР должна соответствовать образцу, который можно взять на кафедре в методической литературе или согласно ГОСТ.
  7. Любая графика, любые чертежи выполняются только на миллиметровке. Если у вас нет мелкой миллиметровки (меньше А4), ее следует наклеить на стандартную белую бумагу А4. В области оси координат нужно обозначить стрелки, названия функций и переменных, единицы масштаба.

Кстати! Для наших читателей сейчас действует скидка 10% на

Полезные мелочи: дополнения к правилам оформления РГР

Каждый раздел должен быть пронумерован. Нумерация должна проводиться арабскими цифрами.

Использовать формулы и уравнения следует только на отдельных строках. Сверху или снизу каждой использованной формулы необходимо использование пустой строки, чтобы визуально выделить информацию.

Все новые символы и числовые коэффициенты следует указывать с новой строки в той последовательности, в которой они появляются в формуле. При этом первая строка пояснений должна начинаться со слов: «Где» без двоеточия после слова.

Нумерация и таблицы

Следует помнить, что все формулы тоже необходимо нумеровать. Нумерация происходит арабскими цифрами и в пределах каждого конкретного раздела.

При использовании таблиц в РГР нужно кратко указывать название каждой таблицы. Название таблицы пишется сверху.

Теперь вы знаете, как оформить расчетно-графическую работу (РГР) с примерами. Вообще выполнение расчетно-графической работы слишком сложно для большинства студентов. Мало того, что времени на это зачастую не хватает, так еще и знания нередко подводят.

Так вот, если вам хочется сэкономить время, просто обратитесь за помощью в написании РГР к специалистам, которые сделают все быстро и качественно.

ЭЛЕКТРОСНАБЖЕНИЕ

С ОСНОВАМИ ЭЛЕКТРОТЕХНИКИ

Учебное пособие

Расчетно-графическая работа

г. Благовещенск

Издательство ДальГАУ

УДК 621.3

Горбунова Л.Н., Гусева С.А, Мармус Т.Н.

Учебное пособие предназначено для выполнения индивидуальной расчетно-графической работы (РГР) студентами очного и заочного обучения по направлению подготовки: 270800 –« Строительство» в соответствии с требованиями ФГОС ВПО по дисциплине «Электроснабжение с основами электротехники».

Рецензент: к.т.н., доцент каф. ЭиАТП Воякин С.Н.

Издательство ДальГАУ

ВВЕДЕНИЕ

Расчетно–графическая работа является самостоятельной работой студента и завершает изучение курса «Электроснабжение с основами электротехники», при выполнении которого закрепляются знания, полученные во время изучения теоретического материала. Расчетно-графическая работа позволяет закрепить и углубить теоретические знания, выработать навыки применения их для решения конкретных практических задач с умением оформлять технические документы. В соответствии с действующей программой курса «Электроснабжение с основами электротехники» расчетно-графическая работа должна содержать:

Титульный лист (приложение 1);

Основная часть;

Заключение;

Список использованной литературы.

Количество задач расчетно-графической работы определяется ведущим преподавателем.

Правила оформления расчетно-графической работы

Расчетно-графическая работа выполняется аккуратно, без исправлений, на одной стороне листа белой бумаги формата А4 (297х210 мм) и оформляется в соответствии с ГОСТами 2.105-79.2.304-81 и «стандарт организации, система качества – общие требования к оформлению текстовой части» (Благовещенск, 2012).

Разделы должны иметь порядковую нумерацию и обозначаться арабскими цифрами. Они могут быть разделены на подразделы. Подразделы нумеруются арабскими цифрами в пределах каждого раздела.

Уравнения и формулы, приводимые в расчетно-пояснительной записке, следует помещать на отдельных строках. Выше или ниже каждой формул должно быть оставлено не менее одной строки. Пояснения символов и числовых коэффициентов, входящих в формулу, если они не пояснялись ранее в тексте, должны быть приведены непосредственно под формулой. Пояснение каждого символа следует давать с новой строки в той последовательности, в которой они приведены в формуле. Первая строка пояснения должна начинаться со слова «где» без двоеточия после него.


Пример: ток в электрической ветви вычисляется по формуле

где U – напряжение на зажимах электрической ветви, В;

R – сопротивление электрической ветви, Ом.

Формулы должны нумероваться арабскими цифрами в пределах раздела. Номер формулы состоит из номера раздела и порядкового номера формулы, и его записывают справа в круглых скобках, на одинаковом расстоянии от правого поля на всех страницах текста. Ссылки в тексте на порядковые номера формул дают в круглых скобках, например: в формуле (1.1). Уравнения и системы уравнений нумеруются вместе с формулами.

Все формулы и расчеты выполняются только в единицах системы СИ.

Иллюстрации должны быть расположены после первого упоминания в тексте записи. Она должна иметь наименование и пояснительные данные (подрисуночный текст).

Таблицы должны иметь точное краткое название, подписываться сверху в соответствии с номером раздела и порядкового номера таблицы.

ЗАДАЧА 1. Расчет линейных электрических цепей постоянного тока

В данной задаче необходимо определить токи в ветвях при заданных ЭДС и сопротивлениях, входящих в цепь. Наиболее распространенным методом расчёта сложных электрических цепей является классический метод. Он заключается в непосредственном применении законов Кирхгофа для распределения токов по ветвям.

Для данной схемы (рис. 1.1) необходимо выполнить следующее:

1. Составить систему уравнений для определения токов в схеме по первому и второму закону Кирхгофа.

2. Найти все токи методом узловых потенциалов.

3. Найти все токи методом контурных токов.

4. Записать баланс мощностей для преобразованной схемы.

5. Построить потенциальную диаграмму в масштабе для внешнего контура схемы.

Исходные данные для задачи: Е 1 = 3 В; Е 2 = 66 В; Е 3 = 9 В;

R 1 = 1 Ом; R 2 = 4 Ом; R 3 = R 4 = 2 Ом; R 5 = 7 Ом; R 6 = 3 Ом.

Рисунок 1.1 – Исходная электрическая схема

§1. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

1п. Общий вид нелинейного уравнения

Нелинейные уравнения могут быть двух видов:

1. Алгебраические
a n x n + a n-1 x n-1 +… + a 0 = 0

2. Трансцендентные- это уравнения в которых х является аргументом тригонометрической, логарифмической или показательной функции.

Значение х 0 при котором существует равенство f(x 0)=0 называется корнем уравнения.

В общем случае для произвольной F(x) не существует аналитических формул определения корней уравнения. Поэтому большое значение имеют методы, которые позволяют определить значение корня с заданной точностью. Процесс отыскания корней делиться на два этапа:

1. Отделение корней, т.е. определение отрезка содержащего один корень.

2. Уточнение корня с заданной точностью.

Для первого этапа нет формальных методов, отрезки определяются или табуляцией или исходя из физического смысла или аналитическими методами.

Второй этап, уточнение корня выполняется различными итерационными методами, суть которых в том, что строится числовая последовательность x i сходящихся к корню x 0

Выходом из итерационного процесса являются условия:

1. │f(x n)│≤ε

2. │x n -x n-1 │≤ε

рассмотрим наиболее употребляемые на практике методы: дихотомии, итерации и касательных.

2 п. Метод половинного деления.

Дана монотонная, непрерывная функция f(x), которая содержит корень на отрезке , где b>a. Определить корень с точностью ε, если известно, что f(a)*f(b)<0

Суть метода

Данный отрезок делится пополам, т.е. определяется x 0 =(a+b)/2, получается два отрезка и , далее выполняется проверка знака на концах, полученных отрезков для отрезка, имеющего условия f(a)*f(x 0)≤0 или f(x 0)*f(b)≤0 снова проводится деление пополам координатой х, снова выделение нового отрезка и так продолжается процесс до тех пор пока │x n -x n-1 │≤ε

Приведем ГСА для данного метода


3п. Метод итерации.

Дана непрерывная функция f(x), которая содержит единственный корень на отрезке , где b>a. Определить корень с точностью ε.

Суть метода

Дано f(x)=0 (1)

Заменим уравнение (1) равносильным уравнением x=φ(x) (2). Выберем грубое, приближенное значение x 0 , принадлежащее, подставим его в правую часть уравнения (2), получим:

Проделаем данный процесс n раз получим x n =φ(x n-1)

Если эта последовательность является сходящейся т.е. существует предел

x * =lim x n , то данный алгоритм позволяет определить искомый корень.

Выражение (5) запишем как x * = φ(x *) (6)
Выражение (6) является решением выражения (2), теперь необходимо рассмотреть в каких случаях последовательность х 1 …х n является сходящейся.
Условием сходимости является если во всех токах x принадлежит выполняется условие:


4 п. Метод касательных (Ньютона).

Дана непрерывная функция f(x), которая содержит единственный корень на отрезке , где b>a при чем определены непрерывны и сохраняют знак f`(x) f``(x). Определить корень с точностью ε.

Суть метода

1. Выбираем грубое приближение корня х 0 (либо точку a, либо b)

2. Наити значение функции точке х 0 и провести касательную до пересечения с осью абсцисс, получим значение х 1

3.


Повторим процесс n раз Если процесс сходящийся то x n можно принять за искомое значение корня
Условиями сходимости являются:

│f(x n)│≤ε

│x n -x n-1 │≤ε

Приведем ГСА метода касательных:

5п. Задание для РГР

Вычислить корень уравнения


На отрезке с точностью ε=10 -4 методами половинного деления, итерации, касательных.

6 п. Сравнение методов

Эффективность численных методов определяется их универсальностью, простотой вычислительного процесса, скоростью сходимости.

Наиболее универсальным является метод половинного деления, он гарантирует определение корня с заданной точностью для любой функции f(x), которая меняет знак на . Метод итерации и метод Ньютона предъявляют к функциям более жесткие требования, но они обладают высокой скоростью сходимости.

Метод итерации имеет очень простой алгоритм вычисления, он применим для пологих функций.
Метод касательных применим для функций с большой крутизной, а его недостатком является определение производной на каждом шаге.

ГСА головной программы, методы оформлены подпрограммами.

Программа по методам половинного деления, итерации и метода Ньютона.

a = 2: b = 3: E = .0001

DEF FNZ (l) = 3 * SIN(SQR(l)) + .35 * l - 3.8

F1 = FNZ(a): F2 = FNZ(b)

IF F1 * F2 > 0 THEN PRINT "УТОЧНИТЬ КОРНИ": END

IF ABS((-3 * COS(SQR(x))) / (.7 * SQR(x))) > 1 THEN PRINT "НЕ СХОДИТСЯ"

DEF FNF (K) = -(3 * SIN(SQR(x)) - 3.8) / .35

DEF FND (N) = (3 * COS(SQR(N)) / (2 * SQR(N))) + .35 _
IF F * (-4.285 * (-SQR(x0) * SIN(SQR(x)) - COS(SQR(x))) / (2 * x * SQR(x))) < then print “не сходится”:end

"=========Метод половинного деления========

1 x = (a + b) / 2: T = T + 1

IF ABS(F3) < E THEN 5

IF F1 * F3 < 0 THEN b = x ELSE a = x

IF ABS(b - a) > E THEN 1 ‑

5 PRINT "X="; x, "T="; T

"=========Метод итерации==========

12 X2 = FNF(x0): S = S + 1

IF ABS(X2 - x0) > E THEN x0 = X2: GOTO 12

PRINT "X="; X2, "S="; S

"========Метод касательных=======

23 D = D + 1
F = FNZ(x0): F1 = FND(x0)

X3 = x0 - F / F1

IF ABS(X3 - x0) < E THEN 100

IF ABS(F) > E THEN x0 = X3: GOTO 23

100 PRINT "X="; X3, "D="; D

Ответ
x= 2,29834 T=11
x=2,29566 S=2
x=2,29754 D=2
где T,S,D-число итерации для метода половинного деления, итерации, касательных соответственно.

На всех физико-математических, инженерно-конструкторских и экономических специальностях студенты один или несколько раз встречаются с таким видом учебной деятельности, как выполнение расчетно-графической работы (РГР). В чем состоит ее суть и зачем она выполняется?

Основные цели РГР

Обычно РГР является отдельной курсовой работой, но может входить и в более крупный дипломный проект. Выполнение такого задания позволяет студенту проявить умение применять полученные теоретические знания в практических целях. На основе теории и математических расчетов происходит реализация поставленной практической задачи.

В инженерно-конструкторской дисциплине это может быть чертеж конкретной детали, оптимальные размеры или прочностные параметры которой высчитывались в расчетной части. В экономической дисциплине могут вычисляться оптимальные управленческие, маркетинговые, аудиторские стратегии, на основе чего создаются соответствующие графики, диаграммы, показательно-графические объекты.

Особенности выполнения расчетно-графической работы

При выполнении РГР важнее всего соблюдать методические рекомендации, предлагаемые студентам по той или иной дисциплине. Именно в них определяются пути решения поставленной проблемы, а также определяется содержательная структура, по которой выполняется работа.

Структура РГР

При самостоятельном выполнении такого задания важнее всего подойти к работе систематизировано. Для этого необходимо понимать, какие функции выполняет каждый структурный элемент предстоящей работы. Общепринятыми частями РГР являются следующие.

Вступление и теоретическая часть

Здесь студенту необходимо показать, что он знает в общих чертах объект и предмет своего исследования, а также владеет основными методами анализа и расчетов. Эту часть выполнить достаточно просто, ведь все необходимые сведения можно почерпнуть из соответствующих учебников, методических рекомендаций и конспектов.

Расчеты и графическая часть

Большие сложности возникают при выполнении расчетной и графической составляющей работы. Именно расчеты показывают, насколько студент способен реализовывать теоретические знания на практике. Составление же чертежей, таблиц, графиков и диаграмм потребует умения применять нужное программное обеспечение.

Аналитическая часть и выводы

И наконец, выполнив расчеты и сформировав графическую часть, вам еще предстоит сделать аналитические выводы из полученных результатов. Такие выводы могут иметь самую разную природу. Например, могут быть сформулированы принципы усовершенствования какой-либо детали изучаемого устройства. В экономических дисциплинах обычно анализируются ключевые тренды, определяющие динамику деятельности того или иного хозяйствующего субъекта.

Завершающей частью работы является правильно оформленный список использованной литературы.

Основные трудности при выполнении РГР

Если расчетно-графическая работа изучает проблемы, которым будет посвящена ваша будущая профессия, то лучше помучиться, разобраться и выполнить ее самостоятельно. Чаще всего здесь нужна обычная усидчивость и внимательность.

Однако бывает и так, что РГР не очень влияет на будущие профессиональные компетентности студента. Особенно часто такая ситуация складывается на экономических специальностях. А проблемы с ее выполнением могут быть самые разные:

  • сложности с пониманием теории;
  • неумение проводить сложные математические расчеты;
  • неумение пользоваться специальными графическими редакторами и программами;
  • непонятные методические рекомендации.

Если вам реально сложно выполнить такую работу, целесообразно обратиться к специалистам, которых можно найти на сайт.

Как заказать РГР на сайт

Чтобы работа была выполнена как можно быстрее и правильнее, необходимо при формировании заказа предоставить следующие материалы:

  • полный текст поставленной задачи;
  • методические рекомендации;
  • список литературы, если требуется выполнение по конкретным источникам;
  • свой вариант задания.

На сайте вы найдете опытных исполнителей, которые не только полноценно выполнят работу, но и предоставят все необходимые разъяснения, если вам что-то будет непонятно.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

Составил: ст. преподаватель

кафедры «ПА»

Н.Г.Васильева

Кумертау – 2015г.

Microsoft Word ,



Приложение.

Нумерация листов РГР должна быть сквозной. Первым листом является титульный лист.

Оформление заголовков

Заголовки должны четко и кратко отражать содержание разделов, подразделов, при необходимости пунктов.

Заголовки следует писать с абзаца строчными буквами (кроме первой прописной) без точки в конце, не подчеркивая.

Заголовки разделов и подразделов выделяют «полужирным» шрифтом.

Переносы слов в заголовках не допускаются.

Расстояние между заголовками раздела, подраздела и текстом должно быть равно 15 мм.

Расстояние между заголовками раздела и подраздела – 10 мм.

Разделы «Введение», «Заключение», «Список источников» не нумеруются , но включаются в содержание документа.

Оформление иллюстраций

Иллюстрации могут располагаться по тексту РГР или в приложении. Иллюстрации следует нумеровать арабскими цифрами сквозной нумерацией.

На все рисунки документа должны быть приведены ссылки в тексте. При ссылках на иллюстрации следует писать «…в соответствии с рисунком 1….» или «…..на рисунке 1…..».

Слово «Рисунок» и наименование помещают после пояснительных данных и располагают следующим образом: «Рисунок 1 – Детали приборов».

Опечатки, описки и графические неточности, обнаруженные в процессе выполнения, допускается исправлять подчисткой или закрашиванием белой краской и нанесением в том же месте исправленного текста машинописным способом или черными чернилами, помарки и следы неполностью удаленного прежнего текста не допускаются.

РГР вкладывается в файл и сдается методисту на кафедру не позднее установленного срока на бумажном носителе.

Задание № 1 для РГР

Задание № 1 : При выполнении РГР студент должен по номеру варианта определить свой вопрос и представить подробный, развернутый ответ.

1. Технологическое оборудование и принципы построения автоматизированного производства.

2. Размерные, временные и информационные связи в интегрированном производстве.

3. Размерные связи процесса изготовления деталей.

4. Анализ установочных размерных связей при изготовлении деталей.

5. Размерные связи при автоматической установке заготовки на станок.

6. Размерные связи при стыковки транспортных тележек.

7. Операционные размерные связи в автоматизированном производстве.

8. Основные понятия технологичности.

9. Требования к конструкции изделий, предназначенных для автоматической сборки.

10. Показатели технологичности и их определения.

11. Значение и объем сборочных работ.

12. Основные организационные формы сборки.

13. Методы сборки изделий.

14. Способы и средства транспортирования.

15. Самотечные и полусамотечные транспортные системы.

16. Магазинные загрузочные устройства.

17. Бункерные загрузочные устройства поштучной выдачи предметов обработки.

18. Бункерные загрузочные устройства выдачи предметов обработки порциями (партиями).

19. Бункерные загрузочные устройства непрерывной выдачи предметов обработки.

20. Ориентирующие устройства.

21. Автооператоры и промышленные роботы.

22. Выбор типа и компоновки автоматического сборочного оборудования

23. Однопозиционные сборочные станки

24. Многопозиционные сборочные станки

25. Роторные цепные и многоярусные автоматы.

26. Автоматические линии сборки.

27. Гибкие производственные системы сборки.

28. Преимущества гибких производственных систем.

29. Трудности гибкой автоматизации и меры по их преодолению.

30. Современные направления совершенствования режущих инструментов для автоматизированного производства.

31. Разновидности устройств АСИ многоцелевых станков.

32. Способы идентификации режущих инструментов.

33. Автоматический контроль состояния режущих инструментов.

34. Методы и средства контроля качества изделий в ГПС

35. Способы измерения параметров детали с помощью измерительной головки.

36. Автоматизированные системы удаления отходов.

Задание № 2 для РГР

Построение циклограммы работы роботизированного технологического комплекса

Задание № 2 : При выполнении РГР студент должен по последней цифре шифра зачетки определить свой вариант задания и представить подробное решение.

Теоретическая часть

При разработке циклограмм работы автоматических машин (систем машин) обычно решаются следующие задачи:

1. Проектируется четкая последовательность действий и необходимых команд управления для всех исполнительных механизмов машины, на основании которой затем составляется управляющая программа (УП). Для РТК, например, по циклограмме его работы составляется УП для промышленного робота (ПР), который координирует работу остального оборудования;

2. Разработанная последовательность действий оптимизируется с целью сокращения общей длительности цикла и отсутствия простаивания основного технологического оборудования РТК.

Если при разработке циклограммы определяются времена выполнения отдельных действий (тактов цикла), то такие циклограммы используются для расчета длительности всего цикла и отдельных его фрагментов, расчета производительности РТК.

Известны различные формы представления циклограмм: табличные, круговые и пр. Наибольшее распространение получили циклограммы в форме таблицы. Перед построением циклограммы определяется состав оборудования АОЯ и уточняется перечень исполнительных механизмов по каждому оборудованию. Также определяются возможные состояния каждого исполнительного механизма. В данной работе следует учитывать только то оборудование и исполнительные механизмы, которые совершают механические действия (пульты управления, электрошкафы, гидростанции и пр. не учитывать). Для станка следует выбирать те исполнительные механизмы, которые непосредственно участвуют в процессе загрузки-разгрузки детали. Собственно процесс обработки детали по управляющей программе будем считать проходящим между включением и выключением шпинделя и подробно в циклограмме не рассматриваем.

Тогда циклограмма будет включать в себя следующие столбцы:

Оборудование;

Исполнительные механизмы, выполняющие отдельные элементы цикла;

Возможные состояния исполнительных механизмов в цикле;

Необходимое число тактов цикла.

Число строк определяется числом состояний всех исполнительных механизмов. Первоначально выбирается какое-либо состояние всех исполнительных механизмов в качестве исходного. Для выбора исходного состояния можно выбрать любой момент цикла загрузки-разгрузки (например, момент начала загрузки детали).

Циклограмму необходимо составить так, чтобы в конце цикла все исполнительные механизмы вернулись в исходное состояние. Далее следует в текстовом виде описать планируемую последовательность срабатывания всех необходимых исполнительных механизмов. При этом необходимо стремиться к максимальному сокращению времени цикла за счет объединения движений в одном

такте (одновременное выполнение движений).

Однако такое объединение следует осуществлять технически грамотно. Например, нельзя объединять в один такт зажим приспособления станка и разжим схвата ПР (схват может начать срабатывать раньше приспособления и деталь потеряет ориентацию).

Время выполнения каждого движения может быть определено по формулам:

Или

или

где α i β i - углы поворота механизмов;

l i h i - линейные перемещения механизмов;

ω i v i - соответственно паспортные скорости углового и линейного перемещения механизмов по соответствующей координате.

Затем начинается собственно заполнение табличной циклограммы . Как правило большинство исполнительных механизмов имеет два состояния (открыто - закрыто, выдвинуто - задвинуто, включено - выключено ). В этом случае должны выполняться правила последовательности переключения состояний и четности (количество нахождения исполнительного механизма в одном состоянии должно равняться количеству нахождения его во втором состоянии, т.е. сумма должна делиться на два, иначе исполнительный механизм за цикл не вернется в исходное состояние).

Пример выполнения работы

Схема роботизированного технологического комплекса (РТК) приведена на рис. 1. В состав РТК входят:

Токарно- патронный полуавтомат 16К20Ф3;

Промышленный робот М20П.40.01;

Тактовый стол.

Рисунок 1 – Компоновка АОЯ

Для выполнения заданного цикла обработки детали необходимы следующие движения (переходы):

Зажим заготовки в патроне;

Отвод руки ПР;

Обработка детали;

Разгрузка детали из патрона станка на тактовый стол, перемещение тактового стола на 1 шаг (на одну позицию).

В формировании заданного цикла участвуют следующие механизмы:

станка

Зажим детали (патрон);

Вращение детали (обработка);

промышленного робота

Подъем руки;

Выдвижение руки;

Зажим схвата;

Поворот схвата относительно вертикальной оси;

тактового стола

Перемещение детали (заготовки) на один шаг (на одну позицию).

исходное положение оборудования и его механизмов :

Патрон станка зажат, ограждение открыто;

Суппорт в нулевой (исходной) позиции, в резцовой головке установлен необходимый комплект инструментов для обработки заданной детали, т.е. для выполнения заданного цикла обработки линии центров станка, выше уровня расположения заготовок на тактовом столе;

Схват робота разжат, ось детали, первоначально зажимаемой в схвате - горизонтальная; рука втянута и повернута к станку.

В соответствии с составленной последовательностью движений механизмов оборудования за цикл построена циклограмма функционирования АОЯ и алгоритм.

Принцип работы: после выключения станка ПР забирает обработанную деталь устанавливает в исходную ячейку на тактовом столе. Происходит перемещение стола на одну позицию. ПР забирает деталь с тактового стола устанавливает в зоне обработки. Станок включается для выполнения технологических операций. Время всех перемещений принять равным 1с.



Рисунок 2 – Алгоритм функционирования АОЯ

№ варианта Компоновка РТК
1 – промышленный робот М20Ц.40.01 2 – токарно-револьверный станок с ЧПУ 1В340Ф30 3 – магазин накопитель 4 – устройство управления ПР 5 – ограждение 6 – устройство ЧПУ станка 7 – электрошкаф 8 – гидростанция
1 – промышленный робот 2М4Ц.20ГП-3 2 – токарный многорезцовый станок 1Н713 3 – тара (кассетного типа) 4 – устройство управления ПР 5 – гидростанция
1 – промышленный робот ПР4 2 – токарный многорезцовый полуавтомат 1716Ф3 3 – тактовый стол 4 – тара 5 – пульт управления ПР 6 – устройство для удаления стружки
1 – промышленный робот М10П62.01 2 – токарный станок с ЧПУ 16К20Ф3 3 – тактовый стол 4 – устройство ЧПУ ПР 5 – устройство ЧПУ станка 6 – электрошкаф
1 – промышленный робот МП 2 – токарный полуавтомат 1713 3 – тактовый стол
1 – промышленный робот УМ160Ф2.81.02 2 – токарный станок с ЧПУ 1П752МФ3 3 – поворотное устройство 4 – устройство ЧПУ станка 5 – устройство ЧПУ ПР 6 – тара для стружки 7 – загрузочная позиция склада 8 – гидростанция

1 – промышленный робот напольного типа 2 – токарный многорезцовый станок 3 – горизонтальное загрузочное устройство 4 - накопитель
1 – промышленный робот УМ1 2 – токарный полуавтомат агрегатного типа АТ250П 3 – магазин периодического действия 4 – пульт управления 5 – ограждение

1 – ПР Ритм-01-08 2 – станок токарно-винторезный с ЧПУ 3 – вибробункер 4 – устройство ЧПУ станка 5 - устройство ЧПУ ПР 6 - тара

1 – промышленный робот напольного типа 2 – станок с ЧПУ 3 – загрузочное устройство 4 – устройство управления ПР 5 - тара

Задание № 3 для РГР

Теоретическая часть

Магазин емкость для размещения однородных штучных заготовок и выдачи их с требуемой производительностью. Состав магазина: накопитель, отсекатель, питатель.

Основные типы конструкций МЗУ приведены на рис. 1.

Рисунок 1- Магазинные загрузочные устройства для заготовок, закладываемых штабелем в один ряд.

МЗУ рассчитываются на производительность и отсутствие заклинивания.

Исходные данные

Вариант задания – 0. Эскиз детали приведен на рис. 5.

Рисунок 5 – Эскиз ориентируемой детали

Производительность станка – автомата Qa = 90 шт./мин.

Материал детали - сталь.

Частота колебаний лотка f Л = 50 Гц.

Периодичность загрузки бункера Т= 20 мин.

Обеспечение автоматической ориентации детали .

Специальных устройств для систематизации потока деталей не требуется так как предполагаемые конструкции ориентаторов одновременно будут выполнять и эту функцию. Для обеспечения ориентации детали в пространстве определим все возможные различные устойчивые положения детали на лотке и выберем одно – требуемое. Возможные устойчивые различимые положения детали на лотке приведены на рис. 10.

а – донышком вперед,

б – донышком назад,

в – ось детали образует с направлением лотка угол не равный 0º,

г – стоя на торце (ось детали вертикальна)

Рисунок 6 - Возможные различимые устойчивые положения детали на лотке (вид сверху)

Выбираем следующую схему ориентации: В ВБЗУ обеспечиваются два устойчивых положения – а и б . Во вторичном ориентирующем устройстве для всего потока обеспечивается положение а .

Для устранения положений в ширину лотка (с учетом буртика) предусматриваем 8 мм. Для перевода детали из положения г в а или б предусматривается уступ (рис. 7).

Рисунок 7 – Форма ориентирующего уступа

Для обеспечения устойчивого положения детали а или б лотку придается полукруглая форма (рис. 8).

Рисунок 8 – Поперечное сечение оринтирующего устройства ВБЗУ

1 – пружина

2 – рычаг

4 – подводящий лоток

5 – отводящий лоток

Рисунок 9 – Схема вторичного ориентирующего устройства

Расчет ВБЗУ

Расчет режима работы ВБЗУ.

Включает определение средней производительности Q СР , средней скорости движения изделия по лотку V СР , коэффициента заполнения лотка k З .

Средняя производительность ВБЗУ

Средняя скорость движения изделия по лотку (мм/с):

Коэффициент заполнения лотка изделиями определяется по формул:

k З =Р(l 0 ) ·C П = 0, 919·1=0, 919

Коэффициент плотности потока изделий рассчитывается как:

При пассивном ориентировании симметричных валиков и втулок по цилиндрической поверхности (при l И > d ):

Расчет конструктивных размеров чаши.

Включает определение диаметра D , высоты Н , шага лотка t, объема V Д загружаемой партии. Примем цилиндрическую форму чаши (рис. 12).

Для цилиндрической чаши наружный диаметр определяют по формуле:

D=D В +2·Δ,

Внутренний диаметр чаши определяется из выражения:

где V Д – наружный объем загружаемого изделия, мм 3 , V Д = 396мм 3 ;

Т – период времени между заполнениями чаши, мин, Т = 20 мин;

n – число заходов вибродорожек, n = 1 ;

z – число каналов на каждой вибродорожке, z=1 ;

Н Р – высота заполнения чаши изделиями, мм.

Высота заполнения чаши изделиями находится из выражения:

H P ≈ 2, 5·(t+δ)= 2, (11+2) = 32, 5 мм,

Шаг t спирали вибродорожки определяют из условия:

t =k·d+δ= 1, 5·6 +2=11 мм,

где d – диаметр изделия, лежащего на лотке, d = 6 мм;

при l И /d >1,5 коэффициент принимается равным k = 1,5.

Тогда наружный диаметр чаши

D=D В + 2·Δ=290+2·2=294 мм.

Округляем до ближайшего стандартного диаметра в большую сторону D=320 мм.

Рисунок 12 - Конструкция цилиндрической чаши ВБЗУ

Полная высота чаши определяется как H=H P +(1, 0…1, 5)·t =32, 5 +(1, 5·11) =49 мм.

Угол подъема спирали лотка:

Ширина вибродорожки:

Ширина лотка с буртиком

B O =B+ 3=7, 17+3=10, 7 мм

Принимаем толщину дна чаши H Д ≈ 2 мм. Угол конуса чаши выбираем в диапазоне γ 0 =150º .

Расчет параметров движения изделия и колебательной системы .

Включает определение частоты вынужденных колебаний лотка; амплитуды; приведенной массы; жесткости пружинных стержней; размеров пружинных стержней (длины l , диаметра d или сечения b хh ).

Определяем требуемый угол наклона подвесок α, исходя из обеспечения необходимой скорости перемещения заготовок по формуле:

α=arctg 2,25=66 0

Определяем амплитуду колебания лотка Х Н (в см), при которой обеспечивается скорость V ТР , по формуле:

ω=2·π·f Л = 2·3, 14·50=314.

Конструктивно подвески можно выполнять круглыми или плоскими (набранными из пластин). Выбираем плоские пружины. Необходимо определить их длину, ширину и толщину. Параметры пружин определяем из условия, что подвеска представляет собой балку, закрепленную жестко с двух сторон.

Расчетная схема пружин показана на рис. 4.

При плоских пружинах длину l и ширину b задают конструктивно, а толщину (в см), можно определить по формуле:

где а – толщина пружин подвески, см;

l – длина пружины, принимаем l=15 см;

b – ширина пружины, принимаем b = 2 см;

n – число подвесок, принимаем n = 4 ;

i – число пружин в подвеске, принимаем i = 3 ;

G – вес колеблющихся частей и загруженных в бункер заготовок, ориентировочно принимаем G = 15 кг;

φ – собственная частота колебаний системы, 1/с:

φ=1, f Л = 1, 1·50=55 1/с.

Напряжение изгиба (кгс/см 2) при максимальном прогибе для плоских пружин определяем по формуле:

Размах колебаний лотка (в см) определяется графически при амплитуде колебания Х Н по формуле:

Если в приводе вибрационного загрузочного устройства со спиральным лотком у каждой подвески установлен один электромагнит перпендикулярно ее плоскости, то его усилие (в кгс) можно при плоских подвесках определить по следующей формуле:

На основании вышеприведенных расчетов и обобщенной схемы АЗУ принимаем следующий схемный вариант проектируемого автоматического загрузочного устройства. В ВБЗУ осуществляется предварительная пространственная ориентация деталей выдача их с производительностью Q = 120 шт/мин. В ВОУ осуществляется окончательная пространственная ориентация деталей. Затем поток деталей разделяется делителем потока на два потока, каждый из которых направляется в МЗУ- дублеры. Эти МЗУ расположены с противоположных сторон относительно станка-автомата и обеспечивают его правильно ориентированными деталями с заданной производительностью.

Схема управления следит с помощью датчиков переполнения (Д1– Д4) за загрузкой МЗУ и направляющих лотков и, при необходимости, временно отключает ВБЗУ. Общая схема АЗУ

Рисунок 13 - Общая схема АЗУ

Задание

Таблица П1 – Исходные данные для выполнения работы

Таблица П2 - Значение коэффициента трения

Таблица П3 – Чертеж деталей к вариантам

№ варианта Чертеж детали










Список литературы

1.. Автоматизация машиностроения: Учеб. для втузов/ Н.М.Капустин, Н.П.Дьяконова, П.М.Кузнецов; Под ред. Н.М.Капустина. – М.: Высш. шк., 2003. – 223с.: ил.

2. Калабухов А.Н., Полякова Л.Ю. Технологические основы разработки гибких роботизированных производственных модулей: Учебное пособие для студентов технических вузов/Кумертауский филиал УГАТУ. – Кумертау, 2006 – 398 с.

3. Власов и др. Транспортные и загрузочные устройства и робототехника: Учебник для техникумов пециальности « Монтаж и эксплуатация металлообрабатывающих станков и автмоатических линий». – М.: Машиностроение, 1988. – 144 с.: ил.

4. А. Н. Трусов. Проектирование и расчет автоматического загрузочного устройства.Методические указания к лабораторным работам № 2, 3, 4 по дисциплине «Автоматизация технологических процессов и производств» для студентов специальности 220301 «Автоматизация технологических процессов и производств (в машиностроении)» всех форм обучения.

5. А.Н.Трусов. Построение циклограмм работы автоматически обрабатывающих ячеек. Методические указания к лабораторной работе по дисциплине «Автоматизация технологических процессов и производств» для студентов специальности 220301 «Автоматизация технологических процессов и производств (в машиностроении)» всех форм обучения.

6. СТО УГАТУ 016-2008. Графические и текстовые конструкторские документы. Общие требования к построению, изложению и оформлению. – Взамен СТП УГАТУ 002-98; введен. 2008-01-01. – Уфа: УГАТУ, 2008.

7..ГОСТ 2.104-2006 ЕСКД. Основные надписи. – Взамен ГОСТ 2.104-68; введен. 2006-09-01.-М.: Стандартинформ,2007.

Приложение А

(обязательное)

Образец титульного листа

Министерство образования и науки РФ

Филиал Федерального государственного бюджетного образовательного учреждения высшего образования

«Уфимский государственный авиационный технический университет»

в г.Кумертау

Кафедра «ТПЛАа»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Автоматизация технологических процессов и производств»

Вариант ХХ

Выполнил: ст. гр. КТО-ХХ

А.А. Сидоров

Проверил: ст. преподаватель

Н.Г.Васильева

Кумертау – 201_г


Приложение Б

(обязательное)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

по дисциплине «Автоматизация производственных процессов»

для студентов по специальности 15.03.05

«Конструкторско-технологическое обеспечение машиностроительных производств»

Составил: ст. преподаватель

кафедры «ПА»

Н.Г.Васильева

Кумертау – 2015г.

Порядок оформления расчетно-графической работы

Расчетно-графическая работа (РГР) выполняется на одной стороне листа формата А4 с применением печатающих графических устройств вывода ЭВМ. Для оформления РГР необходимо использовать текстовый редактор Microsoft Word , шрифт - Times New Roman, размер шрифта 14 пт, через одинарный интервал с абзацным отступом 1,25 см. Выравнивание текста - по ширине.

РГР должна содержать следующие разделы:

Титульный лист (ПРИЛОЖЕНИЕ А);

Введение - снабжается рамкой с основной надписью по ГОСТ 2.104-68, форма 2а, не более 1-2 стр. (ПРИЛОЖЕНИЕ Б);

Развернутый ответ на вопрос, выбранный в соответствии с номером варианта по журналу из задания 1;

Подробное описание с необходимым иллюстративным материалом технологии выполнения задания 2,3 выбранного в соответствии с номером варианта по журналу или по последней цифре шифра зачетки;

Заключение, не более 1-2 стр.;

Список источников (не менее 5);

Приложение.

Расположение текста на листе:

1) Расстояние от рамки формы до границ текста в начале и в конце строк не менее 3 мм;

2) Расстояние от верхней или нижней строки текста до верхней или нижней рамки должно быть не менее 10 мм;

3) Абзацы в тексте начинаются отступом 12,5 мм.



2024 stdpro.ru. Сайт о правильном строительстве.