Частичный ремонт обмоток электрических машин. Пайка обмоток, коллекторов, бандажей. Ремонт обмоток возбуждения. Пайка, изолировка и увязка схемы обмотки электродвигателя

Страница 12 из 14

Основные сведения об обмотках.

В настоящем разделе сведения об обмотках и способах их ремонта приведены только в таком объеме, в каком должен о них знать электрослесарь, чтобы квалифицированно выполнять электрослесарные операции ремонта электрических машин.
Обмотка электрической машины образуется из витков, катушек и катушечных групп.
Витком называют два последовательно соединенных между собой проводника, расположенные под соседними разноименными полюсами. Необходимое (общее) число витков обмотки определяется номинальным напряжением машины, а площадь сечения проводников - током машины, биток может состоять из нескольких параллельных проводников.
Катушка - несколько витков, уложенных соответствующими сторонами в два паза и соединенных между собой последовательно. Части катушки, лежащие в пазах сердечника, называют пазовыми или активными, а расположенные вне пазов - лобовыми.
Шагом катушки называют число пазовых делений, заключенных между центрами пазов, в которые укладываются стороны витка или катушки. Шаг катушки может быть диаметральным или укороченным. Диаметральным называют шаг катушки, равный полюсному делению, а укороченным - несколько меньший диаметрального.
Катушечная группа представляет собой несколько последовательно соединенных катушек одной фазы, стороны которых лежат под двумя соседними полюсами.
Обмотка - это несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.
Показателем, характеризующим обмотку электрической машины переменного тока, служит число пазов q на полюс и фазу, указывающие, сколько катушечных сторон каждой фазы приходится. на один полюс обмотки. Поскольку, катушечные
стороны одной фазы, лежащие под двумя соседними полюсами обмотки, образуют катушечную группу, то число q показывает количество катушек, из которых состоят катушечные группы данной обмотки.
Обмотки электрических машин подразделяются на петлевые, волновые и комбинированные. По способу заполнения пазов обмотки электрических машин могут быть однослойными и двухслойными. При однослойной обмотке сторона катушки занимает весь паз по его высоте, а при двухслойной - только половину паза; другую его половину заполняет соответствующая сторона другой катушки.
Способы укладки обмоток в пазы зависят от формы последних. Пазы статоров, роторов и якорей электрических машин могут быть следующих видов: закрытые - в которые провода катушки вводят с торца сердечника; полузакрытые - в которые провода катушки вкладывают («всыпают») по одному через узкую прорезь пазовполуоткрытые - в которые вкладывают -жесткие катушки, разделенные в каждом слое на две; открытые - в которые вкладывают жесткие катушки.
В машинах старых конструкций обмотки удерживаются в пазах - клиньями из дерева, а в современных машинах - клиньями из разных твердых изоляционных материалов или бандажами. Различные формы пазов электрических машин были показаны на рис. 98.
Обмотки электрических машин выполняют в соответствии с чертежом, на котором их схемы показаны условно и представляют собой, графическое изображение развертки окружности статора, ротора или якоря. Такие схемы называют развернутыми. Эти схемы можно применять для изображения обмоток электрических машин всех видов как постоянного, так и переменного тока, однако в ремонтной практике для изображения схем двухслойных обмоток статоров электрических машин переменного тока в последнее время используют преимущественно торцевые схемы, отличающиеся простотой исполнения и большей наглядностью. Торцевая схема двухслойной обмотки статора четырех полюсной машины показана на рис. 139, а, а соответствующая ей развернутая схема - на рис. 139,6.
Схемы обмоток обычно изображают в одной проекции. Чтобы, легко было различать расположение катушек в пазах сердечника в схемах двухслойных обмоток, стороны катушек в пазовой части изображают двумя рядом расположенными линиями - сплошной и пунктирной (штрихпунктирной); сплошная линия обозначает сторону катушки, уложенную в верхнюю часть паза, а пунктирная - нижнюю сторону катушки, уложенную на дно паза. В разрывах вертикальных линий указывают номера пазов сердечника. Нижний и верхний слои лобовых частей изображают соответственно пунктирными и сплошными линиями.


Рис. 139. Схемы двухслойной трехфазной обмотки: а - торцевая, б - развернутая
Стрелки на элементах обмотки, проставляемые на некоторых схемах, показывают направление ЭДС. или токов в соответствующих элементах обмотки в определенный (один и тот же для всех фаз обмотки) момент времени.
Начала первой, второй и третьей фаз обозначают С/, С2 и СЗ, а концы этих фаз - соответственно ~С4, С5 и Сб. В схеме указывается вид обмотки, а также приводятся ее параметры: z - число пазов; 2р - число полюсов, у - шаг обмотки по пазам; а - число параллельных ветвей в фазе; т - число фаз; Y (звезда) или Д (треугольник) - способы соединения фаз.

Схемы и конструкции обмоток.

Обмотки статоров. Существуют различные схемы и конструкции обмоток статоров. Ниже рассмотрены только те из них, которые чаще всего
Рис. 140. Расположение лобовых частей однослойной обмотки


применялись в электрических машинах старых конструкций и используются в настоящее время.
Однослойные обмотки, используемые в машинах старых конструкций, широко применяются и в современных машинах благодаря их высокой технологичности, позволяющей производить намотку обмоток механизированным способом - на специальных намоточных станках. Общее число катушек однослойной обмотки равно половинному числу пазов статора, так как одна из сторон катушки занимает весь паз, а следовательно, обе стороны катушки - два паза.
Однослойные катушки имеют различные формы, а лобовые части катушек одной катушечной группы - одинаковую форму, но разные размеры. Для того чтобы уложить обмотку в пазы сердечника статора, лобовые части катушек располагают по окружности в два или три ряда (рис. 140).
Из однослойных обмоток наиболее распространены концентрические двух- и трех плоскостные. Их называют концентрическими из-за концентрического расположения катушек катушечной группы, а двух- и трехплоскостными - из-за способа расположения лобовых частей обмотки в двух или трех уровнях.
Схема трехфазной однослойной концентрической двухплоскостной обмотки статора показана на рис. 141, а. На линиях пазов имеются стрелки, указывающие направления ЭДС и тока в каждом пазу в зависимости от расположения его под полюсами в магнитном поле обмотки в определенный момент времени. В однослойной трехфазной обмотке число катушечных групп всей обмотки равно 3р ip - число групп в каждой фазе).
При четном числе пар полюсов статора (2р = 4, 8, 12 и т. д.) число катушечных групп будет также четным и их можно разделить поровну на два вида; малые катушечные группы - с расположением лобовых частей в первой плоскости; большие катушечные группы - с расположением лобовых частей во второй плоскости. В этом случае вся двухплоскостная обмотка может быть распределена на три фазы с равным числом малых и больших катушечных групп в каждой фазе. Если число пар полюсов статора нечетное (2/7 = 6, 10, 14 и т. д.), двухплоскостная однослойная обмотка не может быть распределена по фазам с одинаковым количеством больших и малых катушечных групп. Одна из катушечных групп получается с перекошенными лобовыми частями, поскольку ее половины располагаются в разных плоскостях.


Рис. 141. Схемы обмоток статоров электрических машин: а - однослойной концентрической двухплоскостной, 6 - однослойной двухплоскостной с переходной катушечной группой, в - двухслойной петлевой

Такую катушечную группу называют переходной.
Схема однослойной двухплоскостной обмотки статора шестиполюсной, машины с переходной катушечной группой показана на рис. 14Цб. Изготовление однослойных обмоток с мягкими катушками из круглых проводов и с переходными лобовыми частями технологически несложно. Намотка жестких катушек однослойной обмотки из проводов прямоугольного сечения связана с рядом трудностей - использованием специальных шаблонов и сложностью формовки лобовых частей катушек переходной группы. Если такую обмотку применяют в роторе, то из-за разной массы (неуравновешенности) лобовых частей обмотки затрудняется балансировка ротора, а наличие дисбаланса вызывает вибрацию машины.
В двухслойной обмотке общее число катушек равно полному числу пазов сердечника статора, а общее число катушечных групп в фазе - числу полюсов машины. Двухслойные обмотки выполняют в одну или несколько параллельных ветвей. Схема двухслойной петлевой обмотки, выполненной в две параллельные ветви {а = 2) с катушками в одновитковом исполнении, показана на рис. 141, в. В ней отсутствуют дополнительные межкатушечные перемычки, поскольку межкатушечные соединения выполнены непосредственно лобовыми частями.
Все катушечные группы, входящие в какую-либо параллельную ветвь, сосредоточены на одной части окружности статора, поэтому такой способ образования параллельных ветвей называют сосредоточенным в отличие от распределенного способа, при котором все катушечные труппы жаждой параллельной ветви распределяются по всей окружности статора. Чтобы выполнить параллельное соединение распределенным способом, необходимо в первую параллельную ветвь, первой фазы включить последовательно нечетные катушечные группы (1,7, 13 и 19) схемы, а во вторую параллельную ветвь - четные катушечные группы (4, 10,16 и 2V2) этой схемы. Возможное число параллельных ветвей двухслойной петлевой обмотки с целым числом пазов на полюс и фазу определяется отношением количества пар полюсов к количеству параллельных ветвей, равным целому числу и равняется целому числу).
Основное преимущество двухслойных обмоток по сравнению с однослойными - возможность выбора любых укорочений шага обмотки, улучшающих характеристики электрической машины:
Обмотки роторов. Роторы асинхронных электрических машин выполняют с короткозамкнутой или фазной обмоткой.
Короткозамкнутые обмотки электрических машин старых конструкций изготовлялись в виде «беличьей клетки», состоящей из медных стержней, концы которых были запаяны в отверстиях, высверленных в медных короткозамыкающих кольцах (см. рис. 97, а).


Рис. 142. Волновые обмотки: а - ротора, б - якоря
В современных асинхронных электрических машинах мощностью да 100 кВт короткозамкнутая обмотка ротора образуется путем заливки его пазов расплавом алюминия.
В фазных роторах асинхронных электродвигателей применяют чаще всего двухслойные волновые или петлевые обмотки. Наиболее распространены волновые обмотки, основное преимущество которых состоит в минимальном числе межгрупповых соединений.
Основным элементом волновой обмотки является обычно стержень. Двухслойную волновую обмотку выполняют, вставляя с торца ротора в каждый его закрытый или полузакрытый паз по два стержня. Схема волновой обмотки четырехполюсного ротора, имеющего 24 паза показана на рис. 142, а. В каждый паз обмотки закладывают два стержня, причем стержни верхнего и нижнего слоев соединяют пайкой с использованием хомутиков, надеваемых на концы стержней.
Шаг обмотки волнового типа равен числу пазов, разделенному на число полюсов. В схеме, показанной на рис. 142, я, шаг обмотки по пазам = 24:4 = 6. Это означает, что верхний стержень паза 1 соединяется с нижним стержнем паза 7, который при шаге обмотки, равном шести, соединяется с верхним стержнем паза 13 и нижним 19. Для продолжения обмотки шагом, равным шести, надо соединить нижний стержень паза с верхним паза 7, т. е. замкнуть обмотку, что недопустимо. Во избежание замыкания обмотки при подходе к пазу, с которого она начиналась, укорачивают или удлиняют шаг обмотки на один паз. Волновые обмотки выполненные с сокращением шага на один паз, называют обмотками с укороченными переходами, а выполненные с увеличением шага на один паз - обмотками с удлиненными переходами.
На схеме обмотки число пазов q на полюс и фазу равно двум, поэтому надо выполнить два обхода ротора, а для создания четырех полюсной обмотки не хватает соединений с противоположной стороны ротора, которые можно получить при его обходе, но уже в обратном направлении. В волновых обмотках различают передний шаг обмотки со стороны выводов (контактных колец) и задний шаг обмотки со стороны, противоположной контактным кольцам.
Обход ротора в обратном направлении, в данном случае переход на задний шаг, достигается соединением нижнего стержня паза 18 с. нижним стержнем, отстоящим от него на один шаг. Далее делается два обхода ротора. Продолжая обход ротора задним ша ом, нижний стержень паза 12 соединяют с. верхним стержнем паза 6. Дальнейшие соединения производят так. Нижний стержень паза Г соединяют с верхним стержнем паза 19, который (как видно из схемы) соединяется с нижним стержнем паза 13, а последний, в свою очередь, - с верхним стержнем паза 7. Другой конец верхнего стержня паза 7 идет на вывод, составляя конец первой фазы.
Обмотки фазных роторов асинхронных двигателей, соединяют преимущественно по схеме «в звезду» с выводом трех концов обмотки к контактным кольцам. Выводы концов обмотки ротора обозначают от первой фазы Р1, от второй Р2 и от третьей Р39 а концы фаз обмотки - соответственно Р4, Р5 и Р6. Перемычки, соединяющие начала и концы фаз обмотки ротора, указывают римскими цифрами, например, в первой фазе перемычка, соединяющая начало Р1 и конец Р4, обозначена цифрами I -IV, Р2 и Р5 - II-V, РЗ и Р6 - III -VI.
Обмотки якорей. Простая волновая обмотка якоря (рис. 142,6) производится присоединением выводных концов секций к двум коллекторным пластинам АС и BD, расстояние между которыми определяется двойным полюсным делением (2т). При выполнении обмотки конец последней секции первого обхода соединяют с началом секции, соседней с той, от которой начат был обход, и далее продолжают обходы по якорю и коллектору, пока не будут заполнены все пазы и не замкнется обмотка.


Рис. 143. Станок для ручной намотки катушек обмоток статоров:
а - общий вид, б - вид со стороны шаблона; 1 - колодки шаблона, 2 вал, 3 - диск, 4 - счетчик оборотов, 5 - рукоятка

Технология ремонта обмоток.

Многолетняя практика эксплуатации отремонтированных электрических машин с частично замененными обмотками показала, что они, как правило, выходят из строя после непродолжительного времени. Вызвано это рядом причин, в том числе нарушением при ремонте целости изоляции неповрежденной части обмоток, а также несоответствием качества и сроком службы изоляции новой и старой частей обмоток. Наиболее целесообразной при ремонте электрических машин с поврежденными обмотками является; замена всей обмотки с полным или частичным использованием её проводов. Поэтому в настоящем разделе приводятся описания ремонтов, при которых поврежденные обмотки статоров, роторов и якорей заменяются полностью вновь изготовленными на ремонтном предприятии.

Ремонт обмоток статоров.

Изготовление обмотки статора начинают с заготовки отдельных катушек на шаблоне. Для правильного выбора размера шаблона необходимо знать основные размеры катушек, главным образом их прямолинейной и лобовой частей. Размеры катушек обмотки ремонтируемых машин могут быть определены замером старой обмотки.
Катушки всыпных обмоток статоров наматывают на простых или универсальных шаблонах с ручным или механическим приводом.

При ручной намотке катушек на простом шаблоне разводят обе его колодки 1 (рис. 143, д, б) на расстояние, определяемое размерами обмотки, и закрепляют их в вырезах диска 3, насаженного на вал 2. Затем один конец обмоточного провода закрепляют на шаблоне и, вращая рукоятку 5, наматывают требуемое число витков катушки.
Количество витков в намотанной катушке показывает счетчик 4, установленный на раме станка и связанный с валом 2. Окончив намотку одной катушки, переносят провод в соседний вырез шаблона и наматывают следующую катушку.
Ручная намотка катушек на простом шаблоне требует больших затрат труда и времени. Чтобы ускорить процесс намотки, а также уменьшить количество паек и соединений, применяют механизированную намотку катушек на станках со специальными шарнирными шаблонами (рис. 144,а), позволяющими последовательно наматывать все катушки, приходящиеся на одну катушечную группу или всю фазу. Кинематическая схема станка для механизированной намотки катушек показана на рис. 144,6.
Для намотки катушечной группы на шарнирном шаблоне с механическим приводом заводят конец провода в шаблон и включают станок. Намотав требуемое число витков, станок автоматически останавливается. Для съема намотанной катушечной группы станок оборудован пневматическим цилиндром
который через тягу, проходящую внутри полого шпинделя, действует на шарнирный механизм 9 шаблона, при этом головки шаблона сдвигаются к центру и освободившаяся катушечная группа легко снимается с шаблона. Готовую катушечную группу укладывают в пазы.
Перед намоткой катушек или катушечных групп следует тщательно ознакомиться с обмоточно-расчетной запиской ремонтируемой электрической машины, в которой указывают: мощность, номинальное напряжение и частоту вращения ротора электрической машины; тип и конструктивные особенности обмотки; число витков в катушке и проводов в каждом витке; марку и диаметр обмоточного провода; шаг обмотки; количество параллельных ветвей в фазе; число катушек в группе; порядок чередования катушек; класс применяемой изоляции по нагревостойкости, а также различные сведения, относящиеся к конструкция и способу изготовления обмотки.
Нередко при ремонте обмоток двигателей приходится заменять отсутствующие провода требуемых марок и сечений имеющимися проводами. По этим же причинам намотку катушки одним проводом заменяют намоткой двумя и более параллельными проводами, суммарное сечение которых эквивалентно требуемому. При замене проводов обмоток ремонтируемых электродвигателей предварительно (до намотки катушек) проверяют коэффициент заполнения паза, который должен быть в пределах 0,7 -. 0,75. При коэффициенте более 0,75
а - шарнирный шаблон станка, 6 - кинематическая схема; 1 - зажимная гайка, 2- фиксирующая планка, 3 - шарнирная планка, 4 - оправка, 5 - пневматический цилиндр, б-передача, 7 - ленточный тормоз, 8 - шаблон, 9 - шарнирный механизм шаблона, 10 - механизм зацепления автоматического останова станка, И - педаль включения станка, 12 - электродвигатель
Рис. 144. Станок для механизированной намотки катушечных групп обмоток статоров:


укладка проводов обмотки в пазы будет затруднена, а при менее 0,7 провода неплотно разместятся в пазах и мощность электродвигателя будет использована не полностью.
Рис. 145. Укладка в пазы сердечника проводов катушки всыпной обмотки


Катушки двухслойной обмотки укладывают в пазы сердечника группами, как они были намотаны на шаблоне. Распределяют провода в один слой и вкладывают стороны катушек, прилегающие к пазу (рис. 145); другие стороны этих катушек оставляют не вложенными в пазы, пока не будут уложены нижние стороны катушек во все, пазы, охватываемые шагом обмотки. Следующие катушки укладывают одновременно нижними и верхними сторонами. Между верхними и нижними сторонами катушек в пазах устанавливают изоляционные прокладки из электрокартона, согнутые в виде скобочки, а между лобовыми частями - из лакоткани или листов картона с наклеенными на них кусками лакоткани.
При ремонте электрических машин старых конструкций с закрытыми пазами рекомендуется до начала демонтажа обмотки снять с натуры ее обмоточные данные (диаметр провода, число проводов в пазу, шаг обмотки по пазам и другие), а затем сделать эскизы лобовых частей и замаркировать пазы статора. Эти данные могут оказаться необходимыми при восстановлении обмотки.
Выполнение обмоток электрических машин с закрытыми пазами имеет ряд особенностей. Пазовую изоляцию таких машин делают в виде гильз из электрокартона и лакоткани. Для изготовления гильз предварительно по размерам пазов машины выполняют стальной дорн 1, представляющий собой два встречных клина (рис. 146). Размеры дорна должны быть меньше размеров паза на толщину гильзы 2.


Рис. 146.Способ изготовления изоляционных гильз электрических машин с закрытыми пазами сердечника:
1 - стальной дорн, 2 - изоляционная гильза

Затем по размерам старой гильзы нарезают заготовки из электрокартона и лакоткани на полный комплект гильз и приступают к их изготовлению. Нагревают дорн до 80 - 100 °С и плотно обертывают заготовкой, пропитанной лаком. Поверх заготовки туго накладывают слой хлопчатобумажной ленты вполнахлеста. По истечении времени, необходимого для охлаждения дорна до температуры окружающей среды, разводят клинья и снимают готовую гильзу. Перед намоткой вставляют «гильзы в пазы статора, а затем заполняют их стальными спицами, диаметр которых должен быть на 0,05 - ОД мм больше диаметра изолированного обмоточного провода.
От бухты обмоточного провода отмеряют и отрезают кусок провода, необходимого для намотки одной катушки. При использовании слишком длинных кусков провода усложняется намотка, требуется большая затрата времени и нередко повреждается изоляция из-за частой протяжки провода через паз.
Намотка впротяжку является трудоемкой ручной работой, которую обычно выполняют два обмотчика, стоящие с двух сторон статора (рис. 147). До на чала обмотки устанавливают в пазах статора стальные спицы соответственно диаметру и количеству проводов обмотки, размещаемых в его пазах. Процесс намотки состоит из операций протяжки провода через гильзы, вложенные в пазы, предварительно очищенные от грязи и остатков старой изоляции, и укладки- провода в пазах и лобовых частях. Намотку начинают обычно со стороны, где будут соединяться катушки, и ведут в такой последовательности. Первый обмотчик зачищает конец провода на длине, превышающей на 10-12 см Длину паза, а затем, вынув, в первом пазу спицу вставляет вместо нее зачищенный конец провода и проталкивает его до выхода из паза на противоположной стороне сердечника. Второй обмотчик закатывает плоскогубцами выступающий из паза конец провода и протаскивает на свою сторону, а затем, вынув спицу из соответствующего паза, по шагу обмотки вставляет вместо нее конец вытянутого провода и проталкивает его в сторону первого обмотчика. Дальнейший процесс намотки представляет собой повторение описанных выше операций до полного заполнения паза.
Протяжка проводов последних витков катушек затруднена, поскольку приходится протаскивать провод через заполненный паз с большим усилием. Для облегчения протяжки провода натирают тальком. В ремонтной практике обмотчики вместо талька нередко применяют парафин, что не рекомендуется, так как хлопчатобумажная изоляция провода, покрытая слоем парафина, плохо впитывает пропиточные лаки, вследствие чего ухудшаются условия пропитки изоляции пазовой части проводов обмотки, а это может привести к витковым замыканиям в обмотке отремонтированной машины.
При намотке катушек впротяжку первой наматывают внутреннюю катушку, лобовую часть которой укладывают по шаблону, а для намотки остальных катушек на намотанную лобовую часть ставят дистанционные прокладки из электрокартона. Эти прокладки необходимы для создания между лобовыми частями зазоров, служащих для изоляции, а также лучшего обдувания головок охлаждающим воздухом в процессе работы машины.

Рис. 1,47. Намотка катушек статора электрической машины с закрытыми пазами сердечника
Изоляцию лобовых частей обмотки машин на напряжение до 660 В, предназначенных для работы в нормальной среде, выполняют стеклолентой ЛЭС, причем каждый последующий слой полуперекрывает предыдущий. Каждую катушку группы обматывают, начиная от торца сердечника, таким образом. Сначала обматывают лентой часть изоляционной гильзы, выступающую из паза, а затем часть катушки до конца изгиба. Середины головок группы обматывают общим слоем стеклоленты вполнахлеста. Конец ленты закрепляют на головке клеящим составом или прочно пришивают к ней. Провода обмотки, лежащие в пазу, должны прочно удерживаться в нем, для чего применяют пазовые клинья, изготовляемые главным образом из сухого бука или березы. Клинья делают также из различных изоляционных материалов соответствующей толщины, например из пластмассы, текстолита или гетинакса, и изготовляют на специальных станках.
Длина клина должна быть больше длины сердечника статора на 10 - 15 мм и равна или на 2 - 3 мм меньше длины пазовой изоляции. Толщина клина зависит от формы верхней части паза и его заполнения. Деревянные клинья должны быть толщиной не менее 2 мм. Чтобы придать деревянным клиньям влагостойкость, их проваривают в течение З-4 ч в олифе при 120 - 140 °С, а затем в течение 8 - 10 ч сушат при 100- 110 °С.
Клинья забивают в пазы мелких и средних машин при помощи молотка и деревянной надставки, а в пазы крупных машин - пневматическим молотком. Окончив укладку катушек в пазы статора и расклиновку обмотки, собирают схему. Если фаза обмотки намотана отдельными катушками, сборку схемы начинают с последовательного соединения катушек в катушечные группы.
За начала фаз принимают выводы катушечных групп, выходящие из пазов, которые расположены вблизи выводного щитка. Эти выводы отгибают к корпусу статора и предварительно соединяют катушечные группы каждой фазы, скручивая зачищенные от изоляции концы проводов катушечных групп.

После сборки схемы обмотки проверяют электрическую прочность изоляции между фазами и на корпус приложением напряжения, а также правильность соединения схемы. Для проверки правильности сборки схемы используют самый простой способ - кратковременно подключают статор к сети 127 или 220 В, а затем к поверхности его расточки прикладывают стальной шарик (от шарикоподшипника) и отпускают его. Если шарик вращается по окружности расточки, схема собрана верно. Эту проверку можно произвести также с помощью вертушки. Диск из жести пробивают в центре и укрепляют гвоздем на торце деревянной планки, чтобы он мог свободно вращаться, а затем сделанную таким образом вертушку помещают в расточку статора, подключенного к сети. При правильной сборке схемы диск будет вращаться.
Для проверки правильности сборки схемы и отсутствия витковых замыканий в обмотках ремонтируемых машин применяют аппарат ЕЛ-1 (рис. 148, а), который служит также для нахождения паза с короткозамкнутыми витками в обмотках статоров, роторов и якорей, проверки правильности соединения обмоток по схеме и маркировки выводных концов фазных обмоток машин. Он обладает высокой чувствительностью, позволяющей выявлять налитое одного короткозамкнутого витка на каждые 2000 витков.
Аппарат ЕЛ-1 переносного типа помещен в металлический1 кожух с ручкой для переноски. На передней панели аппарата расположены ручки управления, зажимы для присоединения испытываемых обмоток или приспособления для нахождения паза с короткозамкнутыми витками и экран электронно-лучевого индикатора. На задней стенке размещены предохранитель и колодка для присоединения шнура и подключения аппарата к сети.
В нижней, части передней панели имеются пять зажимов. Крайний правый зажим служит для присоединения заземляющего провода, зажимы «Вых. имп.» - для присоединения последовательно соединенных испытываемых обмоток или возбуждающего электромагнита приспособления, зажимы «Сигн. явл.» - для подключения подвижного электромагнита приспособления или соединения средней точки испытываемых обмоток.
Масса аппарата 10 кг.
Испытание обмоток с помощью ЕЛ-1 производят, руководствуясь инструкцией, прилагаемой к аппарату. Для выявления дефектов к аппарату присоединяют две одинаковые обмотки или секции, а затем с обеих испытуемых обмоток при помощи синхронного переключателя подают периодически импульсы напряжения на электронно-лучевую трубку аппарата: если в обмотках нет повреждений и они одинаковы, кривые напряжений на экране


Рис. 148. Электронный аппарат EЛ-1 для контрольных испытаний обмоток (а) и приспособление для обнаружения паза с короткозамкнутыми витками (б)
электронно-лучевой трубки будут накладываться друг на друга, а при наличии дефектов - раздваиваться.
Для выявления пазов, в которых находятся короткозамкнутые витки обмотки, пользуются приспособлением с двумя П-образными электромагнитами на 100 и 2000 витков (рис. 148,6). Катушку неподвижного электромагнита (100 витков) присоединяют к зажимам «Вых. имп». аппарата, а катушку подвижного электромагнита (20ф витков) - к зажимам «Сигн. явл.», при этом средняя ручка должна быть поставлена в крайнее левое положение «Работа с приспособлением».
При перестановке обоих электромагнитов приспособления с паза на паз по расточке статора на экране электронно-лучевой трубки будут наблюдаться прямая или кривая линия с малыми амплитудами, свидетельствующая об отсутствии в пазу короткозамкнутых витков, или две кривые линии с большими амплитудами, (вывернутыми по отношению друг к другу), указывающие на наличие в пазу короткозамкнутых витков. По этим характерным кривым и находят паз с короткозамкнутыми витками обмотки статора. Подобным образом, переставляя оба электромагнита приспособления по поверхности фазного ротора или якоря машины постоянного тока, находят в них пазы с короткозамкнутыми витками.
При выполнении обмоточных работ наряду с обычными инструментами (молотками, ножами, пассатижами) применяют и специальный инструмент (рис. 149, а з), облегчающий такие работы, как укладка и уплотнение проводов в пазах, обрезка выступающей из паза изоляции, гибка медных стержней обмоток якорей и ряд других обмоточных операций.


Рис. 149ч Набор специального инструмента обмотчика электрических машин:
а - пластинка, б - «язык», в - обратный клин, г - угловой нож, д - выколотка, е - топорик, ж и з - ключи для гнутья стержней ротора

Ремонт обмоток роторов.

В асинхронных двигателях с фазным ротором распространены два основных типа обмоток: катушечная и стержневая. Способы изготовления всыпных и протяжных катушечных обмоток роторов почти не отличаются от описанных выше способов изготовления таких же обмоток статоров. При изготовлении обмоток роторов необходимо равномерно располагать лобовые части обмотки для обеспечения сбалансированности масс ротора,- особенно у быстроходных электродвигателей.
В машинах мощностью до 100 кВт преимущественно применяют стержневые двухслойные волновые обмотки роторов. В этих обмотках, выполненных из медных стержней, повреждаются не сами стержни, а только их изоляция вследствие частых и чрезмерных нагревов, при которых нередко оказывается поврежденной и пазовая изоляция роторов.
При ремонте роторов со стержневыми обмотками медные стержни поврежденной обмотки, как правило, используются повторно, поэтому выемку стержней из пазов производят так, чтобы сохранить каждый стержень и после восстановления изоляции уложить его в тот же паз, в котором он находился до разборки. Для этого ротор эскизируют и делают записи но следующим элементам обмотки: бандажам - числу и расположению бандажей, количеству витков и слоев бандажной проволоки, диаметру бандажной проволоки и числу скрепок (замков), количеству слоев и материалу подбандажной изоляции; лобовым частям - длине вылетов, направлению изгиба стержней, шагам обмотки (передний » задний), переходам (перемычки), к каким пазам относятся начала и концы фаз; пазовым частям - размерам стержня (изолированного и неизолированного), длине Стержня в пределах паза и полной длине прямолинейного- участка; изоляции - материалу, размерам и числу слоев изоляции стержней, пазовой коробочки, прокладок в пазу и лобовых частях, исполнению изоляции обмоткодержателя и т. д.; балансировочным грузам - их количеству и расположению; схеме эскизу схемы обмотки с нумерацией пазов и указанием ее отличительных особенностей. Эти эскизы и записи особенно тщательно должны быть сделаны при ремонте машин старых конструкций.
Для выемки стержней обмотки ротора следует предварительно разогнуть замки бандажей и удалить бандажи; замаркировать (в соответствии с нумерацией пазов на чертеже схемы обмотки) всё пазы, к которым относятся начала и концы фаз, а также переходные перемычки; удалить клинья из пазов ротора, затем распаять пайки в головках и снять соединительные хомутики.
Специальным ключом (см. рис. 1\49,з) следует выпрямить расположенные со стороны контактных колец отогнутые лобовые части стержней верхнего слоя, вынуть эти стержни из паза, при этом на каждом стержне надо выбить номер паза и слоя, после чего в таком же порядке вынуть стержни нижнего слоя. Затем следует очистить стержни от старой изоляции, выправить (отрихтовать) их, удаляя заусенцы и неровности, и зачистить концы металлической щеткой.
В конце операции необходимо очистить пазы сердечника ротора, обмоткодержатели и нажимные шайбы от остатков изоляции и проверить состояние пазов. Если есть неисправности, устранить их.
Извлеченные из пазов ротора стержни, изоляцию которых не удается удалить механическим путем, обжигают в специальных печах при 600 - 650 °С, не допуская превышения температуры обжига более 650 °С, ухудшающей электрические и механические свойства меди стержней вследствие пережога. Удалять изоляцию с медных стержней можно и химическим путем, погрузив их на 30 - 40 мин в ванну с 6 %-ным раствором серной кислоты. Стержни, вынутые из ванны, следует промыть в щелочном растворе и воде, а затем обтереть чистыми салфетками и просушить. Концы стержней облуживают припоем ПОС 30 или ПОС 40.
У свободных от старой изоляции и отрихтованных стержней восстанавливают изоляцию; новая изоляция по нагревостойкости, способу выполнения и изоляционным свойствам должна соответствовать заводскому исполнению. Восстанавливают также и пазовую изоляцию, укладывая изоляционные прокладки на дно пазов и устанавливая пазовые коробочки так, чтобы обеспечивался их равномерный вылет из пазов с обеих сторон сердечника ротора.
По окончании подготовительных операций приступают к сборке обмотки.

Сборка стержневой обмотки ротора состоит из трех основных видов работ - укладки стержней в пазы сердечника ротора, гибки лобовой части стержней и соединения стержней верхнего и нижнего рядов лайкой или сваркой.
Изолированные стержни, используемые повторно, поступают на укладку в пазы только с одной изогнутой лобовой частью. Гибку вторых кондов этих стержней производят специальными ключами после укладки в пазы. Вначале укладывают в пазы стержни нижнего ряда, вставляя их со стороны, противоположной контактным кольцам. Уложив весь нижний ряд стержней, осаживают их прямые участки на дно пазов, а изогнутые лобные части - на изолированный обмоткодержатель. Концы изогнутых лобовых частей прочно стягивают временным бандажом из. мягкой стальной проволоки, плотно прижимая их к обмоткодержателю. Второй временный бандаж из проволоки наматывают посредине лобовых частей. Временные бандажи служат для предотвращения смещения стержней во время дальнейших операций их гибки.
После закрепления стержней временными бандажами приступают к гибке лобовых частей. Стержни гнут с помощью двух специальных ключей (см. рис. 1499ж,з): сначала по шагу, а затем по радиусу, обеспечивая требуемый осевой вылет и плотное прилегание их к обмоткодержателю. Чтобы согнуть стержень, берут в левую руку ключ (см. рис; 149,ж) и зевом надевают его на прямую часть стержня, выходящую из лаза сердечника. Держа в правой руке ключ (см. рис. 149;л), надевают его зевом на лобовую часть стержня и подводят вплотную к ключу, показанному на рис. 149,ж, а затем предыдущим ключом изгибают стержень под требуемым углом.
Изогнуть первые стержни сразу на требуемый угол не позволяют прямые части соседних стержней, поэтому первый стержень удается изогнуть только на расстояние между стержнями, второй - на двойное расстояние, третий - на тройное и так до изгиба стержней, занимающих два-три шага обмотки, после чего можно изогнуть стержень на требуемый угол. Последними (дополнительно) изгибают те стержни, с который была начата гибка.
При помощи специальных ключей загибают также концы стержней, на которые затем будут надевать соединительные хомутик», после чего снимают временные бандажи и на лобовые части накладывают межслоевую изоляцию, а в пазы вставляют прокладки между стержнями верхнего и нижнего слоев.
Фазный ротор асинхронного электродвигателя в процессе сборки стержневой обмотки доказан на рис. 150. После укладки стержней нижнего ряда переходят к установке стержней верхнего ряда обмотки, вставляя их в пазы со стороны, противоположной контактным кольцам ротора. Уложив все стержни верхнего ряда, накладывают на них временные бандажи, а их концы соединяют медной проволокой для проверки изоляции обмотки (отсутствия замыканий на корпус).


Рис. 150. Фазный ротор асинхронного электродвигателя в процессе сборки стержневой обмотки:
1 - стойка поворотного устройства, 2 - ролик, 3 и 4 - нижний и верхний ряды стержней, 5 - изоляция между верхним и нижним рядами стержней
При удовлетворительных результатах испытаний изоляции, продолжая процесс сборки обмотки, изгибают концы верхних стержней с помощью приемов, аналогичных приемам изгибания стержней нижнего слоя, но в противоположную сторону. Изогнутые лобовые части верхних стержней также крепят двумя временными бандажами.
После укладки стержней верхнего и нижнего рядов обмотку ротора сушат при 80- 100 °С в печи или сушильном шкафу, оборудованном приточно-вытяжной вентиляцией. Высушенную обмотку испытывают, присоединяя один электрод от высоковольтного испытательного трансформатора к любому из стержней ротора, а другой - к сердечнику или валу ротора, и, поскольку предварительно были все стержни соединены между собой медной проволокой, испытывают одновременно изоляции всех стержней.
Заключительными операциями изготовления стержневой обмотки ротора ремонтируемой машины являются соединение стержней, забивка клиньев в пазы и бандажировка обмотки.
Стержни соединяют облуженными хомутиками, надеваемыми на их концы, а затем припаивают припоем ПОС 40. Хомутики могут быть изготовлены из тонкой полосовой меди или тонкостенной медной трубки требуемого, диаметра. Применяют также самозапирающиеся хомутики, изготовляемые из медной полосы толщиной 1 - 1,5 мм. Один конец такого хомутика имеет фигурный выступ, а другой - соответствующий ему вырез. При загибании хомутика выступ входит в вырез и образует замок, препятствующий разгибанию хомутика.
Хомутики надевают (согласно схеме) на концы стержней, забивают между ними по одному медному контактному клину * , а затем пропаивают соединение паяльником, используя припой ПОС 40, или погружают концы стержней собранной обмотки ротора в ванну с расплавленным припоем. В целях экономии дорогостоящего оловянисто-свинцового припоя используют также соединение медных стержней электросваркой, однако этот способ имеет ряд недостатков, например снижает ремонтопригодность машины, поскольку разборка стержней, соединенных сваркой, связана с необходимостью больших затрат труда на разъединение и зачистку сварных участков при последующих ремонтах. Для повышения надежности машин применяют соединение стержней пайкой твердыми (медно-фосфорными, медно-цинковыми и другими) припоями.

*Контактные клинья служат для создания надежного контакта между концами стержней, поскольку слои стержней разделены изоляцией и поэтому их концы не. могут плотно прилегать друг к другу.

Обмотки фазных роторов асинхронных электродвигателей соединяют преимущественно по схеме «в звезду».
По окончании сборки, пайки и испытания стержней обмотки и соединения ее проводов с контактными кольцами приступают к бандажировке ротора.
При ремонте электрических машин с фазными роторами иногда приходится изготовлять новые стержни. Такая необходимость может быть вызвана повреждением не только изоляции, но и самих стержней обмотки, заменой имеющейся поврежденной катушечной обмотки на стержневую и др.
Изготовление новых стержней требует выполнения гибочных операций большого объема. В крупных электроремонтных цехах и на электроремонтных заводах операции гибки вновь изготовленных стержней роторов осуществляют при помощи специальных приспособлений или гибочных станков.
Простой пневматический станок для гибки (формовки) стержней роторов и якорей показан на рис. 151, д, б. Формовку стержней на этом станке производят следующим образом. Заготовку,- подлежащую формовке, укладывают в паз нижней части сменного штампа, состоящего из подвижной 5 и неподвижной части 6, перемещающейся (под воздействием пневмоцилиндра 9) вверх и вниз. Неподвижная часть имеет вогнутую, а подвижная - выпуклую форму кривизны, соответствующую форме кривизны лобовой части стержня. При включении пневмокрана приходит в движение пневмоцилиндр 9, под действием которого верхняя половина штампа изгибает лобовую часть 4 стержня по радиусу, а рычаги 3 загибают выводной конец и пазовую часть заготовки. Рычаги 3 приводятся в движение поводками 2, закрепленными на зубчатом колесе 7, которое поворачивается от рейки 8, связанной со штоком пневмоцилиндра 2. После гибки стержни изолируют.


Рис. 151. Пневматический станов для гнутья стержней роторов и якорей электрических машин:
а - общий вид, 6 - кинематическая схемам 1 и 9 - пневмоцилиндры, 2 - поводок, 3 - гибочный рычаг, 4 - лобовая часть стержня 5 и б - подвижная и неподвижная части штампа, 7 - зубчатое колесо, 8 - рейка
Чтобы получить монолитный стержень с точно заданными размерами, пазовую часть стержня опрессовывают в специальных прессах. Отпрессованные стержни плотно укладываются в пазы сердечника ротора и в то же время обладают хорошей теплоотдачей.
Подавляющее большинство асинхронных электрических машин мощностью до 100 кВт выпускаются промышленностью с короткозамкнутыми роторами, у которых обмотки имеют вид «беличьей клетки», изготовленной из алюминия методом литья.
Повреждение короткозамкнутого ротора чаще всего выражается в появлении трещин и обрыве стержня, реже - в поломке лопаток вентилятора. Появление трещин и обрыв стержней являются следствием нарушения технологии заливки пазов ротора алюминием, допущенного заводом-изготовителем.
Ремонт ротора с поврежденным стержнем заключается в его перезаливке после выплавки из ротора алюминия и очистки пазов. В небольших электроремонтных цехах заливку ротора алюминием производят в специальной форме - кокиле (рис. 152), состоящем из верхней 4 и нижней 7 половин, в которых имеются кольцевые канавки и углубления для образования при заливке короткозамыкающих колец и вентиляционных лопаток.
Для предотвращения вытекания алюминия из пазов при заливке служит чугунная разъемная рубашка 5. Перед заливкой пакет 6 ротора собирают на технологическую оправку 2, а затем опреесовывают на прессе и запирают на оправке кольцом 1.

Рис. 152. Кокиль для заливки короткозамкнутого ротора алюминием:
1 - кольцо, 2 - оправка, 3 - чаша, 4 и 7 - верхняя и нижняя половины кокиля, 5 - рубашка, 6 - пакет ротора

В таком виде собранный пакет устанавливают в подготовленный кокиль. Ротор заливают расплавленным алюминием через литниковую чашу 3.
После остывания алюминия кокиль разбирают. Отделяют (при помощи зубила и молотка) у ротора литник, а затем выпрессовывают на прессе технологическую оправку.

Ротор, устанавливаемый под заливку, должен иметь нормально спрессованный пакет сердечника, подогретый до 550-600 °С для лучшей адгезии (сцепления) алюминия со стальным пакетом сердечника ротора.
На крупных электромашиностроительных и электроремонтных заводах короткозамкнутые роторы заливают алюминием центробежным или вибрационным способом, а также литьем под давлением

Наиболее эффективна заливка ротора алюминием под низким давлением, поскольку расплав алюминия подается в форму непосредственно из печи, что исключает возможность окисления металла, происходящего при других способах заливки.
Другое преимущество этого способа состоит в том, что при заливке форма заполняется алюминием снизу и поэтому улучшаются условия удаления воздуха из формы.
Процесс заливки осуществляется следующим образом. В тигель б печи 8 (рис. 153) заливают алюминий, очищенный от пленок и газа, и герметически закрывают тигель. Пакет. 4 ротора, набранный на оправку 3, вставляют в неподвижную часть 5 формы. Подвижная часть 2 формы, опускаясь вниз, допрессовывает пакет ротора с необходимым усилием.
При включении пневмокрана (на рисунке не показан) через: воздухопровод 1 в верхнюю часть тигля плавно подают сжатый воздух. Чистый металл по металлопроводу 7 поднимается вверх и заполняет форму» Скорость подъема металла можно регулировать изменением давления сжатого воздуха. После тога как алюминий в форме затвердеет, переключают пневмокран и верхняя полость тигля сообщается с атмосферой, давление в ней падает до нормального.


Рис. 153. Схема заливки роторов алюминием способом литья под низким давлением:
1 - воздухопровод 2 и 5 - подвижная и неподвижная части формы, 3 - оправка, 4 - пакет ротора, б - тигель 7 - металлопровод, 8 - печь

Жидкий алюминий из металлопровода опускается в тигель. Форму раскрывают и из нее извлекают залитый ротор. Структура металла отливки при этом способе получается плотной, а качество отливки - высоким.
Способ заливки ротора под низким давлением эффективен, но нуждается в дальнейшем совершенствовании с целью снижения трудоемкости и повышения производительности процесса.

Ремонт обмоток якорей.

Основными неисправностями обмоток якорей являются электрический пробой изоляции на корпус или бандаж, замыкание между витками и секциями, механические повреждения паек. При подготовке якоря к ремонту с заменой обмотки очищают его от грязи и масла, снимают старые бандажи и, распаяв коллектор, удаляют старую обмотку, предварительно записав все данные, необходимые для ремонта.
В якорях с миканитовой корпусной изоляцией часто бывает очень трудно извлечь секции обмотки из пазов. Если секции вынуть не удается, нагревают якорь в сушильном шкафу до 120-150°С, поддерживая эту температуру в течение 40 - 50 мин, и после этого их извлекают, используя тонкий шлифованный клин, который для поднятия верхних секций вбивают между верхней и нижней секциями, а для поднятия нижних - между нижней Секцией и дном паза. Пазы якоря, освобожденного от обмотки, очищают от остатков старой изоляции и обрабатывают напильниками, а затем дно и стенки пазов покрывают электроизоляционным лаком БТ-99.
В машинах постоянного тока применяют стержневые и шаблонные обмотки якорей. Стержневые обмотки якорей выполняются аналогично стержневым обмоткам роторов, описанным выше. Для намотки секций шаблонной обмотки используют изолированные провода, а также медные шины, изолированные лакотканью или микалентой.
Секции шаблонной обмотки наматывают на универсальных шаблонах, которые позволяют производить намотку, а затем растяжку небольшой секции, не снимая ее с шаблона. Растяжку секций якорей крупных машин выполняют на специальных станках с механическим приводом. Перед растяжкой секцию скрепляют, временно оплетая ее хлопчатобумажной лентой в один слой, чтобы обеспечить правильность формирования секции при растяжке. Катушки шаблонных обмоток изолируют вручную, а на крупных ремонтных предприятиях - на специальных изолировочных станках. При вкладывании шаблонной катушки надо следить за правильным ее положением в пазу: концы катушки, обращенные в сторону коллектора, а также расстояние от края стали сердечника до перехода прямой (пазовой) части в лобовую должны быть одинаковыми. После укладки всех катушек и проверки правильности выполненных операций присоединяют провода обмотки к пластинам коллектора пайкой с использованием припоя ПОС 40.
Присоединение пайкой проводов обмотки якоря к пластинам коллектора - одна из ответственейших операций ремонта; Пайка, выполненная некачественно, вызывает местное увеличение сопротивления и повышенный нагрев участка соединения при работе машины, что может привести к ее аварийному выходу из строя.
Для выполнения Операций пайки предварительно защищают обмотку якоря, покрывая ее листами асбестового картона, затем устанавливают якорь с коллектором в наклонном положении, чтобы при пайке не допустить затекания припоя в пространство между пластинами. Далее вкладывают зачищенные концы проводов обмотки в прорези пластин или петушков, посыпают порошком канифоли, нагревают (Пламенем паяльной лампы или газовой горелки) равномерно коллектор до 180 - 200 °С и, расплавляя паяльником пруток припоя, припаивают провода обмотки к пластинам.
Качество пайки проверяют внешним осмотром, измерением переходного сопротивления между соседними парами пластин, пропусканием рабочего тока по обмотке якоря.


Рис. 154. Станки для изготовления полюсных катушек:
а - для намотки катушки из полосовой меди, 6 - для изолировки / намотанной катушки; 1 - медная шина, 2 и 4 - миканитовая и киперная ленты, 3 - шаблон, 5 - полюсная катушка
На поверхности пластин и между ними не должно быть застывших капель припоя. При качественно выполненной пайке переходное сопротивление между всеми парами пластин коллектора должно быть одинаковым. Пропускание по обмотке якоря в течение 25 - 30 мин номинального рабочего тока не должно вызывать повышенные местные нагревы, свидетельствующие о неудовлетворительной пайке.
Ремонт катушек полюсов. У электрических машин постоянного тока, поступающих в ремонт, чаще всего оказываются поврежденными катушки дополнительных полюсов, намотанные прямоугольной медной шиной плашмя или на ребро. Повреждается не сама медная шина катушки, а изоляция между ее витками. Ремонт катушки сводится к восстановлению междувитковой изоляции путем перемотки катушки.
Катушку перематывают на намоточном станке (рис. 154, а), а затем изолируют на изолировочном станке (рис. 154,6). Изолированную катушку стягивают хлопчатобумажной лентой и прессуют, для чего надевают на оправку торцевую изоляционную шайбу, устанавливают на ней катушку и накрывают второй шайбой, а затем сжимают катушку на оправке, присоединяют к сварочному трансформатору, нагревают до 120 °С и, дополнительно сжимая ее, прессуют окончательно, после чего охлаждают в запрессованном положении на оправке до 25 °С. Снятую с оправки охлажденную катушку покрывают лаком воздушной сушки и выдерживают в течение 10 - 12 ч при - 25 °С.
Наружную поверхность опрессованной катушки изолируют асбестовой, а затем миканитовой лентами и покрывают лаком. Готовую катушку насаживают на дополнительный полюс и закрепляют на нем деревянными клиньями.

Сушка и пропитка обмоток.

Некоторые изоляционные материалы (электрокартон, хлопчатобумажные ленты), применяемые в обмотках, способны впитывать в себя влагу, содержащуюся в окружающей среде. Такие материалы называют гигроскопичными. Наличие влаги в электроизоляционных материалах Препятствует при пропитке обмотки глубокому проникновению пропиточных лаков в поры и капилляры изоляционных деталей, поэтому перед пропиткой обмотки сушат.
Сушку (до пропитки) обмоток* статоров, роторов и якорей производят в специальных печах при 105 - 200 °С. В последнее время ее выполняют инфракрасными лучами, источниками которых являются специальные лампы накаливания.

*Сушка обмоток до пропитки может не производиться, когда обмотка выполнена проводами с влагостойкой изоляцией (эмалированными обмоточными или с стекловолокнистой изоляцией), а изоляция пазов - из стеклоткани или других негигроскопичных материалов, аналогичных ей по своим электроизоляционным свойствам.

Просушенные обмотки пропитывают в специальных пропиточных ваннах, устанавливаемых в отдельном помещении, которое оборудовано приточно-вытяжной вентиляцией и необходимыми средствами пожаротушения.
Пропитка осуществляется погружением частей электрической машины в ванну, заполненную лаком, поэтому размеры ванны должны быть рассчитаны на габаритные размеры ремонтируемых машин. Для повышения проникающей способности лака и улучшения условий пропитки ванны оборудованы устройством для подогрева лака. Ванны для пропитки статоров и роторов крупных электрических машин -снабжены пневморычажным механизмом, позволяющим поворотом рукоятки распределительного крана плавно и без усилий открывать и закрывать тяжелую крышку ванны.
Для пропитки обмоток применяют масляные и маслянобитумные пропиточные лаки воздушной или печной сушки, а в особых случаях - кремнийорганические лаки. Пропиточные лаки должны иметь малую вязкость и высокую проникающую способность, В лаке не должно быть веществ, оказывающих агрессивное воздействие на изоляцию проводов и обмотки. Пропиточные лаки должны длительное время выдерживать воздействие рабочей температуры, не теряя при этом своих изолирующих свойств.
Обмотки электрических машин пропитывают 1, 2 или 3 раза в зависимости от условий их эксплуатации, требований электрической прочности, окружающей среды, режима работы и т. д. При пропитке обмоток непрерывно проверяют вязкость и густоту лака в ванне, так как растворители лаков постепенно улетучиваются и лаки густеют. При этом сильно снижается их способность проникать в изоляцию проводов обмотки, расположенных в пазах сердечника статора, или ротора, особенно у густых лаков при плотной. укладке проводов в пазах. Недостаточная изоляция обмоток при определенных условиях может привести к электрическому пробою изоляции. Для сохранения требуемой густоты лака в прориточную ванну периодически добавляют растворители.
Обмотки. электрических машин после пропитки сушат в специальных камерах подогретым воздухом. По способу нагрева различают сушильные камеры с электрическим, газовым или паровым подогревом, по принципу циркуляции подогретого воздуха - с естественной или искусственной (принудительной) циркуляцией, по режиму работы - периодического и непрерывного действия.
Для многократного использования тепла подогретого воздуха и улучшения режима сушки в камерах используется способ рециркуляции, при котором 50 - 60 % отработавшего горячего воздуха вновь возвращается в сушильную камеру. Для сушки обмоток на. большинстве электроремонтных заводов и в электроцехах промышленных предприятий применяют сушильные камеры с электрическим обогревом.
Эта камера представляет собой сварную каркасную конструкцию из стали, установленную на бетонном. полу. Стены камеры выложены кирпичом и слоем шлаковаты. Воздух, подаваемый в камеру, подогревается электрическими калориферами, состоящими из комплекта трубчатых нагревательных элементов. Загрузку и выгрузку камеры осуществляют при помощи тележки, движением которой (вперед и назад) можно управлять с пульта управлений. Пусковые и включающие аппараты вентилятора и нагревательных элементов камеры сблокированы так, что нагревательные элементы можно включать только после запуска вентилятора. Движение воздуха через калорифер в камеру происходит по замкнутому циклу.
В первый период сушки (1 - 2 ч после начала), когда содержащаяся в обмотках влага быстро испаряется, отработавший воздух полностью выпускается в атмосферу; в последующие часы сушки часть отработавшего подогретого воздуха, содержащего небольшие количества влаги и паров растворителя, возвращается в камеру. Максимальная температура, поддерживаемая в камере, зависит от конструкций и класса нагревостойкости изоляции, но обычно не превышает 200 °С, а полезный внутренний объем определяется габаритными размерами ремонтируемых электрических машин.
Во время сушки обмоток ведется непрерывный контроль температуры в сушильной камере и воздуха, выходящего из камеры. Время сушки зависит от конструкции и материала пропитанных обмоток, габаритных размеров изделия, свойств пропиточного лака и примененных растворителей, температуры сушки и способа циркуляции воздуха в сушильной камере, тепловой мощности калорифера.
Обмотки устанавливают в сушильную камеру таким образом, чтобы они лучше омывались горячим воздухом. Процесс сушки разделяется на разогрев обмоток для удаления растворителей и. запекание лаковой пленки.
При разогреве обмоток для удаления растворителя повышение температуры более 100 -110 °С нежелательно, поскольку может произойти частичное удаление лака из пор и капилляров, а главное, частичное запекание лаковой пленки при неполном удалении растворителя. Это обычно приводит к пористости пленки и затрудняет удаление остатков растворителя.
Интенсивный воздухообмен ускоряет процесс удаления растворителей из обмоток. Скорость обмена воздуха обычно выбирают в зависимости от конструкции, состава изоляции обмоток, пропиточных лаков и растворителей. Для сокращения времени сушки допускается на второй стадии сушки обмоток, т. е. во время запекания лаковой пленки, кратковременно (не более чем на 5 -6 ч) повысить, температуру сушки обмоток с изоляцией класса А до, 130-140°С. Если обмотка не поддается сушке (сопротивление изоляции после нескольких часов сушки остается низким), машине дают остыть до температуры, превышающей температуру окружающего воздуха на 10-15°С, а затем вновь сушат обмотку. При остывании машины следят, чтобы ее температура не понизилась до температуры окружающего воздуха, иначе на ней осядет влага и обмотка отсыреет.
На крупных электроремонтных предприятиях процессы пропитки и сушки совмещены и механизированы. Для. этой цели применяют специальную пропиточно-сушильную конвейерную установку.
Испытание обмоток. Основными показателями качества изоляции обмотки, определяющими надежность работы электрической машины, являются сопротивление и электрическая прочность. Поэтому в процессе изготовление обмоток ремонтируемых машин производят необходимые испытания при каждом переходе от одной технологической операции к другой по мере выполнения операций изготовления обмотки и движения к завершающей стадии испытательные напряжения снижается, приближаясь к допустимым, предусмотренным соответствующими нормами. Это объясняется тем, что после выполнения нескольких отдельных операций каждый раз сопротивление изоляции может уменьшаться. Если на отдельных стадиях ремонта не снижать испытательные напряжения, может произойти пробой изоляции в такой момент готовности обмотки, когда для устранения дефекта потребуется переделка всей работы, проделанной ранее.
Испытательные напряжения должны быть такими, чтобы в процессе испытаний выявлялись дефектные участки изоляции, но в то же время не повреждалась ее исправная часть. Испытательные напряжения по ходу процесса ремонта обмоток приведены в табл. 7.
Таблица 7. Испытательное напряжение в процессе ремонта обмоток

Процесс ремонта

Испытательное напряжение, В, при номинальном напряжении машины, В

Изготовление или переизолировка катушки после укладки в пазы и заклиновки, но до соединения схемы

То же, после соединения пайки и изолировки схемы

Испытание катушки, не демонтированной из пазов -

Испытание всей обмотки после соединения схемы при частичном ремонте обмоток

Примечание. Продолжительность испытаний 1 мин.
В перечень испытаний обмоток входит измерение сопротивления изоляции обмоток до пропитки и после пропитки и сушки. Кроме того, испытывают электрическую прочность изоляции обмоток приложением высокого напряжения.
После пропитки и сушки сопротивление изоляции обмоток электродвигателей напряжением до 660 В, измеренное мегаомметром на 1000 В, должно быть не ниже: 3 МОм - для обмотки статора и 2 МОм - для обмотки ротора (после полной перемотки); 1 МОм-для обмотки статора и 0,5 МОм - для обмотки ротора (после частичной перемотки). Указанные сопротивления изоляции обмоток не нормированы, а рекомендованы исходя из практики ремонта и эксплуатации отремонтированных электрических машин.
Все электрические машины после ремонта должны быть подвергнуты соответствующим испытаниям. При испытаниях, выборе измерительных приборов для них, сборке схемы измерений, подготовке испытываемой машины, установлении методики и норм испытаний, а также для оценки результатов испытаний следует руководствоваться соответствующими ГОСТами и указаниями.

Страница 1 из 5

Выявление и устранение неисправностей электрических машин

В электрических машинах возможны следующие виды неисправностей:

  • искрение щеток;
  • перегрев обмоток;
  • короткие замыкания в обмотках;
  • ненормальное напряжение генератора;
  • положение, когда генератор не возбуждается;
  • недопустимые колебания частоты вращения двигателя.

Искрение щеток сопровождается повышенным нагревом коллектора и щеток. Причиной этого может быть загрязнение щеток и коллектора, износ щеток, подгорание коллектора, неплотное прилегание пружин, заедание щеток в щеткодержателе.

Грязь со щеток и коллектора удаляют сжатым воздухом, а в некоторых случаях ветошью, смоченной в бензине. Изношенные более чем на 60% или поломанные щетки заменяют новыми. Новые или плохо притертые щетки притирают к коллектору. Для этого полоску шлифовальной бумажной шкурки (рис. 185, а) несколько раз протягивают между щеткой и коллектором. Шлифовальная шкурка абразивной поверхностью должна быть обращена к щетке. После притирки коллектор и щетки продувают сжатым воздухом.

Применять наждачное или карборундовое полотно для шлифования щеток нельзя. Для правильной притирки щеток концы шлифовальной шкурки нужно отогнуть вниз (см. рис. 185, а), так как при отгибании шкурки вверх (рис. 185, б) края щеток будут опилены и уменьшится активная ширина щеток, что может вызвать искрение на коллекторе.

Рис. 185 - Схемы притирки щеток: правильная (а), неправильная (б)

При наличии нагара, раковин и прочих местных дефектов коллектор протачивают на токарном станке или шлифуют мелкозернистыми шлифовальными кругами. Коллектор должен иметь полированную поверхность, поэтому после протачивания и шлифования его полируют, вследствие чего устраняются царапины, образовавшиеся в результате обработки коллектора (резцом или камнем). Полируют коллектор при номинальной частоте вращения (ротора двигателя), применяя шлифовальную бумажную шкурку № 00.

Для полирования коллектора шлифовальную шкурку прикрепляют к деревянной колодке (рис. 186), которую пригоняют точно по диаметру коллектора; ширину бруска выбирают такой, чтобы он мог свободно помещаться между двумя соседними траверсами. Колодку прижимают к вращающемуся коллектору. При получении гладкой поверхности коллектор очищают и продувают сжатым воздухом.

Рис. 186 - Колодка для полировки коллектора

Нажатие на щетку, создаваемое пружиной щеткодержателя, должно соответствовать определенному давлению. Для уменьшения механических потерь на коллекторе рекомендуется устанавливать минимальное нажатие, при котором щетки работают без искрения. Следует учитывать, что чем больше частота вращения, тем большее нажатие устанавливают, чтобы щетки удовлетворительно работали при возможных вибрациях щеткодержателей. Разница в нажатии на отдельные щетки не должна превышать 10% среднего его значения.

Проверку силы нажатия щеток производят динамометром (1) (рис. 187), закрепленным за рычажок щеткодержателя (2), прижимающий щетку (3) к коллектору (4). Для определения силы нажатия необходимо между щеткой и коллектором проложить лист бумаги (5) и постепенно оттягивать динамометр. В момент свободного вытаскивания бумаги из-под щетки динамометр будет показывать величину нажатия щетки на коллектор.

Рис. 187 - Измерение усилия нажатия щетки динамометром

Правильность установки щеток надо обязательно проверять после каждого протачивания коллектора. При неправильном положении щеток машина начинает искрить при неполной нагрузке. При холостом ходе машина не искрит. По мере возрастания нагрузки может наблюдаться круговой огонь по коллектору.

Проверку правильного положения траверсы производят индуктивным методом при неподвижной машине. К отключенной обмотке возбуждения через реостат от аккумуляторной батареи подводят постоянный ток. Величина тока в обмотке не должна превышать примерно 5...10% номинального. К зажимам якоря подсоединяют милливольтметр на 45...60 мВ с нулем посередине шкалы. В моменты замыкания и размыкания тока возбуждения в якоре индуцируется электродвижущая сила (э. д. с.) и стрелка прибора отклоняется в ту или другую сторону в зависимости от положения щеток. При щетках, находящихся в нужном положении (на нейтрали), э. д. с. должна быть равна нулю. Траверсу со щетками передвигают до тех пор, пока не будет достигнуто требуемое положение щеток. Рекомендуется проверять правильность положения траверсы при различных положениях якоря. Якорь следует поворачивать в одном и том же направлении во избежание влияния на показания прибора возможного перемещения щеток в щеткодержателях. Окончательно правильное положение траверсы проверяют во время испытаний машины на стенде.

Кроме того, причиной искрения щеток может быть неодинаковое расстояние по окружности коллектора между щетками отдельных бракетов. Необходимо проверить положение щеток на коллекторе с помощью бумажной ленты и установить бракеты так, чтобы щетки соседних бракетов находились на одинаковом расстоянии по окружности коллектора.

Искрение может вызываться также применением угольных щеток несоответствующей марки (слишком мягких или слишком твердых). При ремонте необходимо заменять все щетки и устанавливать те марки, которые рекомендует завод-изготовитель электрических машин.

Повышенный нагрев (перегрев) обмоток электрической машины устанавливают в период предремонтных испытаний. Равномерный перегрев всей машины при отсутствии других признаков неисправности свидетельствует о ее перегрузке. В этом случае сначала следует проверить соответствие фактической нагрузки номинальному режиму работы машины. Ухудшение условий вентиляции в результате засорения вентиляционных каналов крыльчатки вентилятора может также вызвать перегрев машины.

Повреждения в обмотках полюсов приводят к неравномерному их нагреву. В обмотках полюсов чаще всего повреждаются переходы, выводные концы катушек и места прохода выводных концов через корпус. К наиболее распространенным дефектам следует отнести замыкание обмоток на корпус, обрыв или плохой контакт в обмотках, соединение между витками.

После выявления повреждений обмотки перематывают. Для этого удаляют старую обмотку, очищают пазы от заусенцев, окрашивают их лаком и изолируют электрокартоном, прессшпаном и лакотканью.

Способы устранения дефектов в обмотках полюсов зависят от характера повреждения. Обрыв, а также плохой контакт в наружных доступных для ремонта местах устраняют паянием. Чтобы найти замыкание на корпус, катушку с дефектом снимают с сердечника полюса и осматривают места соприкосновения с полюсом и станиной.

Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно осматривают. Если изоляция катушек, за исключением мест соединения с корпусом или замыкания между витками, не повреждена и находится в удовлетворительном состоянии, то изолируют только поврежденные места, а полная перемотка катушки не производится.

Если повреждения в обмотках полюсов вызваны влажной изоляцией, то катушку просушивают.

При коротких замыканиях в обмотке якоря генератор плохо возбуждается, двигатель не развивает номинальных оборотов, в некоторых случаях якорь вращается толчками. При возбуждении генератора от постороннего источника тока якорь сразу после подключения обмотки возбуждения, сильно нагревается и появляется дым. Пластины коллектора, соединенные с дефектной нагревающей обмоткой якоря, обгорают. В этом случае могут произойти короткие замыкания: части витков одной секции и всей секции, между двумя секциями, лежащими в одном пазу, в лобовых частях обмотки, между любыми двумя точками обмотки, например в случае пробоя обмотки на корпус в двух точках.

Для нахождения замыканий витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки, используют метод падения напряжений, не требующий специального оборудования. Он применяется как для петлевой, так и для волновой обмоток и особенно удобен при проверке якоря с уравнительными соединениями. Метод состоит в том, что к двум смежным коллекторным пластинам (1) (рис. 188) подводят постоянный ток с помощью щупов (2), а щупами (3) измеряют падение напряжения на этой же паре коллекторных пластин. В качестве источника тока удобно применять аккумуляторную батарею, обеспечивающую через последовательно включенный с якорем реостат ток 5...10 А. Тогда в случае петлевой обмотки при наличии замыкания в секции, присоединенной к проверяемой паре пластин, сопротивление ее будет меньше и падение напряжения при одном и том же токе будет также меньше, чем на другой паре пластин, между которыми нет замыкания. Проверять якорь необходимо при поднятых щетках.

Рис. 188 - Схема для нахождения замыканий между витками и обмотками якоря

Замыкание обмотки якоря или коллектора на корпус во время работы машины не обнаруживается, если только нет замыкания у одного из проводов сети. При наличии такого замыкания (если корпус машины не изолирован от земли) замыкание обмотки на корпус образует замкнутую цепь. При отсутствии заземления одного из проводов сети замкнутая цепь может образоваться только при замыкании обмотки на корпус в двух местах.

Определить замыкание обмотки на корпус можно мегомметром или контрольной лампой (рис. 189). В последнем случае один конец от лампы присоединяют к источнику питания, а другой — к коллектору, вал же якоря соединяют со вторым проводником источника питания. Наличие соединения обмотки с корпусом определяют по загоранию лампы. При этом способе лампа горит только при хорошем контакте в месте соединения.

Рис. 189 - Схема для нахождения места соединения обмотки якоря с корпусом

Присоединение источника тока к коллектору производится в случае петлевой обмотки в двух диаметрально противоположных точках, в случае волновой — к пластинам, находящимся на расстоянии половины коллекторного шага. Один проводник от милливольтметра присоединяют к валу якоря, а концом другого поочередно касаются всех коллекторных пластин. Если проверяют якорь с петлевой обмоткой, то по мере приближения к пластине, соединенной с корпусом, показания прибора уменьшаются. При соприкосновении конца проводника от прибора с пластиной коллектора, соединенной с корпусом, показание милливольтметра будет равно нулю. Показание будет очень малым при плохом контакте, а также когда замыкание на корпус имеет не коллекторная пластина, а секция, присоединенная к этой пластине.

Так как при проверке всего якоря наибольшее возможное напряжение, действующее на прибор, может оказаться равным напряжению, подводимому к якорю, необходимо применять прибор с пределом измерения, равным напряжению источника питания. Уменьшения отклонения стрелки прибора можно достигнуть регулировкой силы тока путем подключения прибора через реостат.

Место замыкания на корпус можно найти, если шевелить по очереди секции в местах выхода обмотки из пазов и одновременно измерять сопротивление изоляции мегомметром. Шевеление секций создает изменение контакта, а следовательно, и изменение сопротивления. Вместо мегомметра можно пользоваться контрольной лампой, включая ее между коллектором и валом якоря. Дефект обнаруживают по миганию лампы.

В тех случаях, когда указанные выше способы не дают результатов, приходится путем распайки обмотки делить ее на части. Разделив обмотку на две части, проверяют мегомметром каждую часть в отдельности. Обнаружив замыкание на корпус в одной из половин, концы другой оставляют нетронутыми, а поврежденную половину снова разделяют на две части и так до тех пор, пока точно не определится секция с замыканием на корпус.

Устраняют повреждения разными способами. Например, обрыв или плохой контакт в обмотке (в петушках и хомутиках) и коллекторе устраняют перепайкой обмотки в указанных местах; если же обрыв произошел в самом проводнике, то стержень или секцию заменяют новыми.

Наиболее часто замыкание на корпус встречается в местах выхода секций из пазов. Этот дефект устраняют установкой под секцией небольших клиньев из изоляционного материала (фибры, сухого бука) или прокладкой, покрытой лаком подкладки из летероида, электрокартона, слюды и т. д. Замыкание на корпус в пазовой части секции устраняют переизолировкой всей секции или же заменяют ее новой. Замыкание на корпус, вызванное увлажнением изоляции, устраняют просушкой. Если замыкание на корпус в нескольких секциях и, кроме того, изоляция других секций плохая, то перематывают всю обмотку якоря. В случае соединения коллектора с корпусом необходима его разборка и ремонт.

Замыкание в обмотке якоря между несмежными секциями и вообще замыкание большого числа секций встречаются реже замыканий внутри самой секции или же между концами секций на коллекторе. Поэтому прежде чем приступить к устранению замыканий, необходимо тщательно осмотреть коллектор и убедиться в отсутствии соединений между его пластинами.

В случае короткого замыкания в секции ее необходимо заменить, так как при этом дефекте вся изоляция секции обычно приходит в негодность. Переизолировкой места замыкания можно ограничиться только в случае неполного контакта в месте замыкания. Длительная работа машины при больших короткозамкнутых ветвях может привести в негодность всю обмотку, что потребует полной ее перемотки.

В асинхронных электродвигателях возможны следующие виды неисправностей:

  • перегрев статора;
  • перегрев обмоток статора и ротора;
  • ненормальная частота вращения двигателя;
  • ненормальный шум в машине.

Перегрев статора может наблюдаться при напряжении сети выше номинального. Для устранения этой неисправности достаточно снизить напряжение сети до номинального или улучшить вентиляцию двигателя.

Повышенный местный нагрев при холостом ходе двигателя и номинальном напряжении сети может вызываться заусенцами, образовавшимися при опиливании или вследствие касания ротора о статор во время работы двигателя. Неисправность устраняют удалением заусенцев; для этого места замыкания обрабатывают напильником, соединенные стальные листы разъединяют, лакируют изоляционным лаком с последующей сушкой на воздухе.

В обмотках переменного тока возможны короткие замыкания между витками одной катушки, катушками одной фазы и катушками разных фаз. Основным признаком, по которому можно найти замыкание в обмотках переменного тока, является повышенный нагрев части катушки с короткозамкнутыми витками. В некоторых случаях короткозамкнутую часть обмотки можно сразу определить по внешнему виду — по обугливающейся изоляции.

Для определения дефекта в статорной или роторной обмотке необходимо статорную обмотку включить на пониженное напряжение (1 / 3 ... 1 / 4 номинального) при разомкнутом роторе и измерить напряжение на кольцах ротора, медленно проворачивая ротор. Если напряжения на кольцах ротора (попарно) не равны между собой и меняются в зависимости от положения ротора по отношению к статору, то это указывает на замыкание в статорной обмотке. При замыкании в роторной обмотке (при исправной статорной) напряжение между кольцами ротора будет неодинаковым и не будет меняться в зависимости от положения ротора.

После того как установлено, какая из обмоток (роторная или статорная) имеет соединение между витками, определяют дефектную фазу рассмотренными выше способами.

Если замыкание произошло между двумя фазами, то место соединения находят аналогично предыдущему, разъединяя обмотки пофазно. Катушки одной из фаз, имеющей соединение, разделяют на две части и мегомметром проверяют наличие соединений каждой такой половины со второй фазой. Затем ту часть, которая соединена с другой фазой, снова разделяют на две части и каждую из них снова проверяют и т. д.

Метод последовательного деления на части применяют при нахождении замыкания в обмотках, имеющих параллельные ветви. В этом случае необходимо дефектные фазы разделить на параллельные ветви и определить сначала, между какими ветвями имеется соединение, а затем применить к ним метод. Так как замыкания между фазами чаще бывают в лобовых частях обмотки или соединительных проводниках, то иногда удается сразу же найти место соединения путем шевеления лобовых частей с одновременной проверкой мегомметром.

Перегрев обмотки статора может наблюдаться при перегрузке двигателя или нарушении его нормальной изоляции. Снижение напряжения на зажимах двигателя ниже номинального также вызывает перегрузку двигателя током. Перегрев обмотки будет в случае неправильного соединения обмоток статора по схеме треугольника, а не звездой.

Причиной сильного местного нагрева обмотки статора может быть межвитковое соединение в обмотке или короткое замыкание между двумя фазами. Признаки неисправности: неодинаковая сила тока в отдельных фазах, двигатель сильно гудит и развивает пониженный крутящий момент.

Ремонт обмоток

При обнаружении межвитковых замыканий или замыканий на корпус, а также обрыва в фазах обмоток статора проводят частичную или полную перемотку статора. Чтобы облегчить извлечение дефектных катушек из пазов, статор нагревают до 70...80° С. Затем с помощью выколотки и деревянного молотка выбивают текстолитовые клинья, разрезают и снимают с помощью межкатушечных соединений обмотки статора, разъединяют катушки и вынимают их из пазов. Пазы статора очищают от старой изоляции, проверяют состояние стальных пакетов.

Намотку катушек производят изолированным проводом соответствующей марки на каркасе или шаблоне. Если отсутствует провод требуемой марки, катушку мотают проводом другой марки, но того же класса изоляции.

Катушки наматывают на шаблон-лодочку, имеющий устройство для закрепления концов проводов. Одна из сторон шаблона выполняется съемной для снятия катушки после намотки. При намотке катушек из тонкого изолированного провода с большим числом витков используют автоматические и полуавтоматические станки. Эти станки снабжены счетчиками оборотов и устройствами для автоматической остановки станка после намотки требуемого числа витков. Станки имеют приспособления для укладки между слоями катушек бумажных изоляционных прокладок и механизмы раскладки, укладывающие проводники в правильные ряды.

По окончании намотки по периметру катушки укладывают прокладку из электрокартона и связывают катушку в местах вырезов в шаблоне. Концы проводов обрезают на расстоянии, указанном на чертеже.

Корпусную изоляцию катушек выполняют из нескольких слоев лакоткани или микаленты. Для придания необходимой формы и монолитности витки пазовой части катушки перед наложением корпусной изоляции смазывают клеящим глифталевым или шеллачным лаком. Затем пазовую часть катушки нагревают в специальном нагревателе до 110...120°С, после чего закладывают в пресс-форму.

При опрессовке нагретые связующие вещества клеящего лака размягчаются и заполняют поры изоляции, при охлаждении затвердевают и скрепляют проводники катушки. Катушки крепят в пазах текстолитовыми клиньями, забиваемыми деревянным молотком.

Катушки, заложенные в пазы, соединяют пайкой или сваркой оплавлением. Сварка оплавлением производится через понижающий трансформатор мощностью 500...600 Вт и напряжением 220/24 и 220/12 В и может быть применена для соединения проводов диаметром от 0,8 мм и выше. Свариваемые концы проводов предварительно скручивают и соединяют с одним из зажимов трансформатора, к другому зажиму присоединяют угольный электрод.

В электродвигателях, используемых на рефрижераторном подвижном составе, наибольшее распространение получили обмоточные провода из медной проволоки. В некоторых типах электродвигателей применяют алюминиевые провода, которые по механической прочности и электрической проводимости значительно уступают медным.

Обмоточные провода изготовляют с волокнистой, эмалевой и комбинированной изоляцией. Материалом для волокнистой изоляции является бумага (кабельная или телефонная), хлопчатобумажная пряжа, натуральный и искусственный шелк (капрон, лавсан), асбестовые и стеклянные волокна. Их накладывают в один или несколько слоев в виде обмотки или оплетки (чулка). Для эмалевой изоляции используют различные органические соединения (поливинилацетат, кремнийорганические смолы и т. д.).

Марки обмоточных проводов условно обозначаются буквами. В некоторых марках после буквенного обозначения стоит цифра «1» или «2»: цифра «1» указывает на нормальную толщину изоляции, цифра «2» — на усиленную толщину.

Обозначение марок обмоточных проводов начинается с буквы П (провод). Волокнистая изоляция обозначается буквами: Б — хлопчатобумажная пряжа, Ш — натуральный шелк, ШК и К — искусственный шелк, капрон, С — стекловолокно, А — асбестовое волокно. Буквами О и Д обозначается количество слоев изоляции (один или два). Для алюминиевых обмоточных проводов в конце обозначения добавляется буква А. Например , марка ПБД обозначает: провод обмоточный медный с изоляцией из двух слоев хлопчатобумажной пряжи.

Эмалевая изоляция обмоточных проводов обозначена так: ЭЛ — эмаль лакостойкая, ЭВ — эмаль высокопрочная (винифлекс), ЭТ — эмаль теплостойкая полиэфирная, ЭВТЛ — эмаль полиуретановая, ЭЛР — эмаль полиамидно-резольная. Например , марка ПЭЛ обозначает: провод медный, покрытый лакостойкой эмалью.

Применяется также комбинированная изоляция, которая состоит из эмалевой изоляции и наложенной поверх нее изоляции из волокнистых материалов. Например, марка ПЭЛБО обозначает: провод медный, покрытый лакостойкой эмалью и хлопчатобумажной пряжей в один слой. Марки обмоточных проводов, изолированных стекловолокном и пропитанных в теплостойком лаке, имеют в обозначении букву К (например, провод марки ПСДК).

Трехфазные обмотки статоров машин переменного тока условно подразделяют на однослойные, когда сторона катушки занимает весь паз, и двухслойные, когда сторона катушки занимает половину паза по высоте, т. е. в каждый паз закладываются две стороны катушки.

Двухслойные обмотки — наиболее распространенные типы обмоток статоров машин переменного тока. При перемотке двухслойной статорной обмотки сначала укладывают в пазы нижние стороны катушек первой фазы, а верхние стороны временно остаются поднятыми. Затем последовательно укладывают в пазы обе стороны катушек второй и третьей фазы. При этом одну сторону катушки помещают в нижнюю часть следующего незаполненного паза, а другую — верхнюю часть паза, уже наполовину заполненного обмоткой.

После укладки нижние, а затем и верхние обмотки уплотняют на дне паза с помощью специальной оправки и молотка. Между нижним и верхним слоями обмотки помещают изоляционную прокладку, верхний слой обмотки закрывают изоляцией и укрепляют клином. Между лобовыми частями фазных катушек помещают электрокартон. Уложенные катушки соединяют пайкой, а места соединений изолируют. После укладки обмотки проверяют правильность соединения катушек.

Ремонт коллекторов

В случае обнаружения на поверхности коллектора дорожек от срабатывания щетками коллектор протачивают, шлифуют и полируют. Для шлифования применяют абразивные круги, в состав которых входит пемза, пропитанная керосином. Полируют коллектор деревянной вогнутой колодкой, оклеенной стеклянной бумагой.

Во избежание выступления миканитовых прокладок над поверхностью коллектора его продороживают. Продороживание состоит в том, что миканитовую изоляцию между коллекторными пластинами вырезают на глубину 0,5...1,5 мм, на поверхности коллектора образуются продольные дорожки. Продороживание необходимо потому, что миканит более тверд, чем коллекторная медь, и при износе медных пластин миканит выступает на поверхность коллектора, что ухудшает работу щеток и коммутацию машины.

Продороживание коллекторов машин малой и средней мощности (преобразователей), подвагонных генераторов производят вручную с помощью скребка, изготовленного из ножовочного полотна (рис. 190). Продороживание коллекторов машин большой мощности осуществляют на станке фрезой или специальной переносной машинкой с гибким шлангом.

Рис. 190 - Продороживание изоляции коллекторов: 1 - коллектор; 2 - фреза; 3 - электродвигатель; 4 - суппорт продольного перемещения; 5 - суппорт вертикального перемещения; 6 - маховик; 7 - ролик

После фрезерования грани коллекторных пластин снимают шабером. Фаски снимают под углом 45° размером 0,5 мм (рис. 191) и тщательно очищают коллектор от остатков слюды и меди.

Рис. 191 - Снятие фасок с коллекторных пластин

Иногда требуется произвести выемку одной или нескольких медных пластин, имеющих значительные оплавления или выгорания меди. Причинами таких повреждений могут быть короткие замыкания между пластинами, пробой миканитовых пластин, поломка петушков в непосредственной близости от места соединения с пластинами.

Техническими условиями на ремонт электрических машин допускается замена не более пяти пластин. Замена коллекторных пластин относится к числу сложных видов ремонта; выемка даже одной пластины может повлечь за собой нарушение монолитности коллектора и потерю геометрически правильной формы, если не принять специальных мер и не применить соответствующие приспособления для скрепления коллектора при удалении пластины. В качестве одного из таких приспособлений может служить стяжной диск.

Биение коллектора в отремонтированной машине измеряют индикатором после вращения якоря с номинальной скоростью. Биение коллектора должно быть не более 0,03...0,04 мм. Превышение этих норм вызывает сильное искрение щеток. Причинами биения коллектора могут быть эксцентриситет, эллиптичность и выступание отдельных пластин при ослаблении их крепления. Если обнаруживают чрезмерное биение коллектора, машину разбирают и затягивают болты, стягивающие пластины, сначала в холодном состоянии, затем с подогревом до 100...110°С. После этого поверхность коллектора обтачивают, полируют и продороживают.

Наиболее часто встречающиеся повреждения контактных колец следующие: износ (срабатывание) контактной поверхности и нарушение изоляции контактных болтов, оплавление и выгорание участков контактной поверхности.

Короткозамкнутые кольца с небольшими оплавленными и выгоревшими участками контактной поверхности можно восстанавливать наплавкой на нее латуни или фосфористой меди с последующей механической обработкой. Этим же способом можно восстанавливать частично изношенные пластины.

Восстановление изоляции контактных колец с холодной посадкой на втулку производят следующим образом. Внутрь собранного на подставке (6) (рис. 192) комплекта колец (5), уложенных с промежуточными дистанционными прокладками (4), вставляют несколько слоев электрокартона (3) толщиной 0,1...0,4 мм. Чтобы слои изоляции не сбивались при опрессовке, внутрь вставляют разрезную гильзу (2), свернутую из листовой стали толщиной 1,5 мм. Втулку (1) запрессовывают в отверстие гильзы на гидравлическом прессе.

Рис. 192 - Сборка контактных колец

Для повышения надежности холодной прессовки (посадки), изоляционный материал должен иметь малую усадку, т. е. он должен быть хорошо пропитан и просушен.

При горячей посадке контактных колец, в отличие от вышеприведенного способа ремонта, не втулку впрессовывают в контактные кольца, а контактные кольца в горячем виде с натягом насаживают на изолированную втулку.

Для изолирования втулки используют формовочный миканит толщиной 0,25...0,35 мм, разрезают полосами, смазывают шеллачным или глифталевым лаком, просушивают на воздухе в течение 0,5...1 ч и плотно накладывают на втулку, подогретую до 80...100° С. Полосы накладывают с небольшим перекроем до тех пор, пока диаметр втулки с наложенной на нее изоляцией превысит внутренний диаметр контактных колец на 1,5...2 мм. Затем изоляцию обертывают двумя-тремя слоями бумаги, плотно стягивают хомутом из стали толщиной 2...3 мм, нагревают до 120...130° С, подтягивают болты хомута и подвергают термической обработке изоляцию в течение 2...3 часа при 150° С — для шеллачного миканита и при 180° С — для глифталевого.

После остывания втулки с изоляции удаляют подтеки лака и протачивают на станке. Диаметр проточенной изоляции должен превышать внутренний диаметр контактных колец на величину натяга.

Контактные болты изолируют микафолием или формовочным миканитом толщиной 0,2...0,3 мм. Для этого поверхность болта очищают от старой изоляции, смазывают глифталевым или шеллачным лаком и просушивают на воздухе в течение 0,5...1 часа. Микафолиевую или миканитовую полосу также покрывают лаком, подогревают до размягчения, после чего плотно накладывают на болт и обкатывают на ровной, подогреваемой поверхности. Затем плотно обертывают изоляцию болта двумя-тремя слоями киперной ленты и подвергают термической обработке в течение 2...3 часов при соответствующей температуре. После остывания снимают с изоляции киперную ленту, очищают изоляцию от неровностей и подтеков лака, обрабатывают до нужных размеров вручную или на станке и обклеивают одним-двумя слоями электрокартона.

Щеткодержатели и траверсы тщательно осматривают, проверяют состояние их изоляции и исправность деталей щелочного аппарата. Во время ремонта щетки полностью заменяют, устанавливая вместо них щетки марок, рекомендуемых заводом-изготовителем электрических машин. В машинах постоянного тока щетки несоответствующей марки могут вызвать сильное искрение на коллекторе.

Новые щетки притирают по коллектору.

Притирка щеток вручную — очень трудоемкая операция, поэтому при замене щеток их притирают вне машины на специальном станке (рис. 193). На этом же станке проверяют правильность расстановки щеток по окружности коллектора. Червячный винт (7), насаженный на конец вала электродвигателя (1), вращает через червячное колесо (6) вал (3). Вал опирается на два шарикоподшипника, вставленных в капсулу (8), а вверху направляется бронзовой втулкой, запрессованной в плите (2). На шейку, проточенную в плите, надевают сменные оправки (4) для установки траверс щеткодержателей машин разных типов. На конец вала надевают барабан (5), наружный диаметр которого на 1 мм меньше диаметра коллектора. На барабан нанесены риски, по которым проверяют расстановку щеток по окружности коллектора. Затем вынимают щетки из обойм щеткодержателей и обертывают барабан стеклянной бумагой, которую закрепляют лентой. Щетки вставляют в обоймы, опускают на них нажимные пальцы щеткодержателей и включают электродвигатель. Щеточную пыль удаляют с помощью вытяжной вентиляции.

Рис. 193 - Станок для притирки щеток

Во время проверки состояния траверсы щеткодержателей обращают внимание на легкость перемещения нажимных пальцев при подъеме и опускании: при этом пальцы не должны касаться боковых стенок и вырезов щеткодержателей. Изоляция пальцев и изоляционные шайбы не должны иметь повреждений. Проверяют наличие стопорных болтов, болтов крепления пальцев и других крепежных элементов. Неисправные детали щеткодержателей (токоведущие болты, винты, нажимные пальцы, поломанные и недостаточно жесткие пружины) заменяют.

При вращении коллектора щетки вибрируют в обоймах и изнашивают их. Увеличение зазора между щеткой и обоймой щеткодержателя ведет к перекосу щетки в обойме и нарушению ее контакта с коллектором. Разработанные отверстия в корпусе щеткодержателей восстанавливают гальваническим способом или наплавкой с последующей обработкой. При невозможности восстановления обойму заменяют на новую. Восстановление размеров обоймы обжатием не допускается.

Ремонт обмоток электрических машин

Обмотка является одной из наиболее важных частей электрической машины. Надежность машин в основном определяется качеством обмоток, поэтому к ним предъявляются требования электрической и механической прочности, нагревостойкости, влагостойкости.

Подготовка машин к ремонту заключается в подборе обмоточных проводов, изоляционных, пропиточных и вспомогательных материалов.

Технология капитального ремонта обмоток электрических машин включает следующие основные операции:

разборка обмотки;

очистка пазов сердечника от старой изоляции;

ремонт сердечника и механической части машины;

очистка катушек обмотки от старой изоляции;

подготовительные операции для изготовления обмотки;

изготовление катушек обмотки;

изолирование сердечника и обмоткодержателей;

укладывание обмотки в паз;

пайка соединений обмотки;

крепление обмотки в пазах;

сушка и пропитка обмотки.

Ремонт обмоток статоров. Изготовление обмотки статора начинают с намотки отдельных катушек на шаблоне. Чтобы правильно выбрать размер шаблона, необходимо знать основные размеры катушек, главным образом их прямолинейной и лобовой частей. Размеры катушек обмотки демонтируемых машин определяют путем замеров старой обмотки.

Катушки всыпных обмоток статоров изготавливают обычно на универсальных шаблонах (рис. 5).

Такой шаблон представляет собой стальную плиту 1, которая при помощи

приваренной к ней втулки 2 соединяется со шпинделем намоточного станка. Плита имеет форму трапеции.

Рисунок 5 - Универсальный намоточный шаблон:

1 -- плита; 2 -- втулка; 3 -- шпилька; 4 -- ролики

В ее прорези установлены четыре шпильки, закрепленные гайками. При намотке катушек разной длины шпильки перемещают в прорезях. При намотке катушек разной ширины шпильки переставляют с одних прорезей в другие.

В обмотках статора машин переменного тока обычно несколько соседних катушек соединяют последовательно, и они образуют катушечную группу. Чтобы избежать лишних паечных соединений, все катушки одной катушечной группы наматывают цельным проводом. Поэтому на шпильки 3 надевают ролики 4, выточенные из текстолита или алюминия. Число желобков на ролике равно наибольшему числу катушек в катушечной группе, размеры желобков должны быть такими, чтобы в них могли поместиться все проводники катушки.

Катушки двухслойной обмотки укладывают в пазы сердечника группами, как они были намотаны на шаблоне. Провода распределяют в один слой и кладут стороны катушек, которые прилегают к пазу. Другие стороны катушек не укладывают в пазы до тех пор, пока не будут уложены нижние стороны катушек во все пазы. Следующие катушки кладут одновременно верхними и нижними сторонами.

Между верхними и нижними сторонами катушек в пазах устанавливают изоляционные прокладки из электрокартона, согнутого в виде скобочки, а между лобовыми частями -- из лакоткани или листов картона с наклеенными на них кусочками лакоткани.

Изготовление обмотки с закрытыми пазами имеет ряд особенностей. Пазовую изоляцию таких обмоток делают в виде гильз из электрокартона и лакоткани. Предварительно по размерам пазов машины изготовляют стальной дорн, который представляет собой два встречных клина. Дорн должен быть меньше паза на толщину гильзы. Затем по размерам старой гильзы нарезают заготовки из электрокартона и лакоткани на полный комплект гильз и приступают к их изготовлению. Нагревают дорн до 80 - 100 °С и плотно обертывают заготовкой, пропитанной лаком. Сверху на заготовку вполнахлестку плотно укладывают хлопчатобумажную ленту. После охлаждения дорна до температуры окружающей среды разводят клинья и снимают готовую гильзу. Перед намоткой помещают гильзы в пазы статора, а затем заполняют их стальными прутками, диаметр которых должен быть на 0,05 - 0,1 мм больше диаметра изолированного обмоточного провода. От бухты отрезают кусок провода, необходимый для намотки одной катушки. Длинный провод усложняет намотку, при этом нередко повреждается изоляция из-за частой протяжки его через паз.

Изоляцию лобовых частей обмотки машин на напряжение до 660 В, предназначенных для работы в нормальной среде, выполняют стеклолентой ЛЭС, причем каждый следующий слой полуперекрывает предыдущий. Каждую катушку группы обматывают, начиная от торца сердечника. Сначала обматывают лентой часть изоляционной гильзы, которая выступает из паза, а затем часть катушки до конца выгиба. Середины головок группы обматывают стеклолентой вполнахлестку. Конец ленты закрепляют на головке клеем или плотно пришивают к ней. Провода обмотки, которые лежат в пазе, удерживают с помощью пазовых клиньев, изготавливаемых из бука, березы, пластмассы, текстолита или гетинакса. Клин должен быть на 10 - 15 мм длиннее сердечника и на 2 - 3 мм короче пазовой изоляции и толщиной не менее 2 мм. Для влагоустойчивости деревянные клинья "варят" 3 - 4ч в олифе при 120 - 140 °С.

Клинья забивают в пазы средних и малых машин молотком и с помощью деревянной надставки, а в пазы крупных машин -- пневматическим молотком. Затем собирают схему обмотки. Если фаза обмотки намотана отдельными катушками, их последовательно соединяют в катушечные группы.

За начало фаз принимают выводы катушечных групп, которые выходят из пазов, расположенных около выводного щитка. Эти выводы отгибают к корпусу статора и предварительно соединяют катушечные группы каждой фазы, скручивают зачищенные от изоляции концы проводов катушечных групп.

После сборки схемы обмотки проверяют электрическую прочность изоляции между фазами и на корпус, а также правильность ее соединения. Для этого используют самый простой способ -- кратковременно подключают статор к сети (127 или 220 В), а затем к поверхности его расточки прикладывают стальной шарик (от шарикоподшипника) и отпускают его. Если шарик вращается по окружности расточки, значит схема собрана правильно. Такую проверку можно также осуществить с помощью вертушки. В центре диска из жести пробивают отверстие, укрепляют его гвоздем на торце деревянной планки, а затем эту вертушку помещают в расточку статора, который подключен к электрической сети. Если схема собрана правильно, диск будет вращаться.

Бандажирование роторов и якорей

При вращении роторов и якорей электрических машин возникают центробежные силы, стремящиеся вытолкнуть обмотку из пазов и отогнуть ее лобовые части. Чтобы противодействовать центробежным силам и удержать обмотку в пазах, используют расклиновку и бандажирование обмоток роторов и якорей.

Применение способа крепления обмоток (клиньями или бандажами) зависит от формы пазов ротора или якоря. При открытой форме пазов используют бандажи или клинья. Пазовые части обмоток в сердечниках якорей и роторов закрепляют при помощи клиньев или бандажей из стальной бандажной проволоки либо стеклоленты, а также одновременно клиньями и бандажами; лобовые части обмоток роторов и якорей -- бандажами. Надежное крепление обмоток имеет важное значение, поскольку необходимо для противодействия не только центробежным силам, но и динамическим усилиям, воздействию которых подвергаются обмотки при редких изменениях в них тока. Для бандажирования роторов применяют стальную луженую проволоку диаметром 0,8 -- 2 мм, обладающую большим сопротивлением на разрыв.

Перед намоткой бандажей лобовые части обмотки осаживают ударами молотка через деревянную прокладку, чтобы они ровно располагались по окружности. При бандажировании ротора пространство под бандажами предварительно покрывают полосками электрокартона, чтобы создать изоляционную прокладку между сердечником ротора и бандажом, выступающую на 1 -- 2 мм по обеим сторонам бандажа. Весь бандаж наматывают одним куском проволоки, без паек. На лобовых частях обмотки во избежание их вспучивания накладывают витки проволоки от середины ротора к его концам. При наличии у ротора специальных канавок проволоки бандажа и замки не должны выступать над канавками, а при отсутствии канавок толщина и расположение бандажей должны быть такими, какими они были до ремонта. Скобки, устанавливаемые на роторе, следует размещать над зубцами, а не над пазами, при этом ширина каждой из них должна быть меньше ширины верхней части зубца. Скобки на бандажах расставляют равномерно по окружности роторов с расстоянием между ними не более 160 мм. Расстояние между двумя соседними бандажами должно быть 200--260 мм. Начало и конец бандажной проволоки заделывают двумя замочными скобками шириной 10--15 мм, которые устанавливают на расстоянии 10 -- 30 мм одна от другой. Края скобок завертывают на витки бандажа и. запаивают припоем ПОС 40.

Полностью намотанные бандажи для увеличения прочности и предотвращения их разрушения центробежными усилиями, создаваемыми массой обмотки при вращении ротора, пропаивают по всей поверхности припоем ПОС 30 или ПОС 40. Пайку бандажей производят электродуговым паяльником с медным стержнем диаметром 30 -- 50 мм, присоединяемым к сварочному трансформатору. В ремонтной практике нередко проволочные бандажи заменяют выполненными стеклолентами из однонаправленного (в продольном направлении) стеклянного волокна, пропитанного термореактивными лаками. Для наматывания бандажей из стеклоленты применяют то же оборудование, что и для бандажирования стальной проволокой, но дополненное приспособлениями в. виде натяжных роликов и укладчиков ленты.

В отличие от бандажирования стальной проволокой ротор до наматывания на него бандажей из стеклоленты прогревают до 100 °С. Такой прогрев необходим потому, что при наложении бандажа на холодный ротор остаточное напряжение в бандаже при его запекании снижается больше, чем при бандажировании нагретого. Сечение бандажа из стеклоленты должно не менее чем в 2 раза превосходить сечение соответствующего бандажа из проволоки. Крепление последнего витка стеклоленты с нижележащим слоем происходит в процессе сушки обмотки при спекании термореактивного лака, которым пропитана стеклолента. При бандажировании обмоток роторов стеклолентой не применяют замки, скобки и подбандажную изоляцию что является преимуществом этого способа.

Балансировка роторов и якорей

Отремонтированные роторы и якоря электрических машин подвергают статической, а при необходимости и динамической балансировке в сборе с вентиляторами и другими вращающимися частями. Балансировку производят на специальных станках для выявления неуравновешенности (дисбаланса) масс ротора или якоря, являющейся частой причиной возникновения вибрации при работе машины.

Ротор и якорь состоят из большого количества деталей и поэтому распределение масс в них не может быть строго равномерным. Причины неравномерного распределения масс -- разная толщина или масса отдельных деталей, наличие в них раковин, неодинаковый, вылет лобовых частей обмотки и др. Каждая из деталей, входящих: в состав собранного ротора или якоря, может быть неуравновешенной вследствие смещения ее осей инерции от оси вращения. В собранном роторе и якоре неуравновешенные массы, отдельных деталей в зависимости от их расположения могут суммироваться или взаимно компенсироваться. Роторы и якоря, у которых главная центральная ось инерции не совпадает с осью вращения, называют неуравновешенными.

Неуравновешенность, как правило, складывается из суммы двух неуравновешенностей -- статической и динамической. Вращение статически и динамически неуравновешенного ротора и якоря вызывает вибрацию, способную разрушить подшипники и фундамент машины. Разрушающее воздействие неуравновешенных роторов и якорей устраняют путем их балансировки, которая заключается в определении размера и места неуравновешенной массы. Неуравновешенность определяют статической или динамической балансировкой. Выбор способа балансировки зависит от требуемой точности уравновешивания, которой можно достигнуть на имеющемся оборудовании. При динамической балансировке получаются более высокие результаты компенсации неуравновешенности (меньшая остаточная неуравновешенность), чем при статической.

Для определения неуравновешенности ротор выводят из равновесия легким толчком. Неуравновешенный ротор (якорь) будет стремиться возвратиться в такое положение, при котором его тяжелая сторона окажется внизу. После остановки ротора отмечают мелом место, оказавшееся в верхнем положении. Прием повторяют несколько раз, чтобы проверить, останавливается ли ротор (якорь) всегда в этом, положении. Остановка ротора в одном и том же положении указывает на смещение центра тяжести.

В отведенное для балансировочных грузов место (чаще всего это внутренний диаметр обода нажимной шайбы) устанавливают пробные грузы, прикрепляя их с помощью замазки. После этого повторяют прием балансировки. Прибавляя или уменьшая массу грузов, добиваются остановки ротора в любом, произвольно взятом положении. Это означает, что ротор статически уравновешен, т. е. его центр тяжести совмещен с осью вращения. По окончании балансировки пробные грузы заменяют одним такого же сечения и массы, равной массе пробных грузов и замазки и уменьшенной на массу части электрода, которая пойдет на приварку постоянного груза. Неуравновешенность можно компенсировать высверливанием соответствующей части металла с тяжелой стороны ротора.

Более точной, чем на призмах и дисках является балансировка на специальных весах. Балансируемый ротор устанавливают шейками вала на опоры рамы, которая может поворачиваться вокруг своей оси на некоторый угол пoвoрачивая балансируемый ротор, добиваются наибольшего показания индикатора J, которое будет при условии расположения центра тяжести ротора.

Добавлением к грузу дополнительного груза--рамки с делениями добиваются уравновешивания ротора, которое определяют по стрелке индикатора. В момент уравновешивания стрелка совмещается с нулевым делением.

Если повернуть ротор на 180, его центр тяжести приблизится к оси качания рамы на двойной эксцентриситет смещения центра тяжести ротора относительно его оси. Об этом моменте судят по наименьшему показанию индикатора. Ротор уравновешивают вторично передвижением грузовой рамки по линейке со шкалой, отградуированной в граммах на сантиметр. О величине неуравновешенности судят по показаниям шкалы весов.

Статическая балансировка применяется для роторов, вращающихся с частотой, не превышающей 1000 об/мин. Статически уравновешенный ротор (якорь) может иметь динамическую неуравновешенность, поэтому роторы, вращающиеся с частотой выше 1000 об/мин, чаще всего подвергают динамической балансировке, при которой одновременно устраняются оба вида неуравновешенностей -- статическая и динамическая.

Закрепив постоянный груз, ротор подвергают проверочной балансировке и при удовлетворительных результатах передают в сборочное отделение для сборки машины.

Сборка и испытание электрических машин Сборка -- завершающий этап ремонта электрической машины, в процессе которого соединяют ротор со статором при помощи подшипниковых щитов с подшипниками и собирают остальные детали машины. Как правило сборка любой машины ведется в последовательности, обратной разборке.

Сборку машины ведут в такой последовательности, чтобы каждая устанавливаемая деталь постепенно приближала ее к собранному состоянию и в то же время не вызывала необходимости переделок и повторения операции.

Технологическая последовательность выполнения основных сборочных

Сборку машины постоянного тока П-41 (рис. 6) производят следующим образом. Надевают на главные полюса катушки возбуждения, устанавливают полюса с катушками в станине 16 согласно маркировке, сделанной при разборке, и крепят их болтами. Проверяют шаблоном расстояния между полюсными наконечниками, штихмасом -- расстояния между противоположными полюсами.

Рисунок 6 - Машина постоянного тока П-41

Надевают на добавочные полюса 13 катушки, вставляют полюса с катушками в станину 16 согласно маркировке, сделанной при разборке, и крепят их болтами. Проверяют шаблоном расстояния между полюсными наконечниками главных и добавочных полюсов, а штихмасом -- расстояния между противоположными добавочными полюсами. Соединяют катушки главных и добавочных полюсов согласно схеме соединений. Проверяют полярность главных и, добавочных полюсов, а также величину вылета обмотки 12, расположенной в сердечнике 14 якоря. Насаживают на вал 7 вентилятор согласно пометкам, сделанным при разборке. Закладывают консистентную смазку в лабиринтовые канавки. Надевают на вал внутренние крышки 2 и 20 подшипников. Нагревают шарикоподшипники в масляной ванне или индукционным методом и насаживают их на вал с помощью приспособления, Закладывают в подшипники консистентную смазку. Вводят якорь в станину, пользуясь приспособлением. Собирают траверсу 6 вместе со щеткодержателями на приспособлении и притирают щетки. Привинчивают траверсу со щеткодержателями к подшипниковому щиту 5 и поднимают щетки из гнезд щеткодержателей. Надвигают на шарикоподшипник задний подшипниковый щит 18, приподнимают якорь за конец вала и надвигают подшипниковый щит на замок станины. Ввертывают болты подшипникового щита в отверстия торца станины, не затягивая их до отказа. Надвигают на шарикоподшипник 3 передний подшипниковый щит 5. Приподнимают якорь и вводят подшипниковый щит в замок станины. Ввертывают болты подшипникового щита в отверстия торца станины, не затягивая их до отказа. Проверяют легкость вращения якоря, постепенно затягивая болты подшипниковых щитов. Надевают крышку 4 шарикоподшипника и стягивают крышки 4 и 2 болтами. Закладывают консистентную смазку в лабиринтовые канавки. Надевают крышку 19 шарикоподшипника и крепят крышки 19 и 20 болтами. Проверяют легкость вращения якоря, вращая его за конец вала. Опускают щетки на коллектор. Проверяют расстояния между щетками разных пальцев по окружности коллектора и сдвиг щеток по длине коллектора. Проверяют расстояния между коллектором и щеткодержателями. Собирают зажимы 7 на дощечке 9 в коробке 8 и крепят к ней конденсаторы 10. Устанавливают собранную дощечку зажимов на переднем подшипниковом щите 5. Производят электрические соединения согласно схеме. Проверяют щупами расстояния между якорем и полюсами. Подводят к зажимам провода питания от сети. Производят пробную обкатку машины. В процессе обкатки проверяют работу щеток и подшипников. Щетки должны работать без искрения, подшипники -- без шума. Окончив обкатку, закрывают коллекторные люки крышками. Отсоединяют провода питания и закрывают коробку зажимов крышкой. Сдают собранную машину мастеру или контролеру ОТК.

При выполнении сборочных работ электрослесарь должен помнить, что ротор электродвигателя, удерживаемый в центральном положении магнитным полем статора, должен иметь возможность перемещения («разбега») в осевом направлении. Это необходимо для того, чтобы вал ротора при малейшем смещении не стирал своими заточками торцы подшипников и не вызывал добавочных усилий или трении сопряженных частей машины. Величины осевого разбега, зависящие от мощности машины, должны быть: 2,5 -- 4 мм при мощности 10--40 кВт и 4,5 -- 6 мм при мощности 50--100 кВт.

У всех машин после ремонта проверяют нагрев подшипников и отсутствие в них посторонних шумов. У машин мощностью выше 50 кВт при частоте вращения более 1000 об/мин и у всех машин, имеющих частоту вращения свыше 2000 об/мин, измеряют величину вибрации.

Зазоры между активной сталью ротора и статора, измеренные в четырех точках по окружности, должны быть одинаковы. Размеры зазоров в диаметрально противоположных точках ротора и статора асинхронного электродвигателя, а также между серединами главных полюсов и якорем машины постоянного тока не должны отличаться более чем на ±10%.

Испытания электрических машин. В ремонтной практике встречаются главным образом следующие виды испытаний: до начала ремонта и в процессе его для уточнения характера неисправности; вновь изготовленных деталей машины; собранной после ремонта машины.

Испытания собранной после ремонта машины проводят по следующей программе:

проверка сопротивления изоляции всех обмоток относительно корпуса и между ними;

проверка правильности маркировки выводных концов;

измерение сопротивления обмоток постоянному току;

проверка коэффициента трансформации асинхронных двигателей с фазным ротором;

проведение опыта холостого хода; испытание на повышенную частоту вращения; испытание межвитковой изоляции; испытание электрической прочности изоляции.

В зависимости от характера и объема произведенного ремонта иногда ограничиваются выполнением лишь части перечисленных испытаний. Если испытания проводят до ремонта с целью выявления дефекта, то достаточно провести часть программы испытаний.

В программу контрольных испытаний асинхронных двигателей входят:

1) внешний осмотр двигателя и замеры воздушных зазоров между сердечниками;

2) измерение сопротивления изоляции обмоток относительно корпуса и между фазами обмоток;

3) измерение омического сопротивления обмотки в холодном состоянии;

4) определение коэффициента трансформации (в машинах с фазным ротором);

5) испытание машины на холостом ходу;

6) измерение токов холостого хода по фазам;

7) измерение пусковых токов в короткозамкнутых двигателях и определение кратности пускового тока;

8) испытание электрической прочности витковой изоляции;

9) испытание электрической прочности изоляции относительно корпуса и между фазами;

10)проведение опыта короткого замыкания;

11) испытание на нагрев при работе двигателя под нагрузкой.

В программу контрольных испытаний синхронных машин входят те же испытания за исключением п. 4, 7 и 10.

Контрольные испытания машин постоянного тока включают следующие операции:

внешний осмотр и измерение воздушных зазоров между сердечником якоря и полюсами;

измерение сопротивления изоляции обмоток относительно корпуса;

измерение омического сопротивления обмоток в холодном состоянии;

проверка правильности установки щеток на нейтралях;

проверка правильности соединения обмоток добавочных полюсов с

проверка согласованности полярностей катушек последовательного и параллельного возбуждений;

проверка чередования полярностей главных и добавочных полюсов;

испытание машины на холостом ходу;

испытание электрической прочности витковой изоляции;

испытание электрической прочности изоляции относительно корпуса;

испытание на нагрев при работе машины под нагрузкой.

ПАЙКА, ИЗОЛИРОВКА И УВЯЗКА СХЕМЫ ОБМОТКИ ЭЛЕКТРОДВИГАТЕЛЯ.


При изготовлении обмотки электродвигателя токоведущие части соединяют при помощи пайки или сварки.
Пайка - это процесс соединения металлов при помощи легкоплавкого металла или сплава, называемого припоем.
Для пайки соединяемые поверхности деталей очищают от окислов, жировых и других загрязнений и нагревают до определенной температуры, при этом указанные поверхности остаются в твердом состоянии.
Между спаиваемыми поверхностями вводится расплавленный припой, который, смачивая их, прочно скрепляет соединяемые части после затвердевания и охлаждения.
Сваркой называется способ соединения металлов за счет местного расплавления соединяемых частей.
Расплавление металла производится за счет тепла электрической дуги (электросварка) или тепла, образующегося при горении газа (газовая сварка).
Соединения, получаемые методом сварки, неразъемные. Спаянные детали можно разъединить на составные части, если нагреть место спайки до температуры плавления припоя.
Процесс пайки - это наиболее распространенный способ соединения деталей в электромашиностроении.

После укладки всех сторон катушек в пазы сердечников необходимо произвести соединение концов отдельных катушечных групп в фазы согласно схемы, указанной в чертеже. Для этого выводные концы отдельных катушек расправляют и подравнивают по длине, размечают согласно схеме, а затем конец одной катушки скручивают с началом другой.
К началу и концам фаз согласно схеме присоединяют выводные кабели, после чего производят пайку или сварку скруток:

Концы катушек, подлежащие сварке, скручивают между собой. К ним подводят один из концов сварочного однофазного трансформатора, второй конец трансформатора соединяют с угольным электродом. При касании электродом торцов свариваемых проводов возникает электрическая дуга, которая оплавляет концы проводов, соединяя их в единое целое.
Для защиты глаз от вредного воздействия на них дуги сварку необходимо производить в защитных сварочных очках.
При сварке возникновение электрической дуги и оплавление концов проводов происходят за доли секунды. Любая передержка дуги может привести к пережогу металла. Соединение становится хрупким и при изгибе проводов в процессе сборки схемы рядом с местом сварки провода могут обломиться. Вот почему некоторые заводы предпочитают не сваривать, а паять межкатушечные соединения припоем ПМФ.

Соединения концов катушечных групп между собой и с выводными кабелями изолируют двумя слоями стеклолакоткани, собирают по торцу схемы в один жгут, который после бандажировки стеклолентой привязывают к лобовым частям обмотки.

Выводные кабели без перекрещивания выводят наружу (при укладке обмотки в пакет, находящийся в статоре) или располагают по торцу схемы (при укладке обмотки в отдельный пакет).
Для удержания на роторе в процессе вращения лобовых частей всыпных обмоток их привязывают стеклолентой к специальным металлическим кольцам, сидящим на валу ротора.

4-6. ПАЙКА ОБМОТОК, КОЛЛЕКТОРОВ, БАНДАЖЕЙ

Соединение проводников пайкой производится при помощи припоя. По температуре расплавления припои делятся на мягкие (олово - свинец) с температурой плавления до "230° С и твердые (медь - серебро) с температурой плавления 700° С и выше. Существует также промежуточная группа припоев. Из числа мягких оловя-нисто-свинцовых припоев применяются припои марок ПОС-30-ПОС-90 (цифра обозначает процентное содержание олова) с температурой плавления 180° С. Хорошие результаты дает пайка чистым оловом (температура плавления 230° С). Однако вследствие дефицитности этого металла пайку чистым оловом производят лишь в осо-

Для якоря

Для якоря

бо ответственных электрических машинах при наличии повышенных температур.

Кадмиево-цинково-серебряные припои (ПКДЦ Ср 31) с температурой плавления 250° С применяются для пайки бандажей машин с изоляцией класса Н, а свинцово-серебряные припои (ПССр 2,5) с температурой плавления 280° С, применяются для пайки коллекторов этих машин.

Из числа твердых применяются серебряные припои (П Ср 45-70) с температурой расплавления 660- 730° С и медно-фосфористые (ПМФ7, МФ-3) с температурой плавления 710-850° С. К припоям предъявляется ряд требований: они должны в расплавленном виде достаточно хорошо проникать в щели между спаиваемыми поверхностями, т. е. иметь достаточную жидкотекучесть, не должны размягчаться при температурах, лежащих по возможности близко к температуре плавления, и обеспечивать достаточную механическую прочность пайки при этих температурах. Место пайки не должно быть хрупким. Пайка должна иметь достаточно низкое электрическое сопротивление и, кроме того, с течением времени это сопротивление, равно как и механические показатели, не должно ухудшаться за счет окисления и старения.

Следует отметить, что припои с большим содержанием свинца более склонны к окислению, а припои медно-фосфористые дают несколько более хрупкие соединения, чем серебряные.

Для того чтобы припой мог дать прочное соединение поверхностей, кроме чистоты их необходимо, чтобы на них не было пленки окислов. При температуре пайки такой пленкой покрыты поверхности любого металла. Для уничтожения пленки окислов служат флюсы: канифоль для мягких паек и бура для твердых. Протравка спаиваемых поверхностей кислотой при пайке токоведущих частей в электрических машинах не допускается, так как кислота разрушает изоляционные материалы.

Канифоль может применяться в твердом виде или в виде спиртового раствора. Бура применяется в виде порошка либо водного раствора. Пайка производится иа-яльной лампой или паяльником. Для ускорения пайки желательно применение электрических паяльников. Для пайки твердым припоем применяются клещи с электронагревом (рис. 4-20) и графитовыми губками,

Мягкими припоями паяют коллекторы и бандажи всех машин, статорные и роторные шины и соединения у машин, изолированных по классу А с невысокими рабочими температурами.

Чисто оловянистым припоем рекомендуется паягь коллекторы и бандажи ответственных машин, у которых возможны значительные перегрузки. Для нормальных машин пайка коллекторов и бандажей может производиться припоем ПОС-30-ПОС-60 с 30-6Э%-ным содержанием олова (ГОСТ 1499-42).

Рис. 4-20. Сварочные клещи.

Твердым припоем паяют: шины (стержни) обмоток машин, имеющих высокие перегревы и изолированных по классу В-Н, неизолированные обмотки короткозамк-нутых роторов, демпферные клетки и т. д. Твердым припоем производится также соединение медных шин в процессе намотки катушек. Тонкие провода во избежание пережога паяют мягкими припоями.

Технология пайки мягкими припоями предусматривает следующие операции: 1) очистка поверхности места пайки; 2) прогрев места пайки до температуры, при которой припой плавится от прикосновения к месту пайки; 3) обильная промазка канифолью; 4) введение палочки припоя путем прижимания ее к щели между спаиваемыми поверхностями; 5) удаление (тряпкой) излишков припоя в горячем состоянии; 6) остывание и смывание остатков канифоли спиртом.

Для лучшего соединения паяемых поверхностей рекомендуется их предварительное облуживание.

Пайка коллекторов производится в наклонном положении для того, чтобы олово не затекло за петушки. Прогрев коллектора паяльной лампой должен производиться весьма осторожно, чтобы не отпустить пластин. Обмотка при этом закрывается асбестовой тканью или

картоном. У малых коллекторов достаточно прогреть петушки паяльником.

То же относится к впайке проводов в ленточные петушки (рис. 4-21). Прорезь в пластине, петушок и конец обмоточного провода должны быть предварительно об-лужены.

Наилучшие результаты дает пайка коллекторов в ванне. При этом якорь устанавливают вертикально коллектором вниз. Торцовую часть петушков ставят на асбестовую прокладку, лежащую на борту стального кольца. Кольцо и коллектор прогревают при помощи электрообогрева до температуры 250° С, после чего петушки обильно промазывают канифолью и в канавку между ними и бортом кольца наливают расплавленное олово или припой.

При этом методе пайки обеспечивается хорошее проникновение олова во все места, подлежащие пропайке.

Олово, естественно, ие должно наливаться выше уровня петушков, чтобы оно не затекало в обмотку.

Для выполнения пайки по указанному способу ремонтный цех должен иметь установку для нагрева и набор сменных колец для разных диаметров коллекторов.

Весьма удобным (в особенности в условиях ремонта) является способ нагрева петушков при пайке коллекторов, согласно которому коллектор охватывается медным хомутом или проводом, обеспечивающим хороший контакт с пластинами. Один конец от сварочного трансформатора подводят к этому хомуту, а второй конец - к паяльнику, представляющему собой медный стержень с графитовой накладкой, укрепленный в рукоятке из изоляционного материала. Прикосновением графитовой накладки к петушку его разогревают до нужной температуры.

Рис. 4-21. Пайка петушков.

Пайка Шин двухслойной обмотки предусматривает подготовку, т. е. охват шин скобочкой и расклиновку их медным клином (рис. 4-22). Ротору дается легкий наклон для предотвращения затекания олова в обмотку.

Если шины имеют большое сечение, а скобочка большую длину, то для облегчения пропайки всей поверхности в скобе делают прорези или круглые отверстия (рис. 4-"23). Пайка может быть хорошо выполнена толь-

Рис. 4-22. Подготовка

стержней роторной

обмотки к пайке.

Рис 4-23. Скобка с отверстиями.

ко в том ■случае, если внутри скобки с расклиненными шинами не остается пустот. В противном случае припой будет вытекать и пайка получится непрочной.

Пайка бандажей после их намотки заключается в равномерной пропайке тонким слоем олова рядом лежащих витков бандажной проволоки, так что образуется как бы сплошной пояс. При этом не должно быть мест, где олово наложено настолько толстым слоем, что закрывает витки бандажной проволоки.

Пайку проводов твердым припоем производят в следующей последовательности: 1) подготовка торцов; 2) разогрев до темно-красно-малинового цвета; 3) посыпание бурой до полного закрытия слоем расплавленной буры концов провода; 4) дальнейший нагрев до момента расплавления припоя, после чего необходимо прекратить нагревание; 5) осмотр и опиловка места пайки; проверка прочности ее на изгиб. Припой в виде листочка закладывают между торцами провода. Для прямоугольной меди большого сечения стык выполняют наискось (угол 65°). Концы вкладывают в зажимы и закрепляют один плотно, другой свободно. Нагрев места пайки производят паяльной лампой, автогенной горелкой или электроклещами (рис. 4-20).

Пайка шин может производиться аналогичными клещами с угольными губками. Припой в виде листочка закладывают под скобу, которая сжимается клещами. На короткое время, необходимое для расплавления припоя, включают ток.

Хорошие результаты дает пайка припоем из фосфористой меди МФ-3 (температура плавления 720-740° С).

Подлежащие пайке поверхности очищаются шкуркой и сдавливаются электроклещами. Включением тока место пайки нагревается до 750-800° С, и одновременно кромки спаиваемых поверхностей промазываются припоем. Благодаря высокой текучести этого припоя он распределяется по всей поверхности. Для лучшего растекания припоя плоскость спая желательно расположить наклонно или вертикально.

Пайка алюминиевых проводов и шин усложняется тем обстоятельством, что алюминий сильно подвержен окислению. Для пайки алюминиевых проводов между собой и с медными проводами разработаны специальные припои [Л. 1] с температурой плавления 160-450° С, содержащие в основном цинк, олово и добавки: алюминий, медь, серебро, кадмий.

Алюминий можио паять оловом при применении ультразвукового паяльника. Такой паяльник имеет, кроме нагревателя, обмотку, питающуюся током частотой 20 000 гц, охватывающую стальной сердечник из специального сплава. Рабочий конец паяльника при этом совершает высокочастотные колебашия, разрушающие окисные планки.



2024 stdpro.ru. Сайт о правильном строительстве.