«Изучение теплопроводности различных видов текстильных материалов. Исследование теплопроводности строительных материалов и их пожаростойкость Исследование теплопроводности

Тема «Изучение явления теплопроводности»

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

Изучить теоретический материал по данному вопросу;

Исследовать теплопроводность твердых тел;

Исследовать теплопроводность жидкостей;

Исследовать теплопроводность газов;

Сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику: учебник «Физика. 8 класс »

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud. mail. ru/public/JCFY/CFTcCeqhE

Опыт 1 . Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня.


Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.

https://pandia.ru/text/80/351/images/image003_62.jpg" alt="img8_7" align="left" width="216" height="176 src=">

Опыт 3. Исследование теплопроводности газов.

Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод : теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.

Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.


Применение теплопроводности

Теплопроводность на кухне:

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность - в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане - один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество - способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне - плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище - остыть, а рукам - получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха - это еще больше уменьшает теплопроводность.

Отопительная система:

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов - шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц - пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью - было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью - камень.

Интересные факты о теплопроводности

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин - главная составляющая иголок - проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен – пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды , термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины з-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т. к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»……………………………………….

Обычный воздушный шарик , надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Сегодня очень остро стоит вопрос рационального использования тепловых и энергетических ресурсов. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики, как страны, так и каждой отдельной семьи.

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Понятие теплопроводности материалов изучается в школе в 8 классе. Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами).

Мы решили исследовать теплопроводность различных веществ и материалов, а также определить какие современные утеплители являются наиболее эффективными.

Таким образом, мы определили тему нашей работы.

Тема: Исследование теплопроводности различных веществ.

Цель исследования:

Определить коэффициент температуропроводности разных веществ, и выявить из современных строительных утеплителей лучшие изоляторы тепла.

Методы исследования:

    1. Теоретические (изучение литературы, Интернет сайтов, Указов президента РФ и т.д.).

      Эмпирические (измерение температуры, времени).

      Математические (вычисление коэффициента, определение цен утеплителей)

Объект исследования: Различные вещества и строительные теплоизолирующие материалы.

Предмет исследования: Теплопроводность веществ.

Гипотеза:

    Если температура вещества за определённый промежуток времени меняется незначительно, то данное вещество обладает плохой теплопроводностью, т.е. хорошо удерживает тепло.

    Эффективные изоляторы тепла имеют низкий коэффициент температуропроводности.

2.Основная часть.

В современных условиях повышения цен на топливо изменились и подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Теплопроводность - это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями.

Коэффициент теплопроводности - является физическим параметром вещества и в общем случае зависит от температуры, давления и рода вещества. В большинстве случаев коэффициент теплопроводности для различных материалов определяется экспериментально с помощью различных методов. Большинство из них основано на измерении теплового потока и изменения температур в исследуемом веществе.

В школьных условиях сложно определить энергию, проходящую через поверхность. Поэтому в своей работе мы решили определить не энергию, а изменение температуры за единицу времени. Этот коэффициент называется коэффициентом температуропроводности.

Коэффициент температуропроводности (а) - служит мерой скорости, с которой пористая среда передает изменение температуры с одной точки в другую за единицу времени.

Для определения коэффициента мы собрали простую установку, штатив, держатель и термометр, держатель для образцов, лампа накаливания на 100 Вт, как источник нагрева.

2.1. Исследование теплопроводности газов.

Цель : Определение коэффициента температуропроводности газов.

Как известно, газы - плохие проводники тепла. Из-за большого расстояния между молекулами, энергия долго переходит от молекулы к молекуле, т.е время изменения температуры будет большим.

Условия эксперимента : мы взяли пробирку, снизу нагревали воздух в пробирке лампой накаливания, а термометром измерили температуру в пробирке. Начальная t термометра 20°C.

Температура около лампы 65°C.

Вывод: Воздух плохо проводит тепло, это доказывает вычисленный коэффициент температуропроводности = 0,8 °C/ мин.

Если мы оставляем небольшие промежутки воздуха между отделочными материалами стен, пола и т.д., то мы уменьшаем потери энергии.

2. 2 .Исследование теплопроводности жидкости.

Цель: Исследование теплопроводности различных жидкостей и определение их коэффициента температуропроводности.

Условия эксперимента : мы наливали воду, подсолнечное масло и спирт в пробирку, снизу нагревали лампой накаливания, а термометром измерили температуру в пробирке.

Внешние факторы, влияющие на данные эксперимента: температура окружающей среды.

Начальная t термометра 16°C, t около лампы 65°C.

Жидкости

t-температура

Изменение

температуры

t- время

коэффициент температуро

проводности

°C/ мин.

Среднее 2,6

Среднее 3,7

Среднее 5,1

Вывод: Вода обладает самой большой теплоёмкостью из данных жидкостей, т.е. затрачивает большую энергию при нагревании. Это объясняет результаты опыта: вода нагревается медленнее масла и спирта, поэтому её средний коэффициент температуропроводности наименьший и равен 2,6°C/ мин, у масла 3,7°C/ мин, у спирта 5,1°C/ мин.

Самым хорошим проводником тепла является спирт, имеющий наибольший коэффициент температуропроводности.

Вода является самым хорошим изолятором тепла.

    1. Исследование теплопроводности твёрдых тел.

Воздух и вода плохо пропускают тепло, т.е. это хорошая теплозащита. Мы знаем примеры: озимые хлеба под снегом, шуба, многокамерные стеклопакеты окон и т.д. Но для теплоизоляции дома, квартиры используют твёрдые тела.

Именно твёрдые вещества - утеплители помогают сохранить тепло в доме.

2.3.1. Определение коэффициента температуропроводности различных видов стекла и других материалов.

Мы исследовали теплопроводность материалов, которые наиболее часто используются в строительстве.

Название

Изменение температуры

Коэффициент

температуро-

проводности

E=∆ t/ t (°C / мин)

Среднее значение

Простое стекло

Оргстекло

Оргстекло (зелёное)

Оцинкованное железо

Гипсокартон

Вывод: Самым низким коэффициентом температуропроводности из трёх видов стекла обладает, по нашим данным, простое стекло. Именно простое стекло используют в стеклопакетах для окон с целью теплоизоляции.

Популярные строительные материалы для отделки стен и пола - гипсокартон и ламинат имеют низкий коэффициент температуропроводности 1,4 °C/ мин и 1,2 °C/ мин, поэтому они неслучайно являются лидерами по теплоизоляции из всех исследуемых твёрдых материалов.

Оцинкованное железо, имеет коэффициентом температуропроводности = 1,0 , это говорит о том, что при покрытии крыш этим материалом мы значительно можем уменьшить потери тепла из дома.

2.3.2.Определение коэффициента температуропроводности различных строительных материалов.

Для выполнения этого исследования, мы отправились в магазин стройматериалов «Алекс-строй». Нам любезно предоставили образцы современных теплоизоляционных материалов: минеральная вата, стекловата, джутовое волокно, изолон, пеноплекс и джермафлекс.

Мы решили определить лучший изолятор тепла, соединяя эти образцы с гипсокартоном, который используют для выравнивания стен помещений. Соединяя гипсокартон с утеплителем можно получить эффективную теплозащиту своего дома.

Начальная t термометра=16°C, t около лампы =65°C.

Название

Изменение температуры

Коэффициент

температуро-

проводности

E=∆ t/ t (°C / мин)

Среднее значение

Гипсокартон

Гипсокартон + минеральная вата

Гипсокартон +стекловата

Гипсокартон +джутовое полотно

Гипсокартон + пеноплекс

Гипсокартон + изолон

Гипсокартон + джермафлекс

Вывод: Из данных таблицы видно, что строительные утеплители существенно уменьшают коэффициент температуропроводности. Самый малый коэффициент температуропроводности 1,0 °C/ мин имеет сочетание гипсокартона с минеральной ватой или пеноплексом 1,1°C/ мин. Таким образом, самая эффективная теплозащита стен помещений будет изоляция с помощью мин.ваты или пеноплекса.

2.3.3.Определение наиболее выгодного теплоизолятора по цене за 1 кв.м.

Вывод: Наиболее выгодным по цене является теплоизолятор - …., но с учётом эффективности теплоизоляции лучше выбирать …

3.Заключение.

Теплопроводность различных веществ - эта тема, которую мы изучаем в 8 классе, имеет важное практическое применение.

При огромных ценах на отопление каждый человек начинает задумываться о том, как сохранить тепло в доме.

Чтобы оценить уровень теплоизоляции материалов мы ввели новую величину - коэффициент температуропроводности, который вычисляли, измеряя время и температуру, секундомером и термометром.

Вычислив, коэффициент температуропроводности мы определили, что самые хорошие изоляторы тепла - это воздух и вода. Но для утепления домов используют твёрдые материалы. Современное производство предлагает многообразие утеплителей. Мы выбрали только частовстречающиеся теплоизоляторы в магазине стройматериалов «Алекс-строй». Из них мы определили, что самым лучшим изолятором тепла является гипсокартон и ламинат, и ещё лучше в сочетании с минеральной ватой, изолоном или пеноплексом.

Наша гипотеза о том, что лучшие теплоизоляторы имеют низкий коэффициент температуропроводности, подтвердилась.

Таким образом, актуальность темы сохранения тепла в доме привела нас к важным выводам, которые мы можем использовать в жизни. Мы убедились, что затраты на утеплители к строительным материалам окупаются в короткое время теплом и уютом в наших домах.

4.Список литературы.

    https://ru.wikipedia.org/wiki/

    www.rg.ru/2010 /12/31/deti-inform-dok.htm

    Теплопроводность -- рабочая характеристика теплоизоляционных покрытий. Наряду с экономией основного металла эти покрытия дают возможность сократить теплопотери и предохраняют основной металл от воздействия теплового потока.

    Широкое распространение получили стационарные методы определения теплопроводности, при которых сохраняются хотя и различные, но неизменные в процессе исследований температуры в определенных точках покрытия при направлении его слоистости перпендикулярно проходящему тепловому потоку.

    Эти методы делятся на абсолютные и относительные. В методах первой группы температура любой точки покрытия зависит только от ее положения, но не от времени. Зная распределение температур в покрытии и количество перенесенной теплоты, можно рассчитать теплопроводность.

    В относительных методах сравнивают температурные поля в исследуемом покрытии и эталонном заранее изученном материале, например, кварцевом стекле марки КВ.

    Теплопроводность не оценивают непосредственно, а определяют путем перерасчета, сопоставляя с эталоном.

    Рис. 2.6.1. Установка для определения теплопроводности покрытий абсолютным методом:

    1 - нагреватели; 2 - образец; 3 - электропечь; 4 - потенциометр КСП4; 5 - блок реле БР101;6 - блок задачи БЗ-02; 7 - контробразец; 8 - термос; 9 - внутренний стакан термоса

    Установка для оценки теплопроводности стационарным абсолютным методом показана на рис. 2.6.1.

    Для создания теплового потока в системе основной металл-покрытие-контр-образец применяется трубчатая электропечь, в которой нагреватели (спирали) расположены так, что образец нагревается только в верхней половине печи, где находятся спиральные нагреватели, тогда как в нижней -- асбестовая теплоизоляция и термопреобразователи для измерения температуры образца по его длине.

    Термос, необходимый для охлаждения контробразца и определения теплового потока, прошедшего через покрытие, представляет собой два изолированных стакана.

    Во внутренний стакан подается вода.

    Температура воды на входе и выходе из термоса может быть измерена медь-константановыми термопреобразователями. Для обеспечения достаточного контакта рабочих торцевых поверхностей контробразца и образца к последнему прикладывается усилие Р не менее 500 Н.

    Теплопроводность определяют не менее чем на трех образцах одинаковых размеров, с идентичной структурой и одинаковой толщиной покрытия, которое наносят при одном технологическом режиме на торцевую поверхность образца (рис. 2.6.2).

    Рис. 2.6.2 Образец для испытания на теплопроводность

    Для каждого образца в каждой точке определяют не менее трех температур через каждые 20 мин.

    Одновременно фиксируют температуру воды на входе и выходе.

    Обеспечив необходимый прогрев образца и стационарность теплового потока, можно снимать показания всех термопреобразователей.

    Для каждого образца в каждой точке определяют не менее трех температур через каждые 20 мин. Одновременно фиксируют температуру воды на входе и выходе.

    Рис. 2.6.3 Распределение температур в системе основной металл-покрытие-контробразец по длине :

    1 - контробразец; 2 - места установки термопреобразователей; 3 - основной металл; 4 - покрытие

    По результатам исследований строится график распределения температур в системе основной металл--покрытие--контробразец (рис. 2.6.3). По графику методом экстраполяции определяют температуры на внутренней и внешней поверхностях покрытия. Теплопроводность , Вт/(м-К) вычисляется по формуле:

    где Q -- тепловой поток, проходящий через покрытие, Вт; c = 4,19- -- удельная теплоемкость воды, Дж/(кгК); V -- массовый расход воды, проходящей через термос, кг/с; - повышение температуры воды в термосе, °С; -- температуры воды на входе и выходе из термоса, °С; S -- площадь покрытия, м2; -- температура на внутренней и внешней поверхностях покрытия, °С.

    Известны и другие установки для оценки теплопроводности абсолютным методом. Так, В. М. Иванов с сотр. исследовали теплофизические свойства отделенных от основного металла плазменных покрытий из оксида алюминия и двуокиси циркония на установке, приведенной на рис. 2.6.4. Образец в виде цилиндра длиной 100 мм с толщиной стенок 1 мм устанавливали так, чтобы один его конец нагревался от верхних электрических нагревателей, а другой находился в эвтектическом расплаве. Охранное приспособление, экраны, изоляция из кремнеземистого волокна, возможность измерения теплового потока на сравнительно большой длине -- все это исключало неточность выполнения условий стационарности. Градиент температур определяли термопреобразователями.

    Рис. 2.6.4 Установка для измерения теплопроводности покрытий абсолютным методом на цилиндрических образцах:

    1 - исследуемый образец; 2 - охранное приспособление; 3 - экраны; 4- нагреватели; 5- эвтектический расплав; 6- теплоизоляция; 7-термопары

    В работе Т. Б. Бузовкина с сотр. теплопроводность покрытий определена с помощью относительных методов измерения. При этом упрощение достигнуто за счет сравнения температурных полей в исследуемом и эталонном покрытиях. В качестве эталона выбирали заранее изученный материал. По эталонному образцу измеряли полный тепловой поток. При оценке теплопроводности покрытий эталоном служил плавленый кварц с многократно определенной теплопроводностью. Он обладает высокой стабильностью и может работать в интервале температур от 100 до 1700 К.

    В экспериментальной установке (рис. 2.6.5) дисковый образец толщиной 3--4 мм и диаметром 23--25 мм устанавливали между эталонами из плавленого кварца.

    Рис. 2.6.5 Установка для измерения теплопроводности относительным методом:

    1 - образец; 2 - эталоны (плавленый кварц); 3 - термопреобразователи; 4 - силитовые стержни; 5- холодильник; 6- крышка; 7- груз; 8- кольца

    Образец изготавливали из отделенного от основного металла покрытия, шлифуя с обеих сторон. Теплопроводность измеряли в условиях лучистого нагрева от силитовых стержней. Для уменьшения радиального отвода тепла систему из образца и кварцевых дисков окружали тремя защитными концентрическими кольцами из асбоцемента и засыпкой из кварцевого песка. Температурные перепады в установившемся режиме фиксировали четырьмя платина-платинородиевыми термопарами. Систему из образца и термопар располагали на медном холодильнике и прижимали к нему грузом для уменьшения переходного контактного сопротивления между образцом, эталонами и термопарами. Тепловая изоляция обеспечивала расхождение значений тепловых потоков через первый и второй эталонные образцы не более 4%. Для интервала 200--900 °С строили кривую зависимости теплопроводности от температуры и с помощью ЭВМ анализировали влияние микротрещин, пятен контакта между частицами, размеров частиц и других структурных параметров на теплопроводность.

    роквелл твердость покрытие

    цель работы

    Усвоение и закрепление теоретического материала по разделу теплопередачи "Теплопроводность", овладение методом экспериментального определения коэффициента теплопроводности; получение навыков измерений, анализ полученных результатов.

    1. Экспериментальным путем определить коэффициент теплопроводности теплоизоляционного материала.

    2. Записать табличное значение коэффициента теплопроводности исследуемого материала.

    3. Вычислить погрешность найденного в опыте значения коэффициента теплопроводности по отношению к табличному.

    4. Сделать вывод по работе.

    МЕТОДИЧЕСКИЕ УКАЗАНИЯ

    При проведении технических расчетов необходимо располагать значениями коэффициентов теплопроводности различных материалов.

    Коэффициент теплопроводности характеризует способность материала проводить теплоту. Численная величина l твердых материалов, особенно теплоизоляторов, как правило, определяется опытным путем.

    Физический смысл коэффициента теплопроводности определяется из уравнения Фурье, записанного для удельного теплового потока

    g = –l grad t . (1)

    Существует несколько методов экспериментального определения величины l, основанных на теории стационарного или нестационарного теплового режима.

    Дифференциальное уравнение теплового потока Q, Вт, при стационарной теплопроводимости можно записать в виде

    Q = – lF grad t . (2)

    Если рассматривать тонкостенный цилиндр, когда l / d > 8, температурный градиент температурного поля в цилиндрической системе координат будет записан в виде

    grad t = dt / dr ,

    а уравнение (2) данного случая

    где d 1 , d 2 – соответственно внутренний и нижний диаметры цилиндра, м;

    l - длина цилиндра, м;

    (t 2 - t 1) = Dt - перепад температур между температурами на внутренней и внешней поверхности цилиндра, 0 С;

    l - коэффициент теплопроводности материала, из которого изготовлен цилиндр, Вт/(м× 0 С);

    grad t - градиент температуры по нормали к поверхности теплообмена, 0 С/м.

    Если уравнение (3) решить относительно коэффициента теплопроводности l, Вт/(м× 0 С), то будем иметь

    l = Q ln(d 2 /d 1) / (2plDt). (4)

    Уравнение (4) может быть использовано для экспериментального нахождения величины коэффициента теплопроводности материала, из которого изготовлен цилиндр.

    При проведении эксперимента необходимо определить величину теплового потока Q, Вт, и значения (t 2 - t 1) = Dt 0 С, при наступлении стационарного теплового режима.



    ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

    Экспериментальная установка (рисунок) состоит из цилиндра 1, во внутренней полости которого помещен электронагреватель 2, его мощность регулируется автотрансформатором (тумблером)3 и определяется по показаниям амперметра 4 и вольтметра 5. Температура внутренней и наружной поверхностей цилиндра измеряется с помощью хромель-копелевых термопар 7, подключенных к микропроцессорному измерителю температур 6. По разности этих температур в стационарном тепловом режиме определяется коэффициент теплопроводности исследуемого материала из которого изготовлен цилиндр.

    Рисунок. Схема экспериментальной установки для определения коэффициента теплопроводности материала цилиндра.

    ПОРЯДОК проведения ОПЫТА

    1. Включить аппаратуру поворотом ручки на щите в положение 1.

    2. Поворотом ручки автотрансформатора (тумблера) установить заданную преподавателем мощность нагревателя.

    3. Наблюдая за показаниями измерителя температур, дождаться установления стационарного теплового режима.

    4. Результаты измерений представить в таблицу:

    Т а б л и ц а

    Номер опыта U, В I, А t 1, 0 С t 2 , 0 С

    где U, I - напряжение и сила тока в нагревателе;

    t 2 , t­ 1 - температура внутренней и наружной поверхности цилиндра.

    ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

    1. Вычислить коэффициент теплопроводности исследуемого материала, l, Вт/(м× 0 С)

    l эк = Q ln (d 2 /d 1) / (2plDt),

    где Q = U×I – мощность нагревателя, Вт;

    d 1 = 0.041 м, d 2 = 0.0565 м – внутренний и наружный диаметры цилиндра;

    l = 0.55 м – длина цилиндра.

    2. Записать табличное значение l, Вт/(м× 0 С).

    3. Определить погрешность l эк по отношению к справочному значению l, %.

    D = (l эк – l)100/l.

    ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ



    1. Установившийся и неустановившийся тепловой режимы.

    2. Температурное поле, стационарное и нестационарное, стационарное поле трехмерное, двухмерное и одномерное.

    3. Температурный градиент.

    4. Физическая сущность процесса теплопроводности.

    5. Уравнение Фурье, его анализ.

    6. Коэффициент теплопроводности, факторы, влияющие на величину коэффициента теплопроводности.

    7. Привести численно значение коэффициента теплопроводности для некоторых материалов.

    8. Какие материалы относятся к теплоизоляционным?

    9. Записать величину температурного градиента для одномерного температурного поля в декартовой и цилиндрической системах координат.

    10.Записать формулы для определения теплового потока Q, Вт, плоской и цилиндрической однослойных и многослойных стенок.

    11.Записать формулы для определения удельных тепловых потоков g 1 , Вт/м 2 , g 2 , Вт/м для плоской и цилиндрической однослойных и многослойных стенок.

    БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    1. Михеев М.А., Михеева И.М. Основы теплопередачи.- М.: Энергия, 1977.

    2. Баскаков А.П. и др. Теплотехника.- М.: Энергоиздат, 1991.

    3. Нащокин В.Б. Техническая термодинамика и теплопередача.- М.: Высшая школа, 1980.

    4. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача.- М.: Энергия, 1981.


    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    1. Введение.

    Проект разработан в соответствии со стандартом среднего общего образования по физике. При написании данного проекта рассмотрено изучение тепловых явлений, применение их в быту и технике. Помимо теоретического материала большое внимание уделено исследовательской работе - это опыты, которые отвечают на вопросы «Какими способами можно изменить внутреннюю энергию тела», «Одинаковая ли теплопроводность различных веществ», «Почему струи теплого воздуха или жидкости поднимаются вверх», «Почему тела с темной поверхностью нагреваются сильнее»; поиск и обработка информации, фотографий.Время работы над проектом: 1 - 1,5 месяца.Цели проекта:* практическая реализация имеющихся у школьников знаний о тепловыхявлениях;* формирование навыков самостоятельной исследовательской деятельности;* развитие познавательных интересов;* развитие логического и технического мышлений;* развитие способностей к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;

    2. Основная часть.

    2.1. Теоретическая часть

    В жизни мы действительно ежедневно встречаемся с тепловыми явлениями. Однако не всегда мы задумываемся, что эти явления можно объяснить, если хорошо знать физику. На уроках физики мы познакомились со способами изменения внутренней энергии: теплопередачей и совершением работы над телом или самим телом. При контакте двух тел с разными температурами происходит передача энергии от тела с более высокой температурой к телу с более низкой температурой. Этот процесс будет происходить до тех пор, пока температуры тел не сравняются (не наступит тепловое равновесие). При этом механическая работа не совершается. Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплообменом или теплопередачей. При теплопередаче энергия всегда передается от более нагретого тела к менее нагретому. Обратный процесс самопроизвольно (сам по себе) никогда не происходит, т. е. теплообмен необратим. Теплообмен определяет или сопровождает многие процессы в природе: эволюцию звезд и планет, метеорологические процессы на поверхности Земли и др. Виды теплопередачи: теплопроводность, конвекция, излучение.

    Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.

    Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.

    При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.

    2.2. Практическая часть.

    Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

    Опыт №1

    Взяли различные предметы: одну алюминевую ложку, другую деревянную, третью - пластмассовую, четвертую - из нержавеющего сплава, а пятую - серебряную. Прикрепили к каждой ложке каплями меда скрепки для бумаг. Вложили ложки в стакан с горячей водой, чтобы ручки со скрепками торчали из него в разные стороны. Ложки нагреются, и по мере нагревания мед будет плавиться и скрепки отпадут.

    Конечно, ложки должны быть одинаковые по форме и размеру. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен. Для этого опыта я взял стакан с кипятком и четыре вида ложек: алюминиевую, серебряную, пластмассовую и нержавеющую. Я опускал их по одной в стакан и засекал время: за сколько минут она нагреется. Вот, что у меня получилось:

    Вывод: ложки, изготовленные из дерева и пластмасса, греются дольше, чем ложки из металла, значит, металлы обладают хорошей теплопроводностью.

    Опыт №2

    Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.

    Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность

    Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

    Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. На шта-ти-ве го-ри-зон-таль-но за-креп-лён стер-жень. На стержне через оди-на-ко-вые про-ме-жут-ки вер-ти-каль-но за-креп-ле-ны с по-мо-щью воска металлические гвоздики.

    К краю стерж-ня под-но-сят свечу. По-сколь-ку край стерж-ня на-гре-ва-ет-ся, то по-сте-пен-но стер-жень про-гре-ва-ет-ся. Когда тепло до-хо-дит до места креп-ле-ния гвоздиков со стерж-нем, сте-а-рин пла-вит-ся, и гвоздик па-да-ет. Мы видим, что в дан-ном опыте нет пе-ре-но-са ве-ще-ства, со-от-вет-ствен-но, на-блю-да-ет-ся теп-ло-про-вод-ность.

    Опыт №3

    Различные металлы обладают различной теплопроводностью. В физическом кабинете есть прибор, с помощью которого мы можем убедиться в том, что различные металлы обладают разной теплопроводностью. Однако, в домашних условиях мы смогли в этом убедиться с помощью самодельного прибора.

    Прибор для показа различной теплопроводности твердых веществ.

    Мы изготовили прибор для показа различной теплопроводности твердых тел. Для этого использовали пустую банку из алюминиевой фольги, два резиновых кольца (самодельные), три отрезка проволоки из алюминия, меди и железа, плитку, горячую воду, 3 фигурки человечков с поднятыми вверх руками, вырезанные из бумаги.

    Порядок изготовления прибора:

      проволоки изогнуть в виде буквы «Г»;

      укрепить их с внешней стороны банки при помощи резиновых колец;

      подвесить к горизонтальным частям проволочных отрезков (посредством расплавленного парафина или пластилина) бумажных человечков.

    Проверка действия прибора . Налить в банку горячей воды (при необходимости подогреть банку с водой на электрической плитке) и наблюдать, какая фигурка упадет первой, второй, третьей.

    Результаты. Упадет первой фигурка, закрепленная на медной проволоке, вторая - на алюминиевой, третья - на стальной.

    Вывод. Разные твердые вещества обладают различной теплопроводностью.

    Теплопроводность у различных веществ различна.

    Опыт №4

    Рассмотрим теперь теплопроводность жидкостей. Возьмём пробирку с водой и станем нагревать её верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется. Значит, у жидкостей теплопроводность невелика.

    Опыт №5

    Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх. Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа ещё больше, чем у жидкостей и твёрдых тел. Следовательно, теплопроводность у газов ещё меньше.

    Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, снег и другие пористые тела.

    Это связано с тем, что между волокнами этих веществ содержится воздух. А воздух - плохой теплопроводник.

    Так под снегом сохраняется зеленая трава, озимые сохраняются от вымерзания.

    Опыт №6

    Распушил небольшой комок ваты и обернул им шарик термометра.Теперь подержал некоторое время термометр на определенном расстоянии от пламени и заметил, как поднялась температура. Затем тот же комок ваты сжал и туго обмотал им шарик термометра и снова поднес к лампе. Во втором случае ртуть поднимется гораздо быстрее. Значит, сжатая вата проводит тепло намного лучше!

    Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

    3. Заключение.

    У различных веществ различная теплопроводность.

    Большой теплопроводностью обладают твердые тела (металлы), меньшей - жидкости, и плохой - газы.

    Теплопроводность различных веществ мы можем использовать в быту, технике и природе.

    Явление теплопроводности присуще всем веществам, независимо от того, в каком агрегатном состоянии они находятся.

    Теперь без затруднения я смогу ответить и объяснить с физической точки зрения на вопросы:

    1.Почему птицы в холодную погоду распушают свои перья?

    (Между перьями находится воздух, а воздух плохой проводник тепла).

    2. Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая?

    (Между шерстинками находится воздух, который плохо проводит тепло).

    3. Почему зимой, когда погода холодная, кошки спят, свернувшись в клубок? (Свернувшись в клубок, они уменьшают площадь поверхности, отдающей тепло).

    4. Зачем ручки паяльников, утюгов, сковородок, кастрюль делают из дерева или пластмассы? (Дерево и пластмасса обладают плохой теплопроводностью, поэтому при нагревании металлических предметов мы, держась за деревянную или пластмассовую ручку, не будем обжигать руки).

    5. Зачем кусты теплолюбивых растений и кустов на зиму укрывают опилками?

    (Опилки являются плохими проводниками тепла. Поэтому растения укрывают опилками, чтобы они не замёрзли).

    6. Какие сапоги лучше защищают от мороза: тесные или просторные?

    (Просторные, так как воздух плохо проводит тепло, он является ещё одной прослойкой в сапоге, которая сохраняет тепло).

    4. Список используемой литературы.

    Печатные издания:

    1.А.В. Перышкин Физика 8 класс -М: Дрофа,2012г.

    2.М.И.Блудов Беседы по физике часть1 -М: Просвещение 1984г.

    Интернет - ресурсы:

    1.http://class-fizika.narod.ru/8_3.htm

    2.http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C



2024 stdpro.ru. Сайт о правильном строительстве.