Ее прочный и надежный материал. Легкий и прочный материал на основе алюминия. Самый прочный материал во Вселенной

Многим из нас хорошо известны основные свойства например обычной фанеры – ее прочность, жесткость, стабильность и размеры.

Но, скорее всего, вы мало знакомы со свойствами других листовых материалов, появившихся в последние годы.

Неважно, какой проект вам предстоит изготовить, – мы поможем найти материал, идеально подходящий для ваших задач.

Улучшенные свойства благодаря современным разработкам

Все листовые и плитные материалы, включая фанеру, относятся к обширной категории искусственных древесных материалов. В отличие от натуральной, природной древесины, когда доски и брусья просто выпиливаются из древесного ствола и высушиваются, искусственные материалы получают путем дальнейшей обработки, добиваясь улучшения или изменения некоторых свойств.

Например, фанера состоит из множества тонких слоев, склеенных друг с другом так, что направление волокон каждого слоя перпендикулярно соседним. Это увеличивает прочность, уменьшает колебания размеров и позволяет использовать древесину с красивой текстурой только на внешних слоях.

Хотя фанера до сих пор доминирует на рынке, появляется все больше новых листовых материалов, производимых из стружки, опилок или размолотой в порошок древесины, которые смешиваются с клеем и специальными добавками, а затем прессуются. Гак изготавливаются широко известные древесно-стружечные и древесноволокнистые плиты (ДСП и МДФ). Даже традиционная фанера изменилась путем частичной замены внутренних или внешних слоев другими материалами, а становящаяся популярной фанера высокой плотности склеивается из множества очень тонких слоев шпона.

В статье описаны назначение и свойства десятка листовых и плитных материалов. Примечание.

Мы не стали включать в нее некоторые материалы, такие как ОСИ (ориентированно-стружечную плиту) и антисептированную фанеру, предназначенные для строительствва, а не для столярной работы.

Описание листовых материалов

  • 1. Материал
  • 2. Описание
  • 3. Применение
  • 4. Стандартные размеры
  • 5. Сорта
  • 6. Преимущества
  • 7. Недостатки

Перечень:

1. Древесно-стружечная плита

2. Состоит из опилок и древесной муки со специальными добавками. Термическое прессование в листы и плиты.

3. Широко используется как подложка для напольных покрытий, для изготовления дешевой корпусной мебели. Ограниченно применяется в мастерских для изготовления некоторых приспособлений.

4. Листы и плиты толщиной 6; 12; 16; 19; 25 и 32 НИ.

5. PBU – для чернового пола M-S, М-1,М-2иМ-3-для изготовления корпусной мебели и столешниц.

6. Низкая стоимость и доступность, легкость обработки и относительная стабильность размеров.

7. Недостаточная жесткость, низкая влагостойкость. Крепеж удерживается плохо.

1. Древесно-стружечная плита с меламиновым покрытием (ЛДСП)

2. Одна или обе поверхности ДСП облицовываются бумагой, пропитанной меламиновыми смолами. На дешевых сортах пластик просто наклеивается, а на дорогих прочно связывается с основой путем нагрева.

3. Отлично подходит для изготовления корпусной мебели, так как пластиковая поверхность легко чистится. Используйте для изготовления приспособлений и простых фрезерных столов.

4. Листы и плиты размером 1250×2500 мм и толщиной 5; 12; 16 и 18 мм.

5. Стандартных градаций ЛДСП не существует, но есть так называемые «вертикальная» и «горизонтальная» разновидности. Дорогие сорта обычно имеют более толстую и прочную пленку покрытия.

6. Недорогой доступный материал с легко чистящейся поверхностью. Широкая гамма расцветок. Встречаются разновидности с покрытием из крафт-бумаги или натурального шпона.

7. Тяжелый материал с низкой влагостойкостью. Края распила часто повреждаются сколами при раскрое пильными дисками, не предназначенными для этого материала.

1. Оргалит

2. Смесь молотых древесных волокон со смолами, спрессованная в листы. Одна или обе стороны листа могут быть гладкими.

3. Отлично подходит для изготовления самодельных приспособлений и мебели для мастерской, особенно разновидности с двумя гладкими сторонами. Перфорированный оргалит-удобное средство для подвески инструментов.

4. Листы толщиной 3 и б мм.

5. Черновой (2 зеленых полосы), стандартный (1 зеленая полоса), средней твердости (2 красных полосы), твердый (1 красная полоса), S1S (с одной гладкой стороной), S2S (с обеими гладкими сторонами).

6. Доступный и недорогой материал, легко обрабатывается, относительно стабилен, хорошо окрашивается.

7. Стандартный и черновой сорта не влагостойки, плохо шлифуются и плохо удерживают крепеж. Их края легко повреждаются.

1. Древесно-волокнистая плита средней плотности (МДФ)

2. Смесь целлюлозных волокон с синтетическими смолами, спрессованная при нагреве.

3. Отлично подходит для изготовления приспособлений, корпусной мебели, окрашиваемых изделий, отделочных профилей. Используется в качестве основы для наклейки шпона и пластиков.

5. Основная разновидность: Industrial. Дешевые сорта обозначаются маркой «В» или «shop». Также классифицируется по плотности: стандартная – MD, низкой плотности – LD.

6. Гладкие поверхности, отсутствие внутренних и наружных дефектов, стабильная толщина. Хорошо склеивается. Кромки легко обрабатываются.

7. Тяжелый материал. Обычные шурупы удерживаются плохо.

1. Хвойная фанера

2. Перекрестно склеенные слои шпона из древесины хвойных пород.

3. Садовая мебель, постройки и конструкции на открытом воздухе, мебель для мастерских, основание для напольных покрытий.

4. Листы и плиты толщиной 6; 10; 12; 16; 19 и 22 мм размерами 1220×2440 и 1225×2500 мм.

5. Сорта А, В, C,D (I,II, III, IV).

6. Дешевле фанеры из лиственных пород древесины. На первосортной фанере лицевой слой шпона часто имеет красивый рисунок текстуры.

7. Красивый внешний вид часто скрывает многие дефекты. Невысокая жесткость.

1. Кашированная фанера

2. Фанера с двухсторонним покрытием из плотной бумаги, пропитанной синтетическими смолами.

4. Листы и плиты толщиной 6; 8; 10; 12; 16 и 19 мм размерами 1220×2440 мм.

5. Классифицируется по сортам так же, как фанера из лиственных пород древесины. Внешние слои (оклеенные бумагой) из шпона сорта В (II) или А (I), внутренние слои из шпона сорта С (III).

6. Гладкие поверхности хорошо окрашиваются. Легко обрабатывается. Долговечный материал, устойчивый к атмосферным воздействиям.

7. Тяжелый материал. Ограниченная доступность.

1. Декоративная фанера

2. Фанера с наружными слоями шпона из ценных пород древесины.

3. Применяется для изготовления мебели и отделки интерьеров.

4. Листы толщиной 3;6; 10; 12; 16 и 19 мм.

5. Сорта шпона на лицевой стороне: АА, А, В, C/D/E на задней стороне: 1,2,3,4.

6. Стабильнее и дешевле массивной древесины. Отсутствие внешних дефектов на лицевой стороне. Красивый внешний вид.

7. Толстые листы могут быть тяжелыми. Тонкий шпон легко повредить. Кромки деталей приходится закрывать накладками.

1. Березовая фанера

2. Склеивается из тонких слоев шпона. В дорогих сортах отсутствуют внутренние дефекты.

3. Применяется для изготовления приспособлений, мебели, выдвижных ящиков.

4. Листы размером 1525×1525 мм и толщиной 4; 6; 5; 9; 12; 15 и 18 мм.

5. Сорта: АА, А, В, С, D.

6. Жесткость, стабильность, отсутствие дефектов. Хорошо удерживает шурупы. Обработанные кромки декоративны.

7. Тяжелый материал. Наружные слои только из березового шпона.

1. Фанера «Appleply»

2. Американская разновидность высококачественной березовой фанеры с наружными слоями шпона из древесины ценных пород.

3. Применяется так же, как европейская березовая фанера, преимущественно в декоративных целях.

4. Листы и плиты толщиной 6; 10; 13; 19; 25 и 32 мм размерами 1220×2440 мм.

5. Градации по сортам нет, но для внешних слоев используется шпон сорта «В» или «А».

6. Жесткость, стабильность, отсутствие дефектов. Хорошо удерживает крепеж. Разнообразие шпона на лицевых сторонах.

7. Ограниченная доступность, высокая стоимость.

1. Гибкая фанера

2. Все внутренние слои шпона перпендикулярны наружным, что позволяет изгибать фанеру поперек волокон наружного слоя.

3. Основное применение в качестве основы при изготовлении мебели.

4. Листы толщиной 3 и 10 мм размером 1220×2440 мм. По заказу изготавливаются листы другой толщины.

5. Изгибается по малым радиусам без растрескивания, не требует распаривания или поперечных пропилов.

6. Благодаря повышенной гибкости позволяет делать закругленные углы и декоративные формы.

7. Не применяется для нагруженных конструкций.Качество шпона на лицевых сторонах не нормируется.

1. Всегда тщательно измеряйте толщину листовых материалов, прежде чем выбрать пазы или шпунты в смежных деталях. Например, толщина фанеры часто бывает на 0,3-0,8 мм меньше номинальной.

2. Распиливая листовые материалы на пильном станке, располагайте их лицевой стороной вверх, чтобы избежать сколов. При раскрое циркулярной пилой их следует располагать лицевой стороной вниз.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Легкий и прочный материал по весу, как алюминий, но почти в 25 раз более прочный за счет применения нанотрубок нитрида бора.

Описание:

композитный материал на основе алюминия. Он такой же легкий, как алюминий, но почти в 25 раз более прочный, что позволяет сопоставлять его со сталью . Упрочение производится при помощи нанотрубок нитрида бора.

Нанотрубки из нитрида бора являются структурными аналогами углеродных нанотрубок . Нитрид бора (химическая формула: BN)- бинарное соединение бора и азота. Нитрид бора, так же как и углерод, может образовывать листы толщиной в один атом, которые скатываются в цилиндры для создания нанотрубок.

Нанотрубки нитрида бора. Масштабная линейка – 1 микрометр:

Виды композитов:

нанокомпозиты, созданные путем напыления металла на нанотрубки;

тонкая лента, которая выглядит как обычная алюминиевая, но в нее внедрены наноструктуры. Прочность этих структур превышает сталь в 50 раз.


Преимущества нанотрубок из нитрида бора:

– прямые, эластичные, их расположением легче управлять, добиваясь равномерной и соответственно более прочной текстуры материала;

по сравнению с углеродными нанотрубками более стабильны при высоких температурах;

– могут быть использованы для экранирования нейтронного и ультрафиолетового излучения;

обладают пьезоэлектрическими свойствами – могут генерировать электрический заряд при растяжении;

– нитрид бора химически пассивен, он слабо реагирует с кислотами и растворами.

Преимущества материала:

– техника, изготовленная с применением легкого и прочного материала, станет легче, сохранив при этом остальные важные качества;

сокращение расхода топлива при перевозке деталей из легкого и прочного материала, увеличение дальности передвижения и объемов перевозимых грузов.

Легкий и прочный материал может применяться:

в самолетостроении;

в машиностроении;

в строительстве разной степени сложности;

в биомедицине и др.

Какие разновидности плит для строительства, ремонта и обшивки стен, пола и потолка существуют? Их особенности, достоинства и недостатки. Если взять для примера, каркасные дома, то долговечность и внешний вид таких домов напрямую зависят от используемых панелей для внутренней и наружной обшивки. Более того, применение панелей с готовой отделкой или слоем теплоизоляции (панель «сендвич») заметно сокращает и так непродолжительные сроки возведения сборно-каркасного дома.

ДСП

Древесно-стружечная плита изготавливается путем горячего прессования древесных стружек со связующими термоактивными смолами, которые составляют 6-18 % от массы стружки. Смолы экологически небезопасны, так как содержат вредный для человека формальдегид. По содержанию этого вещества ДСП разделяют на классы E1 и Е2. Более экологически безопасен класс E1, он разрешен к использованию в производстве даже детской мебели. Целиком облицованные ДСП-плиты не несут никакого вреда здоровью, вредное воздействие оказывают только открытые кромки. Новые технологии позволяют производить плиты класса Super Е, которые по всем санитарным нормам считаются безопасными. В целом материал отличается достаточно высокой плотностью, низкой стоимостью и простотой в обработке. ДСП обшивают стены, крыши, изготавливают перегородки, полы, используют в качестве основания под линолеум и ковровые покрытия.

Достоинства ДСП :

  • широкая номенклатура цветов, рисунков, толщины;
  • легко обрабатывается;
  • однородность структуры.

Недостатки ДСП:

  • плохо удерживает шурупы и гвозди, особенно при повторной сборке;
  • уязвим для влаги;
  • содержит канцерогены (например, меламин).

МДФ

Древесная плита средней плотности или древесноволокнистая плита сухого прессования. МДФ от английского (Medium Density Fiberboard). Изготавливается из древесной стружки, перемолотой в муку методом сухого прессования, при высоких температуре и давлении с добавлением вещества лигнин, который содержится в натуральной древесине. Лигнин делает этот материал экологически чистым и устойчивым к грибкам и микроорганизмам. Плиты МДФ бывают толщиной от 3 до 30 мм и ламинируются пластиками, лакируются или облицовываются шпоном. По влагостойкости и механическим характеристикам МДФ превосходят натуральное дерево и ДСП. Также МДФ в 2 раза прочнее и лучше держит шурупы. МДФ используется для отделки помещений, например, в виде стеновых панелей или ламинированного напольного покрытия - ламината, при производстве мебели, корпусов акустических систем. МДФ имеет однородную структуру, легко обрабатывается, очень прочная.

Достоинства МДФ:

  • огнестойкость;
  • биостойкость;
  • высокая прочность;
  • лучше, чем ДСП держит шурупы;
  • влагостойкость выше, чем у ДСП;
  • широкий выбор цветов и рисунков благодаря покрытию пленками и шпоном.

Недостатки МДФ:

  • горит с выделением ядовитого дыма;
  • пылевидные опилки, образующиеся при обработке и распилке плит, вредны для здоровья.

Гипсокартон (ГКЛ)

По праву считается одним из самых популярных материалов для выравнивания стен, потолков и полов, устройства межкомнатных перегородок и даже элементов декора, таких как арки, колонны, сфероиды, многоуровневые потолочные покрытия и т.д. Основным компонентом гипсокартонных листов служит гипсовый наполнитель и это определяет многие положительные качества стройматериала. Так, гипсокартон химически инертен, его кислотность примерно равна кислотности человеческой кожи, он не содержит и не выделяет во внешнюю среду вредных для человека химических соединений. Стандартная плита на 93% состоит из двуводного гипса, 6% из картона и еще 1% приходится на поверхностно — активные вещества, крахмал и влагу.

Так, хрупкость панелей затрудняет их транспортировку, погрузочно-разгрузочные работы. По этой же причине ГКЛ не может выдерживать значительных физических нагрузок и не рекомендуется для выравнивания полов. Подвесные потолки из гипсокартона могут выдерживать вес не более чем 4 кг на метр квадратный, в то время как натяжные потолки способны нести нагрузку больше 100 кг на эту же единицу площади.

Разновидностью или более современной модификацией простого листа гипсокартона служит окрашенный или ламинированный гипсокартон, гипсовинил или гипсолам — гипсокартон цветной, с виниловым покрытием. Принципиально новый материал, имеющий изначально эксклюзивный внешний вид с широким выбором декора. Применяется для внутренней облицовки стен, для зашивки оконных откосов, создания перегородок, витрин и выставочных стеллажей, без дополнительной отделки.

Ламинированный гипсокартон, гипсовинил или гипсолам — гипсокартон цветной, оклеенный виниловым покрытием

Эти экологически чистые негорючие панели представляют собой гипсовую плиту, оклеенную с двух сторон специальным картоном. Имеют идеальную геометрию и используются для устройства внутренних перегородок и подшивки потолков. Поставляются в листах 2700 (3000) х 1200 х 12 мм. Выпускаются специальные марки гипсокартона для влажных (ванная комната) и пожароопасных (стена у камина) помещений. Они окрашены в «сигнальные» цвета - красный и зеленый. Есть гипсокартон и повышенной пластичности (толщина 6 мм, ширина 900 мм) для обшивки закругленных стен. На основе гипсокартона изготавливают панели «сэндвич» с теплоизолирующим слоем пенополиуретана (до 50 мм). Их используют уже для внутренней обшивки наружных стен без последующего утепления и пароизоляции. Это значительно сокращает сроки строительства.

Достоинства гипсокартона:

  • не горит, но при значительном нагреве разрушается;

Недостатки гипсокартона:

  • низкая прочность, хрупкость;
  • большая уязвимость для влаги даже влагостойкой разновидности;
  • плохо переносит низкую температуру и значительные перепады температур;
  • пригоден только для внутренней отделки.

Гипсоплита

Гипсоплиты практичный, современный и экологически безопасный материал, так как изготавливается без использования токсичных веществ из природного гипса, который не проводит электричества и не имеет запаха. Гипсоплита отвечает всем требованиям противопожарной безопасности. Гипсоплита, гипсовая пазогребневая плита (ПГП) является основным материалом при конструировании перегородок, подвесных потолков, различных декоративных выступов. Используется для выравнивания потолков, стен, «зашивки» систем коммуникаций. Гипсоплита бывает влагостойкой и стандартной. Стандартная используется в зданиях с нормальной влажностью. Для сырых помещений предназначены плиты с гидрофобными добавками. Такие плиты легко отличить по характерной зеленой окраске.

Достоинства гипсоплит:

  • экологическая и санитарная безопасность;
  • легко обрабатывается: режется, сверлится;
  • мало горючий материал, класс горючести Г1
  • относительно дешевая.

Недостатки гипсоплит:

  • низкая прочность, хрупкость;
  • большая уязвимость для влаги даже влагостойкой разновидности.

Гипсоволокнистый лист

Гипсоволокнистый лист (ГВЛ) – это современный экологически чистый гомогенный материал, обладающий отличными техническими характеристиками. Он производится методом полусухого прессования смеси гипса и целлюлозной макулатуры. По своим физическим свойствам гипсоволоконный лист представляет собой достаточно прочный, твердый материал, славящийся также своими огнеупорными качествами.

Гипсоволокнистый лист, благодаря своей универсальности, получил очень широкое распространение в строительной сфере. Применяется для устройства межкомнатных перегородок, стяжек полов, подвесных потолков, облицовки стен и огнезащиты конструкций. Популярностью пользуется ГВЛ для пола, который служит для сборки основания напольного покрытия, а также облицовочный вариант, при помощи которого обшиваются, к примеру, деревянные поверхности, за счет чего повышается их огнестойкость. В зависимости от области применения гипсоволокнистые листы подразделяют на два типа: ГВЛВ (влагостойкие) и ГВЛ (обычные).

Достоинства гипсоволокнистых листов:

  • ГВЛ по сравнению с ГКЛ легче переносит распиловку в любом направлении, так как однороден по составу;
  • Более высокая прочность за счет армирования целлюлозным волокном;
  • Повышенная шумоизоляция.

Недостатки гипсоволокнистых листов:

  • Менее прочен на изгиб, чем ГКЛ;
  • Менее приспособлен для внутренней отделки, чем ГКЛ;
  • Необходимость предварительной обработки перед покраской.

Цементно-стружечные плиты (ЦСП) - идеальный материал для наружной обшивки каркаса и перегородок во влажных и огнеопасных помещениях, служит хорошим выравнивающим основанием для любых напольных покрытий. Имеет твердую и гладкую поверхность, штукатурится и облицовывается плиткой, пилится ножовкой, негорюч, устойчив к влаге и колебаниям температуры. Поставляется в листах 3600 х 1200 х 10 (12, 16, 20 и 26) мм.

Фанера является одним из наиболее распространенных материалов, широко применяемых в строительстве. Производство фанеры происходит путем склеивания нескольких слоев лущеного шпона фенолформальдегидными смолами. Для этой цели, как правило, используют березовый или хвойный шпон небольшой толщины. Выбор данных пород обусловлен их широким распространением в наших лесах: в Европе, Новой Зеландии и некоторых других странах для производства фанеры разных сортов широко используют дуб, клен, граб и даже грушу. Склеивание шпона осуществляется под давлением при повышенной температуре. Образовавшиеся в результате листы охлаждаются, и после непродолжительной вылежки собираются в упаковки по 10 или 20 штук.

В зависимости от древесины и клея, которые используются при производстве фанеры, она классифицируется на:

  • фанера повышенной влагостойкости (ФСФ)
  • фанера средней влагостойкости (ФК)
  • фанера бакелизированная (БФ)

— представляет собой облицованную с одной или двух сторон бумагосмоляным покрытием фанеру. Данное покрытие весьма эффективно препятствует проникновению влаги, обладает высокой устойчивостью к стиранию и образованию плесени и грибков, устойчива к коррозии и разрушению. Данный тип фанеры благодаря ламинированию пользуется достаточной популярностью. При помощи ламинирования можно нанести практически любой рисунок или имитацию под: дуб, тополь, клён, березу, орех, сосну и лиственницу.

Достоинства фанеры:

  • высокая прочность на разрыв и изгиб;
  • отлично пилится, сверлится и скрепляется как гвоздями, так и шурупами;
  • сравнительно недорогой материал.

Недостатки фанеры:

  • смолы, используемые при склейке шпона, содержат довольно большую концентрацию фенольных соединений;
  • горючесть;

Ориентированно-стружечная плита

Ориентированно-стружечная плита (ОСП — OSB) , производимая методом прессования стружки толщиной до 0,7 мм и длиной до 140 мм под высоким давлением и температурой с применением небольшого количества склеивающей смолы. ОСП-плиты в 3 раза прочнее ДСП и МДФ-плит за счет расположения стружки продольно во внешних слоях и поперечно во внутренних. При такой прочности ОСП — материал очень гибкий и отлично используется при строительных и отделочных работах. ОСП-плитами различной толщины (от 6 до 30 мм) обшивают мансарды, потолки, стены, из них изготавливают черновые полы, опалубки, стеновые панели, ограждения и разборные конструкции. На пол под ламинат обычно используют самые тонкие плиты — 6 и 8 мм толщиной, для конструкций и опалубок более толстые — от 10 мм. ОСП-3 — это более прочная разновидность данного материала, используемая при малоэтажном строительстве в условиях повышенной влажности. Также из-за оригинальной текстуры ОСП является излюбленным материалом у декораторов и дизайнеров для отделки интерьеров. Из ОСП получается достаточно эффектное оформление потолка или элементов во встроенной мебели или в стенах.

На ряду с обычными плитами ОСП, есть и ОСП шпунтованная - плита с обработанными торцами паз - гребень, с 2-х или 4-х сторон.

Достоинства ОСП:

  • прочность относительно других применяемых плит;
  • влагостойкость выше, чем у ДСП и гипсоплиты;
  • широкий размерный ряд;
  • дешевле ДСП;
  • хорошо держит шурупы, даже при повторном вкручивании.

Недостатки ОСП:

  • обрабатывается хуже ДСП из-за неоднородности структуры;
  • пыль, выделяющаяся при резке ОСП, раздражает слизистые оболочки носа, глаз.
  • содержит формальдегид, особенно его много во влагостойких плитах.

Стекломагниевый лист

Стекломагниевый лист или стекломагнезитовый лист (СМЛ) белый, армированный стеклотканью, на 40 процентов легче ГВЛ, гибкий, прочный, огнеупорный, влагостойкий. Благодаря армирующей стеклотканной сетке СМЛ может гнуться с радиусом кривизны до трех метров. Это качество позволяет применять его на неровных поверхностях. Высокие влагостойкие качества позволяют использовать его в помещениях с повышенной влажностью. На лицевую сторону плиты допускается наклеивание любых отделочных материалов. При толщине листа 6мм он способен удерживать огонь в течение 2-х часов, выдерживает нагрев до 1500 градусов. Толщина листа: 3-20 мм.

Стекломагниевый лист (СМЛ) — универсальный листовой отделочный материал на основе магнезита и стекловолокна. Технология изготовления и состав материала придают ему такие качества, как гибкость, прочность, огнеупорность и влагостойкость. Его качества, позволяют применять его на неровных поверхностях и понижает возможность перелома листа при монтаже и переносе. Кроме того, этот материал экологически чистый, не содержит вредных веществ и асбеста, не выделяет токсических веществ даже при нагревании. В отличие от гипсокартона СМЛ-Премиум класса отностится к трудногорючим материалам (НГ).

Область применения стекломагниевого листа чрезвычайно высока. Как и из гипсокартона, из него можно делать потолки, стены и межкомнатные перегородки. Более того, с помощью стекломагнезитовых листов можно отделывать наружные фасады коттеджей и домов. СМЛ — надежная основа для любого вида отделки. Новый материал идеально подходит для душевых, саун, бассейнов — ведь стекломагниевый лист способен выдерживать высокую влажность, перепады температуры и открытый огонь. На поверхность СМЛ можно наносить самые разные виды шпатлевок, красок, клеев. Можно наклеить обои, алюминиево-композитные панели, шпон, пластик, керамическую, стеклянную или зеркальную плитку.

Лицевая (гладкая) поверхность листов предназначена для окрашивания, наклеивания обоев, ламинирования и нанесения различных видов декоративных текстур без предварительного, окончательного шпатлевания и грунтования всей поверхности материала. Тыльная (шероховатая) поверхность листов предназначена для прочной сцепки при приклеивании штучных облицовочных и декоративных материалов (керамической или кафельной плитки, шпона и т.п.), либо самого материала на стены и пол, склейке листов между собой. СМЛ может крепиться на крепежную систему, как из металла, так и из дерева. А также непосредственно на ограждающую конструкцию при помощи клея.

На ряду с обычными стекломагниевыми листами, в последнее время все чаще стали появляться ламинированные стекломагниевые листы с разнообразным рисунком и толщиной внешего покрытия.

Достоинства стекломагнезита:

  • Влагостойкость — не подвергается деформации, не разбухает и не теряет своих свойств;
  • Огнестойкость — магнезитные панели негорючий материал;
  • Хорошая звукоизоляция — 12мм панель по звукопроницаемости соответствует четырем слоями двенадцати миллиметрового гипсокартонового листа, или кирпичной стены толщиной 150мм;
  • Высокая прочность и гибкость — может гнуться с радиусом кривизны от 25 см до 3 метров;
  • Легче аналогичных плит из дерева или гипса;
  • Низкая теплопроводность, может использоваться как дополнительный утеплитель;
  • Может применяться для отделки, как снаружи, так и изнутри.

Недостатки стекломагнезита :

  • Более хрупкий, чем гипсоволокнистый лист;
  • При шпатлевке стыков необходимо использовать шпатлевки на химических клеях;
  • Свойства значительно разнятся в зависимости от производителя и класса СМЛ.

Фибролит — это плитный материал, изготавливаемый прессованием специального древесного волокна (древесной шерсти) и неорганического вяжущего вещества (магнезиальное вяжущее). Волокно получают из отходов деревообрабатывающей промышленности, в результате обработки на деревострогательных станках. Один из плюсов фибролитовых плит – небольшой объемный вес. Фибролит отличается огнестойкостью: стружки пропитаны цементом, и при воздействии огня на них образуется лишь копоть. Материал допускает различные варианты отделки, легко крепится к любым конструкциям с помощью гвоздей, саморезов, дюбелей, легко поддается распилке.

— трудносгораемый, биостойкий материал, который применяют в качестве теплоизоляционного, конструкционно-теплоизоляционного и акустического материалов в строительных конструкциях зданий и сооружений с относительной влажностью воздуха не выше 75%.

Обычные фибролитовые плиты производятся толщиной 3-5 мм с использованием в качестве вяжущего серого цемента. Эти плиты применяются для различного рода термоизоляции, при устройстве кровельного покрытия и оштукатуренных перегородок. Акустические плиты обычно производятся из мелкой древесной шерсти (0,75-2 мм), что улучшает их внешний вид, ничем не закрываются, а также колеруются в цвета, гармонирующие с интерьером или производятся с использованием магнезита или белого цемента вместо серого. Композитная фибролитовая панель — это двух- или трехслойная панель со средним слоем из термоизоляционного материала, например, жесткой пены или минерального волокна (минеральная силикатная шерсть). Толщина среднего слоя обычно колеблется от 15 до 140 мм, хотя внешние слои фибролита имеют толщину от 5 до 20 мм. В этом случае уровень термоизоляции значительно увеличивается.

Достоинства фибролитовых плит:

  • Легкость монтажа;
  • Хороший утеплитель;
  • Механически прочный;
  • Обширные декоративные возможности;
  • Хорошая влагостойкость и огнестойкость;
  • Звукоизоляция;
  • Гигиеничность, безвредность здоровью человека и окружающей среды;
  • Не портят грызуны и насекомые, не гниет.

Недостатки фибролитовых плит :

  • Малая прочность на изгиб;
  • Значительный вес.

Не стесняйтесь комментировать статью, если у Вас есть чем дополнить этот материал. Если Вы нашли ошибки или несоответствия. Возможно Вы знаете еще какой то аналогичный материал не представленный в этой статье?

Прочные материалы имеют широкий спектр использования.

Вконтакте

Однокласники

Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно.

Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.



Особо прочные текстильные материалы пользуются спросом

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря.

Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.



Особые нано-трубки делают материалы особенно прочными

Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей.

На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы. Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал.

Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.



Российские ученые изобрели супер-надежный материал нанотубулен

То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных.

При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника.

Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.



Нанотубулен пока не нашел широкого применения

Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2.

Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3.

Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.



Хром считается самым прочным металлом

Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.



Береза Шмидта - самое прочное дерево Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа.

Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.



Береза Шмидта прочнее железа

Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет.

Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом. Зато, по данным uznayvse.ru, могут вырастать до 150 метров в высоту.

Самый прочный материал во вселенной

Наиболее прочным и одновременно легким материалом нашей вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.



2024 stdpro.ru. Сайт о правильном строительстве.