Максимальная скорость поезда на магнитной подушке. Поезд на магнитной подушке. История возникновения поездов на электромагнитной подушке

Он же поезд на магнитной подушке, он же maglev от английского magnetic levitation ("магнитная левитация") - это поезд на магнитной подвеске, движимый и управляемый силой электромагнитного поля. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является аэродинамическое сопротивление . Маглев относится к монорельсовому транспорту .

Монорельс:


Хотчкисса (Arthur Hotchkiss) 1890-х гг.;
изображения с Википедии

изображения с Википедии

Высокоскоростным наземным транспортом (ВСНТ) называют железнодорожный транспорт, который обеспечивает движение поездов со скоростью свыше 200 км/ч (120 миль/ч). Хотя ещё в начале XX века высокоскоростными называли поезда, следующие со скоростями выше 150-160 км/ч.
Сегодня поезда ВСНТ передвигаются по специально выделенным железнодорожным путям - высокоскоростной магистрали (ВСМ), либо на магнитном подвесе, по которым перемещается выше показанный маглев.

Впервые регулярное движение высокоскоростных поездов началось в 1964 году в Японии. В 1981 году поезда ВСНТ стали курсировать и во Франции, а вскоре бо́льшая часть западной Европы, включая Великобританию, оказалась объединена в единую высокоскоростную железнодорожную сеть. Современные высокоскоростные поезда в эксплуатации развивают скорости около 350-400 км/ч, а в испытаниях и вовсе могут разгоняться до 560-580 км/ч, как например JR-Maglev MLX01, установивший во время испытаний в 2003 году скоростной рекорд - 581 км/ч.
В России регулярная эксплуатация высокоскоростных поездов , по общим путям с обычными поездами, началась в 2009 году. И только к 2017 году ожидается завершение строительства первой в России специализированной высокоскоростной железнодорожной магистрали Москва - Санкт-Петербург.


Сапсан Siemens Velaro RUS; максимальная служебная скорость - 230 км/ч,
возможна модернизация до 350 км/ч; фото с Википедии

Кроме пассажиров высокоскоростные поезда перевозят и грузы, например: французская служба La Poste имеет парк специальных электропоездов TGV для перевозки почты и посылок.

Скорость "магнитных" поездов, то есть маглевов, сравнима со скоростью самолёта и позволяет составить конкуренцию воздушному транспорту на ближне- и среднемагистральных направлениях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере.

На данный момент существует 3 основных технологии магнитного подвеса поездов:

  1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS);
  2. На электромагнитах (электромагнитная подвеска, EMS);
  3. На постоянных магнитах; это новая и потенциально самая экономичная система.

Состав левитирует за счёт отталкивания одинаковых магнитных полюсов и, наоборот, притягивания противоположных полюсов. Движение осуществляется линейным двигателем , расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

Достоинства маглева:

  • теоретически самая высокая скорость из тех, которые можно получить на общедоступном (не спортивном) наземном транспорте;
  • большие перспективы по достижению скоростей, многократно превышающие скорости, используемые в реактивной авиации;
  • низкий шум.

Недостатки маглева:

  • высокая стоимость создания и обслуживания колеи - стоимость постройки одного километра маглев-колеи сопоставима с проходкой километра тоннеля метро закрытым способом;
  • создаваемое электромагнитное поле может оказаться вредным для поездных бригад и окрестных жителей. Даже тяговые трансформаторы, применяемые на электрифицированных переменным током железных дорогах, вредны для машинистов. Но в данном случае напряжённость поля получается на порядок больше. Также, возможно, линии маглева будут недоступны для людей, использующих кардиостимуляторы;
  • рельсовые пути стандартной ширины, перестроенные под скоростное движение, остаются доступными для обычных пассажирских и пригородных поездов. Высокоскоростной путь маглева же ни для чего другого не пригоден; потребуются дополнительные пути для низкоскоростного сообщения.

Наиболее активные разработки маглева ведут Германия и Япония.

*Справка: Что такое синкансэн?
Синкансэн - так называется высокоскоростная сеть железных дорог в Японии, предназначенная для перевозки пассажиров между крупными городами страны. Принадлежит компании Japan Railways. Первая линия была открыта между Осакой и Токио в 1964 году - Токайдо-синкансэн. Эта линия является самой загруженной высокоскоростной железнодорожной линией в мире. На ней перевозится порядка 375 000 пассажиров ежедневно.

"Поезд-пуля" - одно из названий для поездов синкансэн. Поезда могут иметь до 16 вагонов. Каждый вагон достигает длины 25 метров, исключение составляют головные вагоны, длина которых обычно чуть больше. Общая длина поезда составляет порядка 400 метров. Станции для таких поездов тоже очень длинные и специально приспособлены под эти поезда.


Поезда синкансэн серии 200 ~ E5; фото с Википедии

В Японии маглевы часто называются "риниа:ка:" (по-японски リニアカー), происходящее от английского "linear car" из-за используемого на борту линейного двигателя.

JR-Maglev использует электродинамическую подвеску на сверхпроводящих магнитах (EDS), установленных как на поезде, так и на трассе. В отличие от немецкой системы Transrapid , JR-Maglev не использует схему монорельса: поезда движутся в канале между магнитами. Такая схема позволяет развивать бо́льшие скорости, обеспечивает большую безопасность пассажиров в случае эвакуации и простоту в эксплуатации.

В отличие от электромагнитной подвески (EMS), поездам созданным по технологии EDS требуются дополнительные колёса при движении на малых скоростях (до 150 км/ч). При достижении определённой скорости колёса отделяются от земли и поезд "летит" на расстоянии нескольких сантиметров от поверхности. В случае аварии колёса также позволяют осуществить более мягкую остановку поезда.

Для торможения в обычном режиме используются электродинамические тормоза. Для экстренных случаев поезд оборудован выдвигающимися аэродинамическими и дисковыми тормозами на тележках.

Поездка в маглеве с максимальной скоростью 501 км/ч. В описании указано, что видео сделано в 2005 году:

На линии в Яманаси проходят испытания нескольких составов с разными формами носового обтекателя: от обычного заострённого, до практически плоского, длиной 14 метров, призванного избавиться от громкого хлопка, сопровождающего въезд поезда в тоннель на большой скорости. Поезд маглев может полностью управляться компьютером. Машинист осуществляет контроль за работой компьютера и получает изображение пути через видеокамеру (кабина машиниста не имеет окон переднего обзора).

Технология JR-Maglev дороже аналогичной разработки Transrapid, реализованной в Китае (линия до Шанхайского аэропорта), так как требует больших затрат на оборудование трассы сверхпроводящими магнитами и прокладку тоннелей в горах взрывным способом. Общая стоимость проекта может составить 82,5 млрд долларов США. Если проложить линию вдоль прибрежной трассы Токайдо, это потребует меньших затрат, однако потребует строительства большого количества тоннелей малой протяжённости. Несмотря на то, что сам магнитно-левитационный поезд бесшумен, каждый въезд в тоннель на большой скорости будет вызывать хлопок, сравнимый по громкости с взрывом, поэтому прокладка линии в густонаселённых районах невозможна.

Шанхайский Маглев (Shanghai Maglev Train) – является первой в мире коммерческой железнодорожной линией на магнитном подвесе, а также самым дорогим железнодорожным проектом в Поднебесной.

Проект начал коммерческую эксплуатацию с 1 января 2004 года. Его стоимость – около 1,6 млрд. долларов США (10 млрд юаней).

Столь высокие расходы были связаны, прежде всего, с тем, что большая часть трассы проходит по заболоченной местности, из-за чего строителям пришлось сооружать бетонную подушку для каждой опоры эстакады (а их тут много, через каждые 25 метров). Кстати в некоторых местах толщина этой самой подушки доходит до 70 м.

К слову сказать, шанхайская линия Maglev не самая протяжённая из скоростных магистралей, её протяжённость всего 30 километров от международного аэропорта Пудун до станции метро Лунъян-Лу в городе Шанхай.

Зато это расстояние «Шанхайский маглев» преодолевает всего за 7:20 или 8:10 минут (в зависимости от времени дня). Поезд развивает максимальную скорость в 431 км/час, а его средняя скорость около 250 км/ч.

Правда со своей максимальной скоростью он мчится всего 1,5 минуты, ведь негде там особо разгоняться так, расстояние же не очень большое.

Линия работает с 6:45 до 9:30 вечера, с интервалами движения от 15 до 20 минут.

Стоимость проезда – около 7,3 USD в одну сторону. Для пассажиров с авиабилетами – 5,81 USD. VIP билеты стоят примерно в два раза дороже, чем стандартные.

2. Поезда MAGLEV: основные характеристики и перспективы эксплуатации

3. Летающие экспрессы. Отечественные и зарубежные разработки

3.1 Разработки новых видов транспорта

3.2 Высокоскоростной транспорт на магнитном подвесе

Заключение

Список литературы

Введение

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «...Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, - считает он. - Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Еще полвека назад магнитная подушка была чем-то из области фантастики. Однако сейчас ученые многих стран работают по созданию транспорта на магнитной подушке. Поезда будущего будут «парить» над землей, они как бы «подвешиваются» к рельсам, или отталкиваются от них, в зависимости от того, какая будет применена система, то есть электромагнитный или электродинамический подвес. В первом случае путь представляет собой стальные рельсы с «подвешенным» к ним экипажем. Во втором случае состав пойдет по металлическому полотну, в котором возникают электрические токи. В качестве тягового механизма в таких поездах будут использованы линейные двигатели.

Следует отметить, что поезд на магнитной подвеске начали эксплуатировать восьмидесятых годах прошлого века в Бирмингеме. Правда, после одиннадцати лет работы этот поезд был снят с линии из-за технических проблем. В настоящее время транспортная система на магнитной подушке действует в Китае, соединяя центр Шанхая с международным аэропортом Пудон. А в Японии экспериментальный поезд на магнитной подушке MLX01 в 2003 году установил абсолютный для данного вида транспорта рекорд скорости, разогнавшись до 581км/ч.

Цель данной контрольной работы – описать основные характеристики транспорта на магнитной подушке и дальнейшие перспективы использования транспорта будущего.

Реализация достижения цели достигается посредством решения следующих задач:

· дать описание теоретических предпосылок к созданию транспорта на магнитной подушке;

· дать описание технических характеристик и перспектив эксплуатации поездов на магнитной подушке;

· дать описание новейших отечественных и зарубежных разработок транспортных средств, функционирующих на основе эффекта левитации.

1. Левитация против гравитации: импульс к созданию транспорта на магнитной подушке

Буквальное значение слова «левитация» - подъем. По крайней мере, так определяется Британской энциклопедией возможность поднятия какого-либо тела (в том числе и человеческого) без контакта с чем бы то ни было. В технический обиход оно вошло сравнительно недавно, в связи с попытками создания транспорта на магнитной подушке.

Ее суть можно понять из наглядного опыта, часто демонстрируемого в школе. Берут два ферритовых колечка, представляющих собой сильные постоянные магниты, и нанизывают их на стеклянную палочку, поставленную вертикально. При этом верхний из магнитов как бы повисает в воздухе. Однако стоит убрать палочку, и магнитное кольцо перевернется и упадет. Вот почему инженерам приходится прилагать немалые усилия, чтобы стабилизировать магнитную подушку. Вот почему магнитный левитационный транспорт, над которым работают вот уже четверть века, так и не вышел за пределы полигонов.

Тем удивительнее фокус, который продемонстрировал изобретатель-исследователь Александр Кушелев. На столе он разместил керамический магнит от громкоговорителя диаметром 80 мм. Тщательно отъюстировал деревянными клинышками горизонтальность его положения. Прикрыл магнит сверху пластинкой оргстекла, на которой раскрутил самолично сделанный им волчок. И произошло необъяснимое: магнит оторвался от поверхности оргстекла и завис в воздухе.

Секунд через 40 он замедлил свое вращение, потерял устойчивость и кувыркнулся вниз. Объяснить это можно так: волчок тоже магнитный, а вращение за счет гироскопического эффекта стабилизирует его положение точно так же, как упоминавшаяся стеклянная палочка. На вопрос, нельзя ли на основе данного эффекта построить какое-либо левитирующее транспортное средство, Кушелев ответил, что как раз над этим он и размышляет.

Кроме того, магнитную левитацию можно в принципе осуществить и с помощью сверхпроводимости. Если взять сверхпроводник, пропустить через него электроток и поместить над магнитом, то он зависнет в воздухе и будет парить до тех пор, пока не отключат питание. Здесь стабилизация осуществляется как бы сама собой - любое перемещение сверхпроводника вызывает в нем вихревые токи, магнитные поля которых, точно-зеркальные по отношению к полю магнита, загоняют его на прежнее место. Естественно, это справедливо и к любому перемещению магнита (при неподвижном сверхпроводнике). Подобный способ магнитной подвески уже нашел применение в технике при создании сверхточных гироскопов для систем наведения ракет и самолетов. Более того: как выяснилось совсем недавно, использование сверхпроводимости дает уникальный побочный эффект.

Возможно ли укротить гравитацию? В 1996 г. в том убедился физик Джон Шнурер из Эниочского колледжа в Йеллоу-Спринг, штат Огайо. Когда над висящим в воздухе сверхпроводящим диском диаметром в 2,5 см он поместил маленький кусочек пластика, прикрепленный к точным весам, те показали уменьшение веса примерно на 5%. Сначала Шнурер не поверил собственным глазам. Он 12 раз провел эксперимент, прежде чем пришел к окончательному выводу: феномен повторяется регулярно. Тут он вспомнил, что еще в начале 90-х годов подобное же явление заметил наш соотечественник, специалист в области материаловедения Евгений Подклетнов, работавший в то время в Технологическом университете г. Тампере (Финляндия). Но тогда наблюдавшиеся результаты сочли ошибкой эксперимента.

Теперь же аналогичные опыты пытаются воспроизвести в Центре космических полетов имени Дж. Маршала, NASA и еще нескольких государственных лабораториях США. По словам руководителя Отделения перспективных концепций NASA Уита Брэнтли, люди так увлечены исследованиями, что порой тратят собственные деньги на покупку недостающего оборудования. К делу подключились и теоретики. Скажем, итальянец Джиованни Моданези из Национального агентства ядерной физики и физики высоких энергий полагает, что в данном случае мы имеем дело с возникновением «гравитационного экрана». А ведущий специалист Алабамского университета Нинг Ли считает, что при определенных условиях поля атомов сверхпроводника способны так экзотически взаимодействовать друг с другом, что возникает левитация.

Однако существует и другой способ создания левитации. «Одним из направлений дальнейшего поиска станет пересмотр природы тяготения - на базе электромагнитных и электростатических явлений, - полагает кандидат технических наук из подмосковного г. Лыткарино Владимир Пономарев.- Обратить внимание на электростатику заставляет хотя бы уже тот факт, что математические формулировки закона Ньютона и закона Кулона внешне весьма схожи, только в первом выражении в числителе стоят массы взаимодействующих тел, а во втором - их электрические заряды».

Причем при внимательном рассмотрении выясняется, что аналогии идут глубже внешнего сходства. Согласно общепринятым представлениям, явление гравитации основывается на взаимодействии неких квантов тяготения - гравитонов; однако до сих пор никто экспериментально не обнаружил ни их самих, ни излучаемых ими гравитационных волн. А что если гравитоны в какой-то мере тождественны элементарным электростатическим зарядам (назовем их кулонами)?

Такое предположение подталкивает вот к следующим рассуждениям. Поскольку любое тело во Вселенной имеет температуру выше абсолютного нуля, внутри него атомы испытывают тепловые колебания. А эти колебания, в соответствии с принципами электромагнитной теории Максвелла-Лоренца, неизбежно приводят к флуктуации микроскопических поляризованных зарядов. Суммируясь, те и образуют общий заряд. Таким образом, гравитационное притяжение, в принципе, может быть заменено электростатическим. Скажем, система Земля-Солнце находится в равновесии потому, что центробежная сила, бегущей по своей орбите Земли, равна силе взаимного притяжения разноименных электростатических зарядов ее и Солнца. А вот в системе Земля-Луна такое равновесие нарушено. И из-за этого Луна постепенно удаляется от нашей планеты; правда, понемногу - всего на 1,3 см в год.

Использование эффекта левитации на базе электромагнитных и электростатических явлений открывает широкие перспективы на практике. Электростатические поля надо использовать для создания летательного аппарата нового типа, полагает Пономарев. Его движение в околоземном пространстве будет обусловлено взаимодействием электростатических полей планеты и создаваемого в рабочем органе машины.

Пока в аппарате отсутствуют свободные электрические заряды необходимой величины и знака, он покоится на поверхности планеты. Но как только внутри него накапливаются ионы, получаемые ионизированием газа того же знака, что и электростатическое поле планеты, аппарат взлетит. Причем, согласно расчетам В.И.Пономарева, получается, что такая схема, как минимум, на порядок увеличит эффективность летательных аппаратов по сравнению с нынешними самолетами и ракетами. Конструкция такого летательного аппарата вполне может быть применена не только при исследовании малых планет или астероидов Солнечной системы, но и в открытом межзвездном пространстве.

Очередную попытку укрощения левитации предприняли в конце 1997 г. японские исследователи, которые работают по контракту с международной корпорацией «Мацусита». Они решили использовать для создания машины, преодолевающей силу тяжести, обыкновенный гироскоп. Их опыты подкупающе просты. Небольшой гироскоп раскручивают до 18 000 об/мин и помещают в герметичный контейнер, из которого выкачан воздух, и тот сбрасывают вниз. При падении контейнер преодолевает фиксированную дистанцию около 2 м, причем время замеряется точнейшим образом с помощью двух лазерных лучей. Когда пересекается один (старт), запускается электронный секундомер, когда же другой (финиш) - он останавливается.

Поезда на магнитной подушке, маглевы – самый быстрый вид наземного общественного транспорта. И хотя в эксплуатацию пока введено всего три небольших трека, исследования и испытания прототипов магнитных поездов проходят в разных странах. Как развивалась технология магнитной левитации и что ждет ее в ближайшем будущем вы узнаете из этой статьи.

История становления

Первые страницы истории маглев были заполнены рядами патентов, полученных в начале XX века в разных странах. Еще в 1902 году патентом на конструкцию поезда, оснащенного линейным двигателем, отметился немецкий изобретатель Альфреда Зейден. А уже спустя четыре года Франклин Скотт Смит разработал еще один ранний прототип поезда на электромагнитном подвесе. Немного позже, в период с 1937 года по 1941 год, еще нескольких патентов относящихся к поездам, оснащенным линейными электродвигателями, получил немецкий инженер Герман Кемпер. К слову, подвижные составы Московской монорельсовой транспортной системы, построенной в 2004 г., используют для движения асинхронные линейные двигатели – это первый в мире монорельс с линейным двигателем.

Поезд Московской монорельсовой системы возле станции Телецентр

В конце 1940-х годов исследователи перешли от слова к делу. Британскому инженеру Эрику Лэйзвейту, которого многие называют «отцом маглевов», удалось разработать первый рабочий полноразмерный прототип линейного асинхронного двигателя. Позже, в 1960-х годах, он присоединился к разработке скоростного поезда Tracked Hovercraft. К сожалению, в 1973 году проект закрыли из-за нехватки средств.


В 1979 году появился первый в мире прототип поезда на магнитной подушке, лицензированный для предоставления услуг по перевозке пассажиров – Transrapid 05. Испытательный трек длиной 908 м был построен в Гамбурге и представлен в ходе выставки IVA 79. Интерес к проекту оказался настолько велик, что Transrapid 05 удалось успешно проработать еще три месяца после окончания выставки и перевезти в общей сложности около 50 тыс. пассажиров. Максимальная скорость этого поезда составляла 75 км/ч.


А первый коммерческий магнитоплан появился в 1984 году в Бирмингеме, Англия. Железнодорожная линия на магнитном подвесе соединяла терминал международного аэропорта Бирмингема и расположенную рядом железнодорожную станцию. Она успешно проработала с 1984 по 1995 год. Протяженность линии составляла всего 600 м, а высота, на которую состав с линейным асинхронным двигателем поднимался над полотном дороги – 15 миллиметров. В 2003 году на ее месте была построена система пассажирских перевозок AirRail Link на базе технологии Cable Liner.

В 1980-х годах к разработке и реализации проектов по созданию высокоскоростных поездов на магнитной подушке приступили не только в Англии и Германии, но и в Японии, Корее, Китае и США.

Как это работает

О базовых свойствах магнитов мы знаем еще с уроков физики за 6 класс. Если поднести северный полюс постоянного магнита к северному полюсу другого магнита они будут отталкиваться. Если один из магнитов перевернуть, соединив разные полюса – притягиваться. Это простой принцип заложен в поездах-маглевах, которые скользят по воздуху над рельсом на незначительном расстоянии.

В основе технологии магнитного подвеса лежат три основных подсистемы: левитации, стабилизации и ускорения. В то же время на данный момент существует две основных технологии магнитного подвеса и одна экспериментальная, доказанная лишь на бумаге.

Поезда, построенные на базе технологии электромагнитного подвеса (EMS) для левитации используют электромагнитное поле, сила которого изменяется по времени. При этом практическая реализация данной системы очень похожа на работу обычного железнодорожного транспорта. Здесь применяется Т-образное рельсовое полотно, выполненное из проводника (в основном металла), но поезд вместо колесных пар использует систему электромагнитов – опорных и направляющих. Опорные и направляющие магниты при этом расположены параллельно к ферромагнитным статорам, размещенным на краях Т-образного пути. Главный недостаток технологии EMS – расстояние между опорным магнитом и статором, которое составляет 15 миллиметров и должно контролироваться и корректироваться специальными автоматизированными системами в зависимости от множества факторов, включая непостоянную природу электромагнитного взаимодействия. К слову, работает система левитации благодаря батареям, установленным на борту поезда, которые подзаряжаются линейными генераторами, встроенными в опорные магниты. Таким образом, в случае остановки поезд сможет достаточно долго левитировать на батареях. На базе технологии EMS построены поезда Transrapid и, в частности, шанхайский маглев.

Поезда на базе технологии EMS приводятся в движение и осуществляют торможение с помощью синхронного линейного двигателя низкого ускорения, представленного опорными магнитами и полотном, над которым парит магнитоплан. По большому счету, двигательная система, встроенная в полотно, представляет собой обычный статор (неподвижная часть линейного электродвигателя), развернутый вдоль нижней части полотна, а опорные электромагниты, в свою очередь, работают в качестве якоря электродвигателя. Таким образом, вместо получения крутящего момента, переменный ток в катушках генерирует магнитное поле возбуждающихся волн, которое перемещает состав бесконтактно. Изменение силы и частоты переменного тока позволяет регулировать тягу и скорость состава. При этом чтобы замедлить ход, нужно всего лишь изменить направление магнитного поля.

В случае применения технологии электродинамического подвеса (EDS) левитация осуществляется при взаимодействии магнитного поля в полотне и поля, создаваемого сверхпроводящими магнитами на борту состава. На базе технологии EDS построены японские поезда JR–Maglev. В отличие от технологии EMS, в которой применены обычные электромагниты и катушки проводят электричество только в тот момент, когда подается питание, сверхпроводящие электромагниты могут проводить электричество даже после того, как источник питания был отключен, например, в случае отключения электроэнергии. Охлаждая катушки в системе EDS можно сэкономить достаточно много энергии. Тем не менее, криогенная система охлаждения, используемая для поддержания более низких температур в катушках, может оказаться достаточно дорогой.

Главным преимуществом системы EDS является высокая стабильность – при незначительном сокращении расстоянии между полотном и магнитами возникает сила отталкивания, которая возвращает магниты в первоначальное положение, в то же время увеличение расстояния снижает силу отталкивания и повышает силу притяжения, что опять же ведет к стабилизации системы. В этом случае никакой электроники для контроля и корректировки расстояния между поездом и полотном не требуется.

Правда, без недостатков здесь также не обошлось – достаточная для левитации состава сила возникает только на больших скоростях. По этой причине поезд на системе EDS должен быть оснащен колесами, которые смогут обеспечивать движение при низких скоростях (до 100 км/ч). Соответственные изменения также должны быть внесены по всей длине полотна, так как поезд может остановиться в любом месте в связи с техническими неисправностями.

Еще одним недостатком EDS является то, что при низких скоростях в передней и задней частях отталкивающих магнитов в полотне возникает сила трения, которая действует против них. Это одна из причин, по которой в JR–Maglev отказались от полностью отталкивающей системы и посмотрели в сторону системы боковой левитации.

Стоит также отметить, что сильные магнитные поля в секции для пассажиров порождают необходимость установки магнитной защиты. Без экранирования путешествие в таком вагоне для пассажиров с электронным стимулятором сердца или магнитными носителями информации (HDD и кредитные карточки), противопоказано.

Подсистема ускорения в поездах на базе технологии EDS работает точно также, как и в составах на базе технологии EMS за исключением того, что после изменения полярности статоры здесь на мгновение останавливаются.

Третьей, наиболее близкой к реализации технологией, существующей пока только на бумаге, является вариант EDS с постоянными магнитами Inductrack, для активации которых не требуется энергия. До недавнего времени исследователи считали, что постоянные магниты не обладают достаточной для левитации поезда силой. Однако эту проблему удалось решить путем размещения магнитов в так называемый «массив Хальбаха». Магниты при этом расположены таким образом, что магнитное поле возникает над массивом, а не под ним, и способны поддерживать левитацию поезда на очень низких скоростях – около 5 км/ч. Правда, стоимость таких массивов из постоянных магнитов очень высока, поэтому пока и не существует ни одного коммерческого проекта данного рода.

Книга рекордов Гиннесса

На данный момент первою строчку в списке самых быстрых поездов на магнитной подушке занимает японское решение JR-Maglev MLX01, которому 2 декабря 2003 года на испытательной трассе в Яманаси удалось развить рекордную скорость – 581 км/ч. Стоит отметить, что JR-Maglev MLX01 принадлежит еще несколько рекордов, установленных в период с 1997 по 1999 год – 531, 550, 552 км/ч.

Если взглянуть на ближайших конкурентов, то среди них стоит отметить шанхайский маглев Transrapid SMT, построенный в Германии, которому удалось в ходе испытаний в 2003 году развить скорость 501 км/ч и его прародителя – Transrapid 07, преодолевшего рубеж в 436 км/ч еще в 1988 году.

Практическая реализация

Поезд на магнитной подушке Linimo, эксплуатация которого началась в марте 2005 года, был разработан компанией Chubu HSST и до сих пор используется в Японии. Он курсирует между двумя городами префектуры Айти. Протяженность полотна, над которым парит маглев составляет около 9 км (9 станций). При этом максимальная скорость Linimo равна 100 км/ч. Это не помешало ему только в течение первых трех месяцев с момента запуска перевезти более 10 млн пассажиров.

Более известным является шанхайский маглев, созданый немецкой компанией Transrapid и введенный в эксплуатацию 1 января 2004 года. Эта железнодорожная линия на магнитном подвесе соединяет станцию шанхайского метро Лунъян Лу с международным аэропортом Пудун. Общее расстояние составляет 30 км, поезд преодолевает его приблизительно за 7,5 мин, разгоняясь до скорости 431 км/ч.

Еще одна железнодорожная линия на магнитном подвесе успешно эксплуатируется в городе Тэджон, Южная Корея. UTM-02 стал доступен пассажирам 21 апреля 2008 года, а на его разработку и создание ушло 14 лет. Железнодорожная линия на магнитном подвесе соединяет Национальный музей науки и выставочный парк, расстояние между которыми всего лишь 1 км.

Среди поездов на магнитной подушке, эксплуатация которых начнется в ближайшем будущем, стоит отметить Maglev L0 в Японии, его испытания были возобновлены совсем недавно. Ожидается, что к 2027 году он будет курсировать по маршруту Токио – Нагоя.

Очень дорогая игрушка

Не так давно популярные журналы называли поезда на магнитной подушке революционным транспортом, а о запуске новых проектов подобных систем с завидной регулярностью сообщали как частные компании, так и органы власти из разных стран мира. Однако большинство из этих грандиозных проектов были закрыты еще на начальных стадиях, а некоторые железнодорожные линии на магнитном подвесе хоть и сумели недолго послужить на благо населения, позже были демонтированы.

Главная причина неудач в том, что поезда на магнитной подвеске чрезвычайно дороги. Они требуют специально построенной под них с нуля инфраструктуры, которая, как правило, и является самой расходной статьей в бюджете проекта. К примеру, шанхайский маглев обошелся Китаю в $1,3 млрд или $43,6 млн за 1 км двустороннего полотна (включая затраты на создание поездов и постройку станций). Конкурировать с авиакомпаниями поезда на магнитной подушке могут лишь на более длинных маршрутах. Но опять же, в мире достаточно мало мест с большим пассажиропотоком, необходимым для того чтобы железнодорожная линия на магнитном подвесе окупилась.

Что дальше?

На данный момент будущее поездов на магнитной подвеске выглядит туманно в большей степени из-за запредельной дороговизны подобных проектов и длительного периода окупаемости. В то же время множество стран продолжают инвестировать огромные средства в проекты по созданию высокоскоростных железнодорожных магистралей (ВСМ). Не так давно в Японии были возобновлены скоростные испытания поезда на магнитной подушке Maglev L0, .

Японское правительство также надеется заинтересовать собственными поездами на магнитной подушке США. Недавно представители компании The Northeast Maglev, которые планируют соединить с помощью железнодорожной линии на магнитном подвесе Вашингтон и Нью-Йорк, совершили официальный визит в Японию. Возможно поезда на магнитной подвеске получат большее распространение в странах с менее эффективной сетью ВСМ. К примеру, в США и Великобритании, но их стоимость по-прежнему останется высока.

Есть еще один сценарий развития событий. Как известно, одним из путей к увеличению эффективности поездов на магнитной подушке является применение сверхпроводников, которые при охлаждении до близких к абсолютному нулю температур полностью теряют электрическое сопротивление. Однако держать огромные магниты в баках с чрезвычайно холодными жидкостями очень дорого, так как чтобы удерживать нужную температуру, нужны громадные «холодильники», что еще больше повышает стоимость.

Но никто не исключает вероятности, что в ближайшем будущем светилам физики удастся создать недорогое вещество, сохраняющие сверхпроводящие свойства даже при комнатной температуре. При достижении сверхпроводимости при высоких температурах мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько доступными, что даже «летающие автомобили» окажутся экономически выгодными. Так что ждем новостей из лабораторий.

Несомненно, Шанхайский Маглев - одна из достопримечательностей Шанхая, да и всего Китая. Это первая в мире коммерческая магнитная железная дорога была введена в эксплуатацию в январе 20о4 года.

Сейчас эта 30-километровая линия соединяет со станцией метро Лун"ян Лу в районе Шанхая. Это расстояние на поезде на магнитной подушке преодолевается меньше, чем за 8 минут. Для сравнения, если ехать на , то понадобится 40 минут.

На таком поезде нужно проехать как минимум два раза - один раз наблюдая за указателем скорости, когда он достигнет максимума, а другой раз - любуясь видом из окна 🙂

Шанхайский Маглев построен по немецкой технологии. Активные разработки в этой области ведутся в основном в Японии и Германии.

Магнитная подушка. Как это работает?

Слово Маглев - сокращенно от магнитная левитация (magnetig levitation, англ.), то есть поезд как бы левитирует над полотном дороги под действием мощного электромагнитного поля.

К низу каждого вагона к стальному обхвату (4) прикреплены управляемые электронным способом электромагниты (1). Также магниты расположены в нижней части специального рельса (2). При взаимодействии магнитов поезд зависает над рельсом в одном сантиметре. Есть также магниты, отвечающие за боковое выравнивание (3). Обмотка, уложенная вдоль пути, создает магнитное поле, приводящее поезд в движение.

Поезд едет без машиниста. Управление осуществляется из центра управления с помощью компьютеров. Электрический ток подается из центра управления только на тот участок, по которому движется в данный момент поезд. Для торможения магнитное поле меняет свой вектор.

Достоинства и недостатки

"Если кто-нибудь из вас решит построить башню, то разве он не сядет сначала и не подсчитает все затраты, чтобы посмотреть, хватит ли ему средств, чтобы закончить её?" ( , Луки 14 глава 28 стих)

В этих словах заключена одна из причин, почему таких поездов не понаделали всюду.

Дорого обходится строительство и обслуживание специальной колеи. Например, строительство Шанхайского Маглева было дополнительно осложнено заболоченной местностью. Каждая опора трассы уложена на специальную бетонную подушку, упирающуюся в скальное основание. Местами такая подушка достигает 85 метров толщины! В итоге эти 30 км магнитной дороги обошлись в 10 млрд юаней.

К тому же по этой дороге уже нельзя пустить другой транспорт. Это отличает его от путей, построенных для скоростных поездов - по ним все равно могут ехать и обычные .

Теперь о приятном. Главным плюсом Маглева является, конечно, же скорость. За короткое время после старта поезд разгоняется до 430 км в час.

Сравнительно низкое потребление электроэнергии - в разы меньше, чем у автомобиля или самолета. Соответственно меньше вреда окружающей среде.

Так как сильно уменьшено трение деталей, то и затраты на эксплуатацию такого поезда меньше.

Проведенные испытания показали, что магнитное поле в поезде даже слабее, чем в обычных поездах. Значит, мощные магниты не опасны для пассажиров, в том числе с электронным стимулятором сердца.

На случай потери электропитания в поезде установлены батареи, на которых срабатывают специальные тормоза. Они создают магнитное поле с обратным вектором, и скорость поезда снижается до 10 км в час, и в конце концов поезд останавливается и опускается на рельсы.

Будущее Шанхайского Маглева

Сейчас длина маглев-пути равна 30 км. Известно о планах продлить линию до другого аэропорта Шанхая - до Хунцяо, расположенном на западе от . И дальше продлить дорогу на юго-запад до Ханчжоу. В итоге длина пути составила бы 175 км. Но пока проект заморожен до 2014 года. С 2010 года Шанхай и Ханчжоу соединила высокоскоростная железная дорога. Будут ли реализованы планы по продлению Маглева - покажет время.



2024 stdpro.ru. Сайт о правильном строительстве.