Зимние сады. Оборудование, инженерные системы. Зимние сады schüco – регулирование микроклимата Остекление зимних садов

Климат

Оптимальный климат для зимнего сада - 20`С при 40-60% относительной влажности воздуха. Эти параметры поддерживаются системой автоматики фирмы SIGENIA, ну или можно ходить и вручную нажимать нужные выключатели...

Наша фирма предлагает всем застройщикам Зимних Садов установить автоматическую систему поддержания естественной влажности и температуры в помещении. Для этого используются пассивные и активные воздушные клапана, принудительная или самотечная вытяжная система, люки в стеклянные крыши, датчики влажности, температуры и ветра (на улице). Целесообразно использовать тонированное в массе зеркальное стекло в составе стеклопакета, ну и конечно кондиционер, увлажнитель воздуха...

При использовании кондиционера воздух он будет только охлаждать, но не будет насыщать кислородом и обновлять, и со временем в помещении будет стоять специфический запах прохладной затхлости. Поэтому, в паре с ним необходимо устраивать приточно-вытяжную вентиляцию, которая будет постоянно обновлять воздух.

Если же совместно с кондиционером задействовать увлажнитель воздуха, приточную и вытяжную вентиляцию, да еще чтобы все включалось и выключалоссь автоматически, то у Вас в Зимнем Саду и части жилого помещения будет настоящая установка климат-контроля, которая будет работать даже при отключении электричества (от автомобильного аккумулятора).

Теплоизоляция

Хорошая теплоизоляция остекления уменьшает возможность появления конденсата. Из-за конструктивной особенности многослойных теплоизоляционных стекол изоляционная способность уменьшается по мере приближения к краю стекла, поэтому здесь конденсат образуется чаще, чем в середине.

Особое внимание уделяется заделке швов примыканий остекления к существующим стенам и проемам - будь то окна, двери или витражи Зимнего Сада. Также угловым переходам "стена-крыша" и "крыша-витраж". Известная проблема Зимних Садов - скопление обледенения на кромке стеклянной крыши; мы укладываем на всю длинну края остекленной крыши нагревательный элемент, который не дает образоваться наледи, а снизу устанавливаем козырек или слив для воды.

У нашей фирмы существует собственная технология герметизации остекленных кровель даже с очень небольшим углом уклона к горизонту. Решение простое, но не стандартное, которое ни разу не дало сбой; - поэтому мы даем гарантию от протечек стеклянной кровли не менее, чем на 3 года.

Специалисты нашей фирмы имеют большой опыт проектирования и строительства сложного остекления объектов с "неправильными" углами нестандартных конструкций. Мы всегда предусматриваем все возможные проблемы будущих конструкций и предупреждаем об этом Заказчика.

Одной из важнейших проблем, возникающих в процессе проектирования зимнего сада, является обеспечение притока свежего воздуха. Чтобы обеспечить естественную вентиляцию необходимо предусмотреть открывающиеся створки и форточки и в вертикальных стенах и в наклонных поверхностях крыши. Площадь открывающихся створок должна составлять от 10 % до 40% всей площади остекления зимнего сада.

Естественная вентиляция основывается на физических свойствах воздуха: всем известно, что тёплый воздух поднимается наверх, и если в верхней части стен или на крыше имеются форточки, то воздух выйдет через них наружу. Если в нижней части конструкции предусмотрены приточные отверстия, то через них естественным образом в помещение будет стремиться поток прохладного воздуха.

Конечно, такая система не может обеспечить полноценную вентиляцию зимнего сада, так как зависит от многих условий. Прежде всего, чтобы происходил естественный воздухообмен, необходима разница температур между тёплым воздухом в помещении и холодным снаружи, эта разница должна оставлять не менее пяти градусов. Эффективность естественной системы вентиляции снижается в ветреную погоду и в знойные летние дни. С помощью такой системы трудно добиться заданного уровня температуры и влажности, имеющего во многих случаях большое значение, например, для прихотливых тропических растений.

Более совершенной, и, в конечном счёте, более выгодной, является система принудительной вентиляции. Простейшие системы состоят из приточного и вытяжного отверстий, оборудованных вентиляторами и пульта управления системой. Более сложные системы оснащены функциями трёхмерного распределения воздуха, сушки воздуха, предотвращения сквозняков. Также многие модели оборудуются таймером, бактерицидными фильтрами и системой защиты от обледенения. Проектирование вентиляционной системы следует доверить профессионалам, так как при расчёте необходимо учитывать множество параметров, таких, как тепло-влажностный режим, выделение растениями влаги, подвижность воздуха, теплоприток через крышу и пр.

Следующим вопросом, которому следует уделить пристальное внимание, является освещение зимнего сада. - полностью светопрозрачная конструкция, то есть, растения обеспечены постоянным притоком солнечной энергии, но летним днём растения могут получить переизбыток света, а в пасмурную погоду солнечной энергии будет недостаточно. К тому же, разным растениям требуется различный уровень освещённости. Чтобы решить эти проблемы, необходимо оборудовать зимний сад и шторами, и электрическим освещением.

Шторы можно закрепить как внутри помещения, так и на наружной стороне конструкции. Снаружи закрепляются тентовые конструкции, маркизы, изготовленные из различных тканей, в том числе и из специальной ткани со светоотражающей поверхностью. Для затенения внутри помещения можно применить шторы или жалюзи, ламели которых изготавливаются из пластика, ткани, дерева, бамбука или алюминия. Нужно заметить, что металлические жалюзи - наименее подходящий вариант для зимнего сада. Они быстро нагреваются и довольно долго удерживать тепло, это может привести к нарушению температурного режима в помещении, к тому же жалюзи с большой длиной полотна могут издавать шум, если в процессе вентиляции создаются интенсивные потоки воздуха.

Специалисты считают, что внешнее затенение эффективнее защищает от солнца, чем внутреннее, подсчитано, что внешняя система пропускает внутрь до 40 % солнечного света, а внутренняя - от 65% до 90 %. Шторы и жалюзи можно открывать вручную или снабдить электроприводом и управлять дистанционно, можно доверить управление затенением системе «умный дом», в этом случае освещённость будет регулироваться автоматически.

Для освещения растений не годятся обычные лампы накаливания, так как у них низкая светоотдача и в их спектре отсутствуют синие лучи, необходимые для фотосинтеза. К тому же, такие лампы сильно греются, растения могут даже получить ожоги. Люминесцентные лампы больше подходят для освещения зимнего сада, хотя их спектр тоже малоэффективен для стимулирования процессов жизнедеятельности растений. Можно в зимних садах применять металлогалоидные лампы или натриевые лампы высокого давления, но оптимальным вариантом являются специальные светодиодные или люминесцентные фитолампы.

Осветительные приборы можно также подключить к интеллектуальной системе управления, чтобы можно было создать оптимальный световой сценарий для всех растений зимнего сада. Самым лучшим вариантом будет объединение в единый комплекс и подключение к системе «умный дом» систем затенения, освещения и полива.

В зависимости от назначения и от личных пристрастий хозяев дома зимний сад делается отапливаемым или неотапливаемым. Точный расчёт отопительной системы лучше оставить специалистам, мы рассмотрим только самые распространённые варианты решения проблемы отопления зимнего сада.

Одной из самых распространённых является водяная отопительная система. Газ - недорогой энергоноситель, доступный практически повсеместно, поэтому часто применяется система отопления, основанная на газовом нагревательном котле. Трубы, по которым течёт подогретая вода, прокладываются на нескольких уровнях - под карнизами, на стойках каркаса, по нижнему контуру стен, под грунтом на глубине не менее 50 см. Используя пластинчатый теплообменник, можно создать изолированные отопительные контуры для дома и зимнего сада.

К сожалению, такая система сложна в монтаже, требует большого количества дорогостоящего оборудования и затрат на его обслуживание. Но главный недостаток водяной системы отопления в её инерционности, подачу тепла невозможно прекратить моментально, так как жидкий теплоноситель долго остывает, возникает угроза перегрева растений.

Сходна по своим свойствам система парового отопления, отличающаяся лишь тем, что в качестве теплоносителя по трубам циркулирует пар. Такая система требует постоянного контроля, так как тоже несёт опасность перегрева растений.

Система воздушного отопления состоит из воздухоподогревателя и воздуховодов, по которым подогретый воздух равномерно распределяется по всему помещению. Оборудование для такой системы обойдётся дешевле, но воздуховоды занимают много места, правда, это не главный недостаток данной системы, существенно то, что такая система пересушивает воздух, а это пагубно влияет на многие растения и создаёт дискомфортные ощущения у людей.

Для небольшого зимнего сада, примыкающего к дому, не оснащённому центральным отоплением, можно использовать печное отопление. Эффективность и пожаробезопасность такой системы оставляют желать лучшего, поэтому её использование непопулярно.

Всё большее распространение получает электрическая система обогрева зимних садов, основанная на прокладке греющего кабеля. С помощью кабеля можно обогреть грунт, ровное тепло, которое дают кабели, благотворно сказывается на развитии растений. Кабель можно смонтировать по периметру стен и, что немаловажно, с его помощью можно обустроить эффективную антиобледенительную систему на крыше зимнего сада и обогрев труб, по которым подаётся вода для полива.

К электрическим системам отопления относится и другой, набирающий популярность способ обогрева - инфракрасный. Инфракрасные обогреватели различных конструкций эффективны, они не пересушивают воздух и создают у людей ощущение приятного тепла.

Чтобы компенсировать недостатки различных видов отопления можно создать комбинированную систему, например, сочетающую тепловентиляторы и подогрев грунта при помощи кабеля. С целью экономии энергоносителя стоит задуматься о применении оборудования для рекуперации, то есть возврата тепловой энергии, содержащейся в удаляемом воздухе.

Таким образом, мы видим, что создание здорового и комфортного микроклимата в помещении зимнего сада требует комплексного подхода. Системы отопления, вентиляции, полива, затенения и освещения должны рассматриваться как единое целое, все составные части которого работают согласованно, дополняя друг друга.

Микроклимат зимнего сада


Невесомое на вид, прозрачное сооружение служит органичным продолжением помещения, значительно расширяя его границы и влияя на внутренний климат. Микроклимат зимнего сада отличается от климатического режима обычного помещения. Благодаря новым материалам, а также современным инженерным и техническим возможностям в области вентиляции, отопления и затенения зимний сад можно превратить в идеальное место отдыха.

Для комфортного пребывания в зимнем саду очень важен тепловой баланс. Поэтому заблаговременно и тщательно продумайте систему вентиляции и отопления. Тёплый воздух легче холодного. Поднимаясь вверх, он собирается под стеклянной крышей. Этот термический поток создаёт естественное проветривание, подобие потоку тепла в камине, но для поддержания в зимнем саду нормального микроклимата этого недостаточно. В помещении зимнего сада важен свежий воздух. Для вентиляции необходимыми элементами являются открывающиеся окна и расположенные в плоскости крыши люки. Они могут отрываться с помощью шестов для ручного открывания и электроподъёмников с дистанционным управлением. В некоторых конструкциях зимних садов продумана вентиляция каждой отдельной детали, каждого стыковочного узла. Чтобы обеспечить рекомендуемое десятикратное обновление полного объёма воздуха для уменьшения влажности и охлаждения в жаркую погоду необходимо, чтобы площадь открывающихся окон составляла 1/6 (1/5) всей площади окон.

В прохладное время года понадобится обогрев помещения. Поэтому зимний сад необходимо оборудовать системой отопления. Процессы передачи тепла в остеклениях под воздействием солнечных лучей основываются на свойстве стекла пропускать коротковолновое излучение, которое нагревает предметы (пол, стены) в пристройках. Нагревшись, эти предметы сами излучают длинные волны в инфракрасном диапазоне. Благодаря остеклению эта энергия больше не выпускается наружу. При этом полезным является не только прямое солнечное излучение, но и излучение неба, покрытого облаками. Применение солнечной энергии для обогрева помещений означает наиболее эффективное использование излучения, не превышающего температурные границы комфортности (30°С). Тепло должно аккумулироваться в полу и стенах, тёплый воздух должен поступать в помещения самого дома, с которым зимний сад должен соединяется через двери и окна. При этом способ эксплуатации имеет решающее значение, поскольку все вышеназванные параметры должны постоянно регулироваться. Для обогреваемых зимних садов рекомендуются специальные теплозащитные стёкла. Солнцезащита предусматривает использование наружных систем затемнения или внутренних затемнителей.

Зимний сад — достаточно сложный организм. Он должен соответствовать таким характеристикам, как безопасность конструкции, защищённость внутреннего пространства от охлаждения и перегрева, высокая устойчивость к атмосферным воздействиям. Комплексное решение этих вопросов под силу только профессионалам.

Как правило, для зимнего сада выбираются растения, не требующие повышенной температуры и влажности или дополнительного освещения зимой до окончания светового дня. Однако частый полив и неизбежные опрыскивания листвы для защиты ее от сухости воздуха или препаратами-инсектицидами все же приводят к образованию конденсата на конструкциях помещения. К тому же, в зимнем саду, как в неотъемлемой части жилого пространства, необходимо создать комфортные условия и для содержания домашнего уголка природы, и для проживания хозяев под его сенью.

Наряду со встроенной в стеклопакеты системой внутренних и внешних водостоков необходимо запроектировать и систему вентиляции . Наиболее эффективный способ обеспечения естественной вентиляции – устройство горизонтально расположенных отверстий (или открывающихся створок) для подачи наружного воздуха в нижней части зимнего сада, а также фрамуг для проветривания на наклонной крыше. Но в наше время в зимних садах все чаще применяется система принудительной вентиляции, состоящей из приточных и вытяжных узлов.

Для каждого зимнего сада вентиляционные системы проектируются инд ивидуально и должны быть точно рассчитаны на конкретную кубатуру помещения и заданный температурно-влажностный режим.

Возможно и применение системы кондиционирования , которая, наряду с ионизаторами, очистителями и увлажнителями воздуха, поможет создать и поддержать микроклимат на должном уровне (оптимальная температура воздуха для зимовки растений – +18−20°С при относительной влажности 40%). С этой же целью желательно применение в зимних садах систем обогрева «теплый пол», так как обычные радиаторы отопления слишком сильно пересушивают воздух в помещении.

Автомобилистам хорошо известно такое явление, как парниковый эффект , когда салон машины, оставленной под яркими лучами солнца, сильно нагревается. Все дело в том, что стекло пропускает коротковолновое излучение, которое, в свою очередь, нагревает предметы, находящиеся в помещении. Нагревшись, эти предметы начинают сами излучать длинные волны в инфракрасном диапазоне.

Площадь остекления в зимнем саду намного больше, чем у лобового стекла автомобиля , и температура в нем может подняться до +70°С. Поэтому, проектируя зимний сад, необходимо подумать и о системах защиты от излишней солнечной энергии.

Поддержание заданной температуры и управление многочисленными приборами – довольно трудоемкий процесс. В современном доме заботу о людях и растениях берет на себя компьютер. А если в управляющую программу заложить данные о местоположении солнца в тот или иной час дня, то, даже в отсутствие хозяев, послушные компьютеру жалюзи будут опускаться и подниматься, предохраняя листву от солнечных ожогов.

Некоторые группы растений (кактусы, суккуленты или экзотические бутылочные деревья) требуют редкого полива, другие же – как, например, папирус, – хорошо развиваются только в сильно увлажненной почве. Подключенная к общей сети система капельного полива изо дня в день будет ухаживать за капризными растениями должным образом.

Несмотря на большие финансовые затраты , система климат-контроля для зимнего сада вполне оправдывает себя, создавая комфортную среду обитания для всех обитателей загородного дома.

Как уже отмечалось в предыдущих главах, большие рекреационные помещения за панорамными стеклянными стенами, внутренние дворики-атриумы под стеклянными кровлями и зимние сады являются неотъемлемой частью современной архитектуры. В таких помещениях обеспечивается особое, специфическое чувство зрительного контакта с окружающей средой, а прилегающий парк или участок леса становятся своеобразным элементом интерьера. Условия микроклимата, формируемые в помещении зимнего сада, должны отвечать требованиям комфортности для человека, а также обеспечивать условия жизни и роста экзотических растений, выращиваемых в искусственных условиях.

Помещение, располагаемое за лёгкими светопрозрачными ограждениями, имеет минимальный уровень защищённости от негативных факторов наружной среды: стеклянная оболочка практически мгновенно передаёт во внутреннее пространство изменения внешнего климата. Поэтому при проектировании зимнего сада принципиально важно включение в него специальных приспособлений и устройств, при помощи которых можно было бы быстро и эффективно выравнивать пиковые климатические нагрузки.

В зимнее время температура и влажность наружного воздуха не претерпевают резких скачкообразных изменений на протяжении суток. Стабильность параметров микроклимата внутри зимнего сада поддерживается за счёт регулирования мощности системы отопления и элементов переменной теплоизоляции (рольставен и жалюзей), закрываемых в ночное время для сбережения дополнительного тепла от солнца, поступающего в помещение зимнего сада в течение светового дня. Основным негативным фактором в зимнее время является возможное падение или повышение влажности внутреннего воздуха, неблагоприятное для людей и провоцирующее возникновение болезней растений.

В летнее время внутри зимнего сада возникает накопление солнечного тепла, проникающего через стеклянные стены и кровлю и вызывающего повышение температуры внутри помещения за счёт «парникового эффекта», возникающего за счёт дифференцированного пропускания стеклом теплового излучения с различной длиной волны.

В естественном природном теплообмене каждое тело излучает тепловую энергию. При этом длина волны излучения зависит от температуры тела. Стекло, установленное в наружной ограждающей конструкции здания, подвергается воздействию двухстороннего теплового излучения, идущего с одной стороны — от Солнца, а с другой — от внутренних поверхностей помещения.

Абсолютная температура внутренних поверхностей помещения близка к абсолютной температуре поверхности Земли (для данного климатического района) и составляет в среднем 293 К (20 °С). При этом максимум теплового излучения находится в диапазоне от 1600 до 2000 нм. Температура поверхности Солнца составляет около 6000 К. Его тепловое излучение приходится на диапазон длин волн от 300 до 2500 нм. Спектры теплового излучения Солнца и внутренних поверхностей помещения (условно — Земли) показаны на рис. 6.2.3.1.

Рис. 6.2.3.1.

Рис. 6.2.3.2. Накопление тепловой энергии Солнца в пределах замкнутого остеклённого пространства. Перегрев помещения зимнего сада за счёт воздействия солнечной радиации

Обычное оконное стекло хорошо пропускает ультрафиолетовое излучение, видимый свет и коротковолновое инфракрасное излучение Солнца и, гораздо хуже — длинноволновое инфракрасное излучение, исходящее от нагретых поверхностей помещения. Тепло, таким образом, не может выйти наружу и аккумулируется в пределах замкнутого пространства (рис. 6.2.3.2) — происходит перегрев помещения.

Многие растения плохо переносят температуру выше 27 °С, а у многих яркое солнце обжигает листья. Очевидно, что высокая температура внутри зимнего сада является совершенно неприемлемой для человека. Для регулирования параметров микроклимата в зимних садах применяются автоматизированные системы, включающие в себя группу устройств, управляемых с единого пульта, программируемого вручную или при помощи компьютера.

Система автоматической вентиляции зимнего сада SI-WIGa-Bus-System , производимая предприятием ”SIEGENIA-AUBI” , позволяет обеспечить эффективный режим проветривания помещения зимнего сада приоритетно — в летний период, когда зимнему саду требуется наиболее интенсивная вентиляция. Кроме того, отдельные элементы системы могут быть задействованы для организации зимнего проветривания помещения.

Интегрированная система вентиляции SI-WIGa-Bus-System включает в себя группу устройств, предназначенных для выполнения определённых функций и управляемых от единого центрального пульта (рис. 6.2.3.3) . На конкретном строительном объекте может применяться как весь системный комплекс, так и отдельные устройства, целенаправленно группируемые для решения определённых задач. Система очень проста в монтаже и эксплуатации; отдельные блоки соединяются между собой при помощи обычного телефонного кабеля. Основным элементом системы, её «мозговым центром», является центральный управляющий блок AEROTRONIC (поз.1 рис. 6.2.3.3) , который, как правило, монтируется внутри зимнего сада на стене основного дома, к которому примыкает зимний сад. В блоке AEROTRONIC установлены датчики, считывающие значения температуры и относительной влажности внутреннего воздуха соответственно в интервале t = 0 … 50 °С и f = 30 … 80 %. В соответствии с функциональным назначением помещения (зимний сад, бассейн, тренажёрный зал и др.) программируются критические значения контролируемых параметров, определяющих граничные условия комфортности в помещении зимнего сада.

При наступлении какого-либо критического значения из запрограммированных параметров: температуры (например, t крит = + 30 °С — предельно допустимая температура для растений, произрастающих в зимнем саду) или влажности (например, f крит = 60% - максимально допустимая влажность для человека) или запрограммированного критического сочетания температуры и влажности (например, t крит = + 25 °С при f крит = 60%), с блока AEROTRONIC уходит сигнал на включение вентиляторов и открывание заслонок и клапанов приточных устройств типа AEROMAT , располагаемых на стенах зимнего сада и кровельных вытяжных устройств АЕROJET (см. раздел 6.1.2) .

При включении приточных и вытяжных устройств осуществляется интенсивное проветривание помещения зимнего в режиме принудительной вентиляции (рис. 10.2.2.4) в течение определенного интервала времени. Проветривание будет осуществляться в непрерывном или прерывистом режиме до тех пор, пока значения контролируемых параметров не достигнут нижнего значения, запрограммированного на управляющем блоке AEROTRONIC .

Рис. 6.2.3.3.
1 — центральный управляющий блок (АЕROTRONIC)
2 — приточное устройство (AEROMAT)
3 — вытяжное кровельное устройство (АЕROJET)
4а и 4б — метеостанция
5 — блок управления открыванием-закрыванием окон
6 — блок управления открыванием-закрыванием затеняющих маркиз
7 — затеняющие маркизы

Рис. 6.2.3.4. Схема принудительной вентиляция зимнего сада за счет группы стеновых и кровельных приборов. Воздух удаляется из верхней — наиболее перегретой зоны помещения

Рис. 6.2.3.5. Метеостанция AEROTRONIC Wetterstation. Общий вид.
1 — устройство для измерения скорости ветра
2 — датчик температуры и влажности
3 — датчик дождя
4 — датчик солнечной радиации, ориентированный по четырём сторонам света

При необходимости в системе SI-WIGa-Bus-System в качестве приточных элементов могут быть задействованы окна, управляемые электроприводами дистанционного открывания (см. раздел 6.1.1) , а на крыше зимнего сада установлен блок метеостанции — AEROTRONIC Wetter-station (поз. 4 рис. 6.2.3.3 и рис. 6.2.3.5) , предназначенной для считывания параметров наружного климата и оснащенной устройством для измерения скорости ветра, датчиком дождя и датчиком солнечной радиации. При помощи блока AEROTRONIC Wetter-station осуществляется интегрированная работа приточно-вытяжных устройств и системы затенения кровли при помощи дополнительных солнцезащитных устройств — маркиз (поз.7 рис. 6.2.3.3) .

Измеритель скорости ветра представляет из себя классический анемомометр, снабжённый крыльчаткой в виде креста Робинзона. В кресте Робинзона на концах крестовины укреплены четыре полых полушария, обращённых выпуклостью в одну сторону. Под действием ветра крестовина вращается т.к. на чашку, обращенную к направлению ветра вогнутой стороной давление больше, чем давление на чашку, обращённую выпуклой стороной. В отличие от стандартного анемометра, датчик ветра, устанавливаемый на крыше зимнего сада, снабжён тахометрической машиной, преобразующей энергию вращения в электрический сигнал.

Датчик дождя является ёмкостным. Электрическая ёмкость датчика образована системой из двух плоских гребёнок, защищённых сверху тонким слоем диэлектрика. При попадании воды на поверхность датчика происходит изменение межэлектродной диэлектрическая проницаемости, что приводит к изменению электрической ёмкости и регистрируется соответствующей электронной схемой. Датчик является обогреваемым для удаления влаги с поверхности с целью приведения его в рабочее состояния для последующих измерений.

При ураганном ветре или дожде метеостанция подаёт сигнал на управляющий блок AEROTRONIC , с которого в свою очередь уходит сигнал на закрытие всех открытых люков и окон, подключенных к распределительному блоку AEROTRONIC Fenstermodul (поз. 5 рис. 6.2.3.3) .

Датчик солнечной радиации считывает данные о наличии прямого облучения солнечными лучами какой-либо из стен зимнего сада в зависимости от их ориентации и положении Солнца на его траектории в данный момент времени (рис. 6.2.3.6) . Сигнал подаётся на управляющий блок AEROTRONIC , с которого уходит команда на закрытие маркиз (затенение) зимнего сада на стороне, подверженной воздействию прямого солнечного облучения. Управление открытием-закрытием маркиз осуществляется при помощи распределительного блока AEROTRONIC Beschattungsmodul (поз. 6 рис. 6.2.3.3) , к которому могут быть подключены три маркизы.

Дополнительные солнцезащитные приспособления могут быть выполнены как в наружном, так и во внутреннем вариантах. Солнцезащитные конструкции, как правило, выполняются из композитных тканевых материалов, основу которых составляют переплетенные нити из стекловолокна, с оболочкой на основе ПВХ или акрила. Как и у всех композитов, стекловолокно в данном случае обеспечивает разрывную прочность, необходимую для мобильных штор, подверженных частым переменным нагрузкам, а ПВХ — стойкость к УФ солнечному излучению, предохраняя тент от выгорания. Переплетение нитей выполняется таким образом, чтобы 10 … 20 % естественного дневного света проникало в помещение, создавая эффект мягкого затенения.

Рис. 6.2.3.6.



2024 stdpro.ru. Сайт о правильном строительстве.