Методика определения насыпной плотности сыпучих материалов. Плотность сыпучих грузов. Расчет тоннажа сыпучих грузов. Определение истинной плотности
2.1. Оборудование и материалы
Порошок ПЖРВ. Волюометр Скотта (рисунок 3). Кювета (толщина 4 мм, глубина 40,4 мм, объем V=26,5 см 3), весы рычажные. Штангенциркуль ШЦЦ-1-125.00 ПС, ГОСТ 166-89, погрешность измерения 0,03; весы ВЛА-200г-М, №608, погрешность от неравноплечности коромысла ≤2 гр., весы рычажные. ГОСТ – 19440 49.
Рис.3. Волюмометр Скотта
2.2. Теоретические данные
Насыпная плотность (ρ насып, г/см 3), есть объемная характеристика порошка, и представляет собой массу единицы его объема при свободной насыпке. Ее величина зависит от плотности упаковки частиц порошка при свободном заполнении ими какого – либо объема. Она тем больше, чем крупнее и более правильной формы частицы. Наличие выступов и неровностей на поверхности частиц, а так же увеличение поверхности в связи с уменьшением размера частиц повышает межчастичное трение, что затрудняет их перемещение относительно друг - друга и приводит к снижению насыпной плотности.
Величину, обратную насыпной плотности, называют насыпным объемом (V насып, см 3 /г), который представляет собой объем, занимаемый единицей массы порошка, при его свободной насыпке. Насыпная плотность порошка влияет на объемное дозирование и сам процесс формирования, а также на величину усадки при спекании (чем меньше насыпная плотность тем больше усадка).
При воздействии на свободно насыпанный порошок механических виброколебаний происходит уменьшение объема на 20-50%. Отношение массы порошка к величине этого нового, уменьшенного объема, называют плотностью утряски. Максимальная плотность утряски достигается на порошках со сферической формой частиц при минимальной шероховатости их поверхности.
Сущность метода – измерение массы определенного количества порошка, который в свободно насыпанном состоянии полностью заполняет емкость известного объема. Свободно насыпанное состояние получается при заполнении емкости путем последовательного прохождения порошка через систему наклонных пластин волюмометра Скотта. Отношение массы к объему – насыпная плотность.
2.3. Описание метода определения насыпной плотности
Некоторый объем порошка ПЖРВ насыпаем в верхнюю воронку волюмометра. Порошок в свободно насыпанном состоянии сыплется вниз, последовательно проходит через систему наклонных пластин волюмометра, заполняя при этом кювету, находящуюся под нижней воронкой. Образовавшаяся горка на поверхности снимается – поверхность выравнивается. Далее получившаяся масса порошка взвешивается на весах. Опыт проделывается два раза (таблица 2). Для каждого раза высчитывается значение ρ насып и V насып.
2.4. Результаты
Таблица 2. Значения насыпной плотности и объема для ПЖРВ
| m к =153,7 г V к =26,5 см 3 | ||
| ρ насып, г/см 3 | V насып, см 3 /г | |
| m П =72,42 г | 2,733 | 0,3659 |
| m П =77,3 г | 2,917 | 0,3428 |
| Ср.знач | 2,825 | 0,3544 |
Где m к - масса кюветы, V к - объем кюветы, m П – масса порошка.
Вывод : проведены измерения насыпной плотности для порошка ПЖРВ, получившиеся значения укладываются в интервал теоретических: 2,71-2,90 г/см 3 .
Прессуемость порошков
3.1. Оборудование и материалы
Порошок ПЖРВ. Ручной гидравлический пресс 10 ТНС «Karl Zeiss Jena». Цилиндрические пресс-формы. Весы рычажные.
3.2. Теоретические данные
Уплотняемость порошка показывает его способность изменять начальную плотность упаковки частиц в процессе прессования. Эта характеристика оценивается по плотности прессовок, изготовленных при различных давлениях прессования в цилиндрической пресс-форме.
Прессуемость порошка оценивается его способностью образовывать прессовку под воздействием на него давления. Эта характеристика дает качественную оценку свойств порошка, комплексно связанную с уплотняемостью и формуемостью.
Хорошая прессуемость облегчает и удешевляет процесс формирования порошка. Чем выше насыпная плотность порошка, тем лучше прессуемость.
3.3. Описание способа прессования
Цилиндрическую пресс-форму заполнить порошком определенной массы (m=8,5 г для всех последующих испытаний берется та же масса). Пресс-форма помещается на предметный столик, находящийся под пуансоном. Далее пуансон опускается на пресс-форму и крепко фиксируется рычагами сверху. Затем выбирается давление и выдерживается на пресс-форме около 5 секунд. После этого давление необходимо снять, отжав рычаг рядом с монометром. Поднять пуансон и достать пресс-форму. Снять с пресс-формы верхний клапан и поставить на его место цилиндр, для того чтобы прессовка не выпала из пресс-формы. Далее так же установить пресс-форму под пуансон и подавать давление до тех пор, пока прессовка (рисунок 4) не выйдет. После, измерить размеры прессовки (диаметр D и высоту H), записать в таблицу 3.
Измерения проводились 13 раз: 12 из них с повышением давления на шаг, равный 10, и один для определения порога прессования (при Р=8).

Рис.4. Форма прессовки
3.4. Результаты
Таблица 3. Размеры полученных прессовок
| № | Давление Р, дел. | Диаметр D,мм | Высота H, мм | Объем | F, кН | Pуд, МПа |
| 16,6 | 1876,46 | 5,45 | 0,047419 | |||
| 1582,56 | 11,95 | 0,103975 | ||||
| 12,11 | 12,41 | 1428,66 | 18,45 | 0,16053 | ||
| 11,56 | 1258,83 | 24,95 | 0,217085 | |||
| 12,14 | 11,43 | 1322,37 | 31,45 | 0,27364 | ||
| 11,35 | 1283,00 | 37,95 | 0,330196 | |||
| 12,11 | 11,29 | 1299,73 | 44,45 | 0,386751 | ||
| 12,18 | 10,35 | 1205,33 | 50,95 | 0,443306 | ||
| 12,24 | 10,28 | 1209,00 | 57,45 | 0,499861 | ||
| 12,16 | 10,05 | 1166,55 | 63,95 | 0,556417 | ||
| 12,12 | 10,10 | 1164,65 | 70,45 | 0,612972 | ||
| 12,15 | 10,22 | 1184,33 | 76,95 | 0,669527 | ||
| 8 (порог) | 12,10 | 16,14 | 4,15 | 0,036108 |
m (навески порошка ПЖРВ) = 8,5 г
Объем вычисляется по формуле 

Рис.5. Зависимость размеров прессовок от давления

Рис.6. Зависимость объема прессовки от давления
Для характеристики поведения порошков при прессовании используют коэффициент уплотнения k , равный отношению плотности прессовки при данном давлении P к насыпной плотности:
k = γ пр / γ нас.
Таблица 4. Расчет коэффициента уплотнения
| № | Давление Р, Па | Объем, см 3 | ρ, г/см 3 | коэффициент уплотнения k |
| 1(порог) | 1,855 | 4,58221 | 1,622021 | |
| 1,876 | 4,530917 | 1,603864 | ||
| 1,582 | 5,372946 | 1,901928 | ||
| 1,429 | 5,948216 | 2,105563 | ||
| 1,259 | 6,75139 | 2,389873 | ||
| 1,322 | 6,429652 | 2,275983 | ||
| 1,283 | 6,625097 | 2,345167 | ||
| 1,3 | 6,538462 | 2,3145 | ||
| 1,205 | 7,053942 | 2,496971 | ||
| 1,209 | 7,030604 | 2,488709 | ||
| 1,167 | 7,283633 | 2,578277 | ||
| 1,165 | 7,296137 | 2,582703 | ||
| 1,184 | 7,179054 | 2,541258 |

Рис.7. Зависимость коэффициента уплотнения от приложенного давления
Вывод : прессуемость порошков была проведена на гидравлическом прессе «Karl Zeiss Jena». После получения прессовок были замерены их размеры и вычислен объем. В соответствии с таблицей построен график зависимости объема прессовок от приложенного давления - с увеличением давления объем уменьшается.
Усадка прессовок
После проведения прессовки порошка, получившиеся прессовки подвергли спеканию на установке СНВЭ - 131 при температуре 1200 0 С, при Р=10 -2 Па, 1 час. Далее была вычислена усадка прессовок.
4.1. Оборудование и материалы
Прессовки порошка ПЖРВ (13 шт.). Штангенциркуль ШЦЦ-1-125.00 ПС, ГОСТ 166-89, погрешность измерения 0,03; весы ВЛА-200г-М, №608, погрешность от неравноплечности коромысла ≤2 гр.
4.2. Полученные результаты
Необходимо измерить размеры прессовок после спекания (таблица 5). Затем сравнить объемы до и после усадки (таблица 6), вычислив тем самым величину усадки.
Таблица 5. Размеры прессовок после спекания
| № | Диаметр D | Высота H | Объем |
| 12,08 | 16,48 | 1887,821 | |
| 12,10 | 14,05 | 1614,792 | |
| 12,10 | 12,42 | 1427,454 | |
| 12,13 | 11,81 | 1364,084 | |
| 12,15 | 11,26 | 1304,85 | |
| 12,14 | 11,2 | 1295,91 | |
| 12,11 | 11,17 | 1285,912 | |
| 12,12 | 10,41 | 1200,399 | |
| 12,16 | 10,18 | 1181,638 | |
| 12,19 | 10,10 | 1178,144 | |
| 12,14 | 10,01 | 1158,087 | |
| 12,13 | 10,07 | 1163,11 | |
| 13 (Р=8) | 12,10 | 16,10 | 1850,403 |
Таблица 6. Объемная усадка
| № | Объем до спекания | Объем после спекания | Объемная усадка, % |
| 1876,464 | 1887,821 | -0,605 | |
| 1582,56 | 1614,792 | -2,037 | |
| 1428,663 | 1427,454 | 0,0846 | |
| 1258,829 | 1364,084 | -2,361 | |
| 1322,371 | 1304,85 | 1,325 | |
| 1283,004 | 1295,91 | -0,935 | |
| 1299,726 | 1285,912 | 1,0628 | |
| 1205,326 | 1200,399 | 0,4088 | |
| 1208,998 | 1181,638 | 2,263 | |
| 1166,549 | 1178,144 | -0,994 | |
| 1164,652 | 1158,087 | 0,5637 | |
| 1184,331 | 1163,11 | 1,7918 | |
| 1850,403 | 0,2478 |
Таблица 7. Усадка за счет изменения высоты прессовок
| № | Н до спекания | Н после спекания | Линейная усадка, % |
| 16,6 | 16,48 | 0,7229 | |
| 14,05 | -0,357 | ||
| 12,41 | 12,42 | -0,081 | |
| 11,81 | 1,5833 | ||
| 11,43 | 11,26 | 1,4873 | |
| 11,35 | 11,2 | 1,3216 | |
| 11,29 | 11,17 | 1,0629 | |
| 10,35 | 10,41 | -0,58 | |
| 10,28 | 10,18 | 0,9728 | |
| 10,05 | 10,10 | -0,498 | |
| 10,10 | 10,01 | 0,8911 | |
| 10,22 | 10,07 | 1,4677 | |
| 16,14 | 16,10 | 0,2478 |

Рис.8. Зависимость усадки по объему и по высоте
Вывод : после проведения спекания размеры образцов изменились - диаметр увеличился, а высота соответственно уменьшилась. Построен график зависимости усадки по объему и по высоте - величина усадки монотонно уменьшается.
Под средней плотностью материалов понимают отношение массы образца в сухом состоянии к его объему. Для материалов, представляющих собой куски различной крупности (сыпучие материалы), применяют понятие насыпной плотности, представляющей собой отношение массы материала в насыпном состоянии к его объему.
Все основные свойства теплоизоляционных материалов связаны с их пористостью, но самую непосредственную связь с пористостью имеет средняя (насыпная) плотность. Знание этой характеристики позволяет судить о теплозащитных свойствах теплоизоляционного материала. По величине средней плотности теплоизоляционные материалы делят на марки: 15, 25, 35, 50, 75, 100, 125, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.
Маркой считают наибольшее значение средней плотности в пределах одного из вышеприведенных интервалов. Например, материал со средней плотностью 310 кг/м3 относят к марке 350, со средней плотностью 27 кг/мч - к марке 35 и т. п.
Все теплоизоляционные материалы можно разделить на три группы: жесткие (штучные теплоизоляционные материалы, выпускаемые в виде изделий определенной заданной формы), гибкие (в виде крупноразмерных матов, матрацев и т. п.) и рыхлые (минеральная и стеклянная вата, вспученные перлит и вермикулит, стекло - пор).
Методы определения средней (насыпной) плотности различных видов теплоизоляционных материалов в значительной мере отличаются друг от друга.
Определение средней плотности жестких теплоизоляционных материалов осуществляют измерением линейных размеров и взвешиванием самих изделий или измерением и взвешиванием образцов, выпиливаемых, высверливаемых или вырезаемых из различных частей изделий. При этом обычно образцы предварительно высушивают при температуре 105-110° С. Средняя плотность (кг/м3)
Где M - масса образца или изделия, кг; V -объем образца или изделия, м3.
При определении средней плотности изделия в естественно влажном состоянии применяют формулу
Где Wa - абсолютная влажность материала, по массе, %.
Размеры образцов и изделий находят с помощью металлического измерительного инструмента (линейки, штангенциркуля). Длину и ширину изделий измеряют не менее чем в трех местах - у краев и в середине, А
толщину в пяти-шести местах. Например, толщину фибролитовых плит измеряют в шести точках; на расСтоянии
100 мм от каждого
края и в двух местах по
Продольной осевой линии плиты. Измерение толщины может производиться штангенциркулем или специальным прибором - толщиномером (рис. 7). Толщиномер применяют^ для измерения толщины торфяных, жестких минераловатных и теплоизоляционных древесноволокнистых плит. Точность измерения толщины плит при использовании штангенциркуля и толщиномера составляет 0,1 мм, а при использовании линейки-1 мм.
Среднюю плотность партии материала вычисляют как среднюю арифметическую величину не менее, чем трех определений. При этом взвешивание образцов hpo - изводят с точностью до 0,1 г, а изделий - до 1 г.
Определение средней плотности гибких теплоизоляционных материалов ведут следующим образом. Из разных мест каждого из трех полотнищ войлока, отобранных для испытаний, вырезают по три образца размером 100 X 100 мм. Взвешенный с точностью до 0,01 г образец укладывают на основание специального прибора (рис. 8) . Пластинку 7 массой 0,5 кг подводят вплотную к пластинке 6 и закрепляют винтом 5. Затем пластинки 7 я 6 опускают вниз, не доводя нижнюю поверхность пластинки 7 на 1-2 см до поверхности образца, и закрепляют их винтом 4. Ослабив винт 5, опускают пластинку 7 на поверхность образца, оставляют ее в этом положении 5 мин, после чего с помощью стрелки I производят отсчет по шкале 2 и определяют толщину образцов войлока под давлением 0,0005 МПа. Подвижная пластина 3 используется и при других испытаниях минераловатных изделий.
Средняя плотность войлока (кг/м3)
Рср_ 7(1 +0,01 W)"
Средняя плотность партии войлока будет характеризоваться средней арифметической величиной девяти определений (девять образцов из трех изделий).
Средняя (насыпная) плотность рыхлых теплоизоляционных материалов волокнистого строения зависит от многих факторов. Например, на среднюю плотность минеральной ваты оказывает влияние толщина волокон, количество «корольков» (стекловидных невытянувших - ся в волокна включений шаровидной или грушевидной формы размером более 0,25 мм), степень уплотнения ваты. Для получения сравнимых результатов среднюю плотность волокнистых материалов определяют под постоянным давлением. Например, среднюю плотность минеральной ваты определяют в специальном приборе (рис. 9) под давлением 0,002 МПа. С этой целью берут пять навесок ваты по 0,5 кг каждая. Взвешивание производят с точностью до 1 г. Вата для каждой навески отбирается как средняя проба (из пяти упаковочных мест отбирают по 0,5 кг ваты).
Навеску ваты слоями укладывают в металлический цилиндр 1. Сверху на вату с помощью подъемного устройства 4 опускают металлический диск 2 массой 7 кг, что соответствует давлению на вату 0,002 МПа. Под нагрузкой вату выдерживают 5 мин и затем определяют высоту слоя ваты с помощью шкалы, нанесенной на стержне 3. Вычисляют объем ваты и, зная ее
Материал в сосуд засыпают с высоты 5 см с помощью воронки или лотка до образования конуса. Избыток материала снимают металлической линейкой без уплотнения. Сосуд, масса которого известна, с материалом взвешивают с точностью до 1 г и по известной формуле определяют насыпную плотность материала.
Среднюю плотность кусков (зерен) рыхлого теплоизоляционного материала (например, перлитового щебня, керамзитового гравия и т. п.) определяют с помощью песочных объемомеров или погружением в мерные цилиндры, заполненные водой.
При использовании песочного объемомера (рис. 10) зерно испытуемого материала помещают внутрь прибора. Объем зерна будет равен разности между уровнями песка в приборе с образцом и без него.
Более точно объем куска (зерна) материала можно измерить при погружении его в воду, т. е. по объему вытесненной им воды. С этой целью высушенный ДО постоянной массы и предварительно взвешенный с точностью до 0,1 г образец парафинируют (покрывают тонким слоем расплавленного парафина), а затем погружают в воду, находящуюся в мерном цилиндре. Как правило, средняя плотность кусков пористых материалов ниже плотности воды, поэтому полное погружение образца достигается с помощью металлического диска, объем которого известен. Объем образца вычисляют по количеству вытесненной им воды. При этом учитывают объем металлического диска и парафина. Объем парафина
Где т - масса парафина, нанесенного на образец, г; 0,93 - плотность парафина, г/см3.
Зная объе. м образца и его массу, подсчитывают среднюю плотность данного куска. Для определения средней плотности «в куске» партии материала производят несколько десятков определений и вычисляют среднюю арифметическую величину.
Определение средней плотности текучих формовочных масс (растворных смесей, пеномасс, шликеров) осуществляют для контроля технологических процессов при тех или иных теплоизоляционных материалов. Это, например, требуется при изготовлении изделий из ячеистых , из пенокерамических или Известково-кремнеземистых масс, и т. п.
Среднюю плотность смесей, находящихся в жидко - текучем состоянии, определяют в цилиндрическом сосуде емкостью 1 л. Сосуд наполняют испытуемой смесью, избыток смеси срезают шпателем или металлической линейкой и взвешивают сосуд с массой с точностью до 1 г. Вычитая из общей массы массу" сосуда, узнают массу смеси. Плотность смеси вычисляют как среднее арифметическое по результатам двух измерений.
Если испытывают смесь с малой подвижностью (до 6 см), то ее уплотняют на вибростоле в течение 30 с Или на встряхивающем столике, производя 120 ударов (встряхиваний). В этом случае на сосуд сверху надевают специальную насадку, позволяющую заполнять мерный сосуд с некоторым избытком. После уплотнения насадка снимается, а избыток смеси удаляется метал» лической линейкой.
Определение средней плотности мастичных материалов. Отобранную пробу материала затворяют водой до нормальной (рабочей) консистенции, которую определяют с помощью стандартного конуса. Нормальная консистенция раствора соответствует глубине погружения конуса на 100+10 мм. Затем в специальные формы, предварительно очищенные и смазанные, размером 200 X 50 X 25 мм укладывают испытуемую смесь, уплотняя ее в углах формы кончиком ножа и заглаживая поверхность ножом или шпателем заподлицо с бортами формы.
Заполненные формы помещают в сушильный шкаф, где образцы высушивают до постоянной массы, затем Их вынимают из форм и отшлифовывают.
Полученные образцы измеряют с точностью до 0,1 мм, взвешивают с точностью до 0,1 г и вычисляют среднюю плотность, кг/м3,
Насыпная плотность
- свободно насыпанного порошка, зависящая от гранулометрического состава и формы частиц. Насыпную плотность порошка определяют прибором - волюмометром, засыпав порошок в мерную колбу объемом 25 см 3 с последующим взвешиванием и расчетом по формуле: γ нас = (M 2 -M 1)/V
где M 1 - мерной колбы; M 2 - масса мерной колбы с порошком; - мерной колбы.
Насыпную плотность порошка учитывают при расчете объема полости матрицы для прессования;
Смотри также:
-
-
-
-
-
-
-
-
-
Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .
Смотреть что такое "насыпная плотность" в других словарях:
насыпная плотность - Определенная масса сухого сыпучего материала в единице объема, измеренная в условиях свободного неслежавшегося состояния сухого сыпучего груза. [ГОСТ Р 52202 2004 (ИСО 830 99)] Тематики контейнеры грузовые Обобщающие термины контейнеры для… …
насыпная плотность - 3.3 насыпная плотность: Масса единицы объема материала с порами и пустотами. Источник: ГОСТ 10832 2009: Песок и щебень перлитовые вспученные. Технические условия оригинал документа … Словарь-справочник терминов нормативно-технической документации
насыпная плотность - piltinis tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Laisvai supiltos birios medžiagos vienetinio tūrio masė. Matavimo vienetas: kg/m³. atitikmenys: angl. apparent density; bulk density; packed density vok. Schüttdichte, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
насыпная плотность - piltinis tankis statusas T sritis chemija apibrėžtis Laisvai supiltos birios medžiagos vienetinio tūrio masė (kg/m³). atitikmenys: angl. bulk density rus. насыпная плотность … Chemijos terminų aiškinamasis žodynas
насыпная плотность угля - Ндп. насыпная масса угля Отношение массы свеженасыпанного угля к его объему, включая объем пор и трещин внутри зерен и кусков, а также объем пустот между ними, определяемому в установленных условиях заполнения емкости. [ГОСТ 17070 87]… … Справочник технического переводчика
насыпная плотность минерального удобрения - Отношение массы минерального удобрения к его объему. Примечание Насыпная плотность минерального удобрения может быть с уплотнением и без уплотнения. [ГОСТ 20432 83] Тематики удобрения Обобщающие термины качество минеральных удобрений … Справочник технического переводчика
насыпная плотность огнеупорного сырья [неформованного огнеупора] - Отношение массы огнеупорного сырья [неформованного огнеупора] к его объему, выраженное в граммах на кубический сантиметр. Примечание Различают насыпную плотность свободно насыпанного или после утряски огнеупорного сырья [неформованного огнеупора] … Справочник технического переводчика
Насыпная плотность огнеупорного сырья - [неформованного огнеупора] – отношение массы огнеупорного сырья [неформованного огнеупора] к его объему, выраженное в граммах на кубический сантиметр. Примечание. Различают насыпную плотность свободно насыпанного или после утряски… … Энциклопедия терминов, определений и пояснений строительных материалов
насыпная плотность измельченной древесины - Отношение массы измельченной древесины к ее объему. [ГОСТ 23246 78] Тематики древесина измельченная … Справочник технического переводчика
насыпная плотность смеси - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN mixture bulk density … Справочник технического переводчика
Насыпная плотность определяется для сыпучих материалов по той же формуле, что и средняя. Испытание проводят с помощью стандартной металлической воронки в виде усеченного конуса. Внизу воронки имеется задвижка. Под воронкой устанавливают мерный стакан. В воронку насыпают материал, открывают задвижку и заполняют мерный стакан до краев, срезают излишек с помощью линейки. Мерный стакан взвешивают пустым и наполненным. Опыт повторяют пять раз.
Насыпную плотность для каждого опыта определяют по формуле:
где m – масса образца, г
Vст – объем мерного стакана, см 3
Результаты вычислений записывают в табл.7
Таблица 7. Насыпная плотность ________________________________
(указать наименование материала)
Определение истинной плотности
Подготовка к испытанию
Из пробы песка берут навеску около 30 г, просеивают ее через сито с отверстиями диаметром 5 мм. Высушенный песок перемешивают и делят на две части.
Навеску всыпают в чистый высушенный и предварительно взвешенный пикнометр (прибор Ле Шателье) (рис.1), после чего взвешивают его вместе с песком. Затем наливают в пикнометр прокипяченную воду в таком количестве, чтобы пикнометр был заполнен примерно на 2 / 3 его объема, перемешивают содержимое и ставят его в слегка наклонном положении на водяную баню. Содержимое пикнометра кипятят в течение 15-20 мин для удаления пузырьков воздуха.
Истинную плотность песка в г/см 3 вычисляют по формуле:

где т - масса пикнометра с песком, г;
т 1 - масса пустого пикнометра, г;
т 2 - масса пикнометра с водой, г;
т 3 - масса пикнометра с песком и водой после удаления пузырьков воздуха, г;
r в - плотность воды, равная 1 г/см 3 .
Рис.1 Прибор Ле Шателье
| Ед.изм | Значение | |
| m | ||
| m1 | ||
| m2 | ||
| m3 | ||
| r |
Определение пористости и пустотности
Пористость твердых материалов и пустотность (объем межзерновых пустот в сыпучих материалах в неуплотненном состоянии) определяют на основании значений истинной плотности и средней или насыпной плотности материала, предварительно установленных.
Пористость (П) и пустотность (V м.п) в процентах по объему вычисляют по формуле
![]()
где - истинная плотность, г/см 3 ;
Средняя или насыпная плотность, кг/м 3 .
Определение влажности
Влажность определяют путем сравнения массы материала в состоянии естественной влажности и после высушивания.
Материал (изделие) взвешивают, помещают в сушильный шкаф и высушивают до постоянной массы при температуре 105 о С.
Влажность (W ) в процентах вычисляют по формуле
![]()
где т - масса навески в состоянии естественной влажности, г
т 1 - масса навески в сухом состоянии, г.
Результаты испытаний заносят в табл.8
Таблица 8. Пористость (пустотность) и влажность материалов
Для сыпучих материалов (цемент, песок, щебень, гравий и др.) определяют насыпную плотность. В объеме таких материалов имеются не только поры в самом материале, но и пустоты между зернами или кусками материала. Это определение выполняют с помощью прибора (рис 1.5), который представляет собой стандартную воронку в виде усеченного конуса. Внизу конус переходит в трубку диаметром 20 мм с задвижкой. Под трубкой устанавливают заранее взвешенный мерный цилиндр объемом 1 литр (1000 см 3). Расстояние между верхним обрезом цилиндра и задвижкой должно быть не более 50 мм.
В воронку насыпают сухой исследуемый материал , затем открывают задвижку и заполняют цилиндр с избытком, закрывают задвижку и металлической или деревянной линейкой срезают от середины в обе стороны излишек материала вровень с краями цилиндра. При этом линейку держат наклонно, плотно прижимая к краям цилиндра. Необходимо, чтобы цилиндр был неподвижным, так как при толчках сыпучий материал может уплотниться, что увеличит его среднюю плотность. Затем цилиндр взвешивают с точностью до 1 г. Испытание повторяют пять раз и среднюю плотность материала в рыхлонасыпанном состоянии r н , кг/м 3 , вычисляют как среднее арифметическое пяти определений по формуле:
ρ н = (m 1 - m 2)/V, (1.9)
где: m 1 - масса цилиндра с материалом, кг; m 2 - масса цилиндра без материала, кг; V - объем цилиндра, м 3 .
Рис. 1.5. Стандартная воронка
1 - корпус; 2 - трубка; 3 - задвижка; 4 - мерный цилиндр
При транспортировании и хранении сыпучие материалы уплотняются, при этом значение их насыпной плотности оказывается на 15-30% выше, чем в рыхлонасыпном состоянии. Определяют насыпную плотность материала в уплотненном состоянии по приведенной выше методике, однако после заполнения цилиндра его уплотняют путем вибрации в течение 30-60 с на виброплощадке или путем легкого постукивания цилиндра с материалом о стол 30 раз. В процессе уплотнения материал досыпают, поддерживая некоторый избыток его в цилиндре. Затем избыток срезают и определяют массу материала в цилиндре, после чего вычисляют насыпную плотность в уплотненном состоянии.
Для влажного материала насыпная плотность вычисляется по формуле
ρ w н = ρ н (W + 1), (1.10)
где: W - влажность материала, отн.ед.
Вопрос: Всегда ли верна эта формула?
Да, если увлажнение не приводит к изменению объема материала (это учитывается при выводе формулы (1.10)). Но для тонкодисперсного материала (к нему не относится песок, т.к. его мелкая фракция должна быть не менее 0,14 мм) при увлажнении вначале это условие будет выполняться, а затем объем будет увеличиваться вследствие раздвижки зерен адсорбированной водой. При этом будет происходить уменьшение ρ w н с ростом W (т.к. плотность воды меньше песка).
Вывод формулы (1.10).
1. Влажность материала: W = (m вл. – m)/m , где: m вл. – масса влажного материала, г; m – масса сухого материала, г.
Отсюда находим m вл. = m (1 + W) .
По определению ρ w н = m вл. /V , где V – объем влажного сыпучего материала (здесь негласно принимается, что объемы сухого и влажного сыпучего материала равны!).
После подстановки имеем: ρ w н = m вл. /V = m(1 + W)/V = ρ н (1 + W).
