Большепролетные здания. Строительные конструкции. Двухстенчатые сечения поясов ферм. Сечения стержней арки могут быть одностенчатыми или двухстенчатыми. Рамы и арки являются статически неопределимыми системами Большепролетные пространственные конструкции

Атриум одного из американских отелей, принадлежащих «Gaylord Hotels

будущее проистекает из настоящего
и определяется той дорогой, которой мы сегодня отдаём своё предпочтение

Большепролетные светопрозрачные конструкции становятся неотъемлемой частью городской архитектуры ХХI века. Лучшие зодчие сегодня все чаще создают удивительные комплексы зданий, центром притяжения в которых, неким пространственным ядром, являются большие атриумные пространства – объемные, наполненные светом и комфортом, хорошо защищенные от негативных внешних воздействий и накрытые надежными светопрозрачными покрытиями.
Дальнейшее активное развитие таких сооружений, вероятно, способно в недалеком будущем не только максимально расширить комфортное и безопасное пространство среды обитания человека, но также позволит в перспективе изменить облик наших городов и улучшить их сегодняшнее состояние.

Зодчество эпохи глобализации

Во все времена своей истории люди стремились оградить и защитить себя от многочисленных неблагоприятных и опасных воздействий со стороны среды своего обитания. Жара и холод, дождь и ветер, хищные животные и дикие люди всегда составляли известную проблему для спокойной жизни человека. Поэтому издревле наши предки начали строить для себя укрытия, которые, создавая защищенную от внешних воздействий искусственную среду, привносили в их жизнь больше желанного комфорта и безопасности. А возникшая архитектура, как удивительный и превосходный инструмент этих созидательных действий человека, с самого своего зарождения и на всех этапах развития, старалась максимально использовать имеющиеся технические возможности и существующие эстетические воззрения в обществе для лучшего удовлетворения этих важных человеческих потребностей: и в комфорте, и в безопасности.

Сегодня наступила эпоха невиданного развития технологий, и в строительной сфере это сделало возможным реализацию практически любых, самых смелых архитектурных идей. В связи с этим, основными факторами, ограничивающими воплощение в жизнь всех значимых проектов современных архитекторов, сегодня чаще является уже не отсутствие технических возможностей для строительства большого и сложного объекта, но лишь некоторые наши субъективные представления о нем, такие как: недостаточная польза будущего сооружения, его малая востребованность и низкая рентабельность, либо слишком продолжительное время будущего строительства и высокая цена реализации. Одновременно, с начинающимся бумом внедрения во всем мире принципов «устойчивого развития» и «зеленого строительства», наличие фактора экоустойчивости зданий также приобретает для их строительства всё больший вес.

С открывшимися широкими техническими возможностями для развития архитектуры XXI века, современные зодчие в своей работе, думается, должны начинать в большей мере учитывать то существенное воздействие, которое оказывают их проекты на развитие городской среды. Очевидно, что современные мегаполисы, став заложниками прошлого пути своего развития, и продолжающегося подхода к их застройке, постепенно все больше превращаются в многофакторную проблему для спокойствия и безопасности своих жителей.

Вступив в эпоху глобализации, наш мир сильно изменился за последние годы, и сегодня уже вряд ли можно найти разумные оправдания для продолжающегося формирования скученного проживания людей в отдельных точках пространства. Наше общество начинает понимать губительность этого процесса, но городская архитектура, к сожалению, все еще продолжает идти по пути создания высотных проектов и уплотнения городской застройки, провоцируя тем самым ещё большую концентрацию населения в отдельных точках уже и так излишне перенаселённого пространства.

Вместе с тем, обладая современными технологиями и используя свое колоссальное воздействие на жизнь общества, архитектура ХХI века может не только максимально расширить комфортное и безопасное пространство среды обитания человека, но также способна и должна попытаться шаг за шагом кардинально изменить облик наших городов и улучшить их сегодняшнее состояние. Кроме того, Архитектура, как непревзойденная повелительница пространства, времени и воображения многих людей, обязательно будет всё активнее способствовать возникновению принципиально новых экогородов и экопоселений.

Город под куполом

Мечта о светопрозрачных покрытиях, защищающих улицы и городские кварталы от дождя и снега, зародилась у людей очень давно. Но только с приходом промышленной революции, принесшей широкие технические и финансовые возможности, реализация подобных проектов становится осуществима. Лишь за период второй половины ХIХ века, большие крытые стеклом пассажи-галереи с рядами дорогих магазинов и уютных кафе появились в большинстве главных городов Европы и Америки. А одной из самых первых заметных жемчужин, того периода развития больших остекленных атриумных пространств является знаменитая Галерея Виктора Эммануила II в Милане, открытая для посетителей ещё в 1877 году.

Рис.2. Галерея Виктора Эммануила II в Милане.

Так как прогресс остановить невозможно, то активно участвовать в нем, а не оставаться на задворках истории – задача всех великих стран. Именно поэтому, со второй половины ХХ века строительная наука в СССР, США и некоторых других странах уже серьезно работала над возможностью обеспечить защиту своих городов большими светопрозрачными куполами от: нежелательных явлений погоды, негативных особенностей местного климата, излишнего уровня солнечного излучения и других, неблагоприятных для человека воздействий внешней среды. За последние годы к списку факторов стимулирующих дальнейшие исследования в этом направлении, можно добавить: быстрые и непредсказуемые изменения климата на планете, угрожающее увеличение загрязнения окружающей среды, возрастающие угрозы экстремизма, а также желание людей снизить чрезвычайно высокую энергозатратность жизнедеятельности своих городов.

Сегодня создание большепролетных светопрозрачных защитных сооружений (далее БСЗС), в которых много естественного света и комфорта, активизировалось как никогда ранее. Появляются новые идеи и создаются разнообразные уникальные проекты - такие, например, как «Купол над Хьюстоном» - , а некоторые из этих удивительных проектов уже реализуются. Так, в Астане, при помощи английских инженеров и турецких строителей, построен 100-метровый (без учета высоты шпиля) светопрозрачный шатер, в котором разместился самый большой и презентабельный в Казахстане торгово-развлекательный центр.

Еще более удивительное и грандиозное сооружение создали в Германии - это центр водных развлечений «Тропические острова» , который имеет внутренний объем около 5,5 млн. куб. м и по праву является на сегодня самой большой по этому показателю светопрозрачной постройкой в мире.


Рис.3-5. Центр водных развлечений «Tropical Islands» в Германии

Важным этапом на пути развития объемных светопрозрачных сооружений явилось научное обоснование возможности их ощутимой эффективности - и в экономичности энергопотребления, и в значительном сокращении теплопотерь, при одновременном существенном расширении вновь создаваемого удобного и востребованного общественного пространства.

Заслуга в этом обосновании принадлежит английским и американским архитекторам и ученым, но, в первую очередь, можно выделить работы Терри Фаррелла и Рольфа Лебенса, которые на границе 70-80-х годов ХХ века создали концепцию «буферного мышления». Результатом этой концепции стало активное внедрение в мировую архитектурную практику "буферного эффекта" или "принципа двойного ограждения".

При исследовании вопроса, возможности создания эффективных больших атриумных пространств, были выделены согревающий, охлаждающий и трансформируемый типы атриумов. С той поры прошло лишь немногим более 30 лет, но даже за этот небольшой период времени современные атриумные пространства завоевали весь цивилизованный архитектурный мир (фото американских атриумов, приведённые в этой статье – малая толика имеющегося множества и многообразия построенных за эти годы атриумных пространств). К сожалению, современная Россия, в этом смысле, пока не имеет больших достижений.

Соглашаясь с имеющимися доводами специалистов, по целесообразности применения в современной архитектуре больших атриумных пространств, и не пытаясь оспаривать их выводы, автор статьи далее предлагает рассмотреть возможность того, как, с помощью многопоясных тросовых конструкций, создавать (перекрывать) такие пространства дешевле и надёжнее, а также особо не ограничиваться размерами атриумов, внедрив новую технологию перекрытия больших пролетов. Думается, что в условиях России, даже лишь создание самого простого второго ограждения (буферного пространства) вокруг городских кварталов позволит благоразумно использовать те многочисленные теплопотери накрываемых зданий, которые не будут безвозвратно растворятся в окружающем пространстве, а обеспечат обогрев образовавшихся атриумных пространств. Только за счет качественного светопрозрачного защитного покрытия, температура в таких атриумных пространствах в зимний период может быть на 10-15 градусов выше уличной.

В летний период, кроме разумного регулируемого частичного затенения внутреннего пространства, от излишнего солнечного излучения и перегрева, можно предусмотреть раскрытие вентиляционных проемов в светопрозрачном покрытии, а так же осуществлять другие - известные и эффективные методы создания комфортного микроклимата внутри всего светопрозрачного комплекса. Очевидно, что создание комфортного и стабильного микроклимата в одном большом замкнутом пространстве будет осуществить намного проще и дешевле, чем обеспечить такие же комфортные условия одновременно в тысячах небольших помещений.
Сама природа объемных светопрозрачных сооружений располагает к тому, чтобы мы отбросили некоторые стереотипы своего мышления, на решение подобных задач, и взглянули заново на возможность создания комфортной среды в новых условиях больших объемных пространств. При этом уже есть новые эффективные технические решения, использующие важные преимущества больших пространств и позволяющие обеспечить стабильные комфортные условия для всего внутреннего пространства БСЗС при значительно меньших энергетических затратах.

Между тем, возможности применения многопоясных тросовых покрытий, видятся, шире. Так процесс строительства экогородов, который пока еще только зарождается и робко заявляет о себе, так же нельзя представить без большепролетных светопрозрачных сооружений. Хочется думать, что ХХI век, оценив новую большепролетную светопрозрачную архитектуру, будет активно её развивать и совершенствовать, а также постарается с её помощью быстрее совершить прорыв в градостроительстве, заменив унылые, энергонеэффективные и небезопасные каменные джунгли современных мегаполисов на удобные, комфортные и экологичные города.

Рис. 6-11 Masdar City (иллюстрации Foster + Partners).

Самым амбициозным и помпезным проектом экогорода сегодня можно назвать Masdar City . Вероятно, это первая по-настоящему серьезная попытка комплексного подхода к организации города будущего - обеспечиваемого энергией из возобновляемых источников (солнце, ветер и др) и имеющего устойчивую экологическую среду с минимальными выбросами углекислого газа в атмосферу, а также системой полной переработки отходов городской деятельности.
К сожалению, место для строительства Masdar City, выбрано не самое удачное и будущим жителям и эксплуатирующим организациям еще придется ощутить на себе некоторые неудобства месторасположения этого уголка пустыни. Так очевидно, что заложенные в проект города технические решения не смогут в полной мере справиться с 50-ти градусной летней жарой (исключение составят замкнутые пространства, в том числе все атриумы). Периоды дождей в декабре-январе, а позже сезон сильных туманов также не смогут быть комфортны для жителей нового города. А если мы вспомним о довольно частых зимне-весенних песчаных бурях в той части пустыни, то поймем, что без большепролетных светопрозрачных покрытий, накрывающих и защищающих городские кварталы от этих местных природных явлений, городским жителям периодически придется испытывать определенные неудобства.
Предлагаемая ниже концепция строительства большепролетных светопрозрачных сооружений хорошо вписывается в проекты подобные Masdar City и, думается, что вполне способна помочь таким проектам сэкономить средства как на строительстве, так и на эксплуатации современных городов. А также сделать эти города защищеннее и комфортнее.

Рис.6-11. Таким можно видеть будущий Masdar City на красочных рекламных проспектах и журнальных иллюстрациях (иллюстрации Foster + Partners).


В 2012 году российскими инженерами была разработана технически доступная сегодня и эффективная в реализации концепция перекрытия больших пролетов, позволяющая обеспечить строительство разнообразных большепролетных зданий и сооружений . Идея заключается в создании над комплексом зданий многопоясного тросового покрытия, которое, перекрывая большие пролеты между опорными зданиями, сможет нести любую расчетную нагрузку и создаст для всего комплекса единое прочное и надёжное светопрозрачное покрытие. Покрытие обеспечит возможность поддержания в замкнутом внутреннем пространстве такого объекта постоянных и комфортных для человека параметров: температуры, влажности, подвижности и чистоты воздуха, освещенности, безопасности и др.
В основу идеи многопоясных тросовых систем заложены известные принципы висячих конструкций, которые уже более полувека широко применяются в мире для строительства большепролетных зданий и сооружений. Но более широкого распространения в большепролетном строительстве висячие конструкции не получили из-за некоторых своих недостатков. Так большепролетные здания с висячими конструкциями покрытий, как правило, не могут обеспечить уклон кровли наружу здания, что создаёт дополнительные трудности с отводом атмосферных осадков с покрытия. Кроме этого, создавая очень значительные горизонтальные нагрузки в высоких опорах, вантовые конструкции вынуждают строителей решать эту проблему дополнительными финансовыми вложениями в мощные контрфорсы для этих нагрузок. Но самым основным недостатком висячих конструкций является их большая деформативность под действием местных нагрузок.

Многопоясным тросовым системам удалось преодолеть перечисленные недостатки большепролетных вантовых покрытий и даже создать возможность для успешного перекрытия гораздо больших пролетов, что сегодня может дать новый импульс в развитие большепролетного строительства.

Известно, что перекрытие больших пролетов во все времена развития нашей цивилизации интересовало и привлекало внимание не только архитекторов и строителей, но и обычных людей. Создание величественных сооружений с большепролетными пространствами всегда являлось показателем передового развития инженерного искусства, а также технического и финансового могущества стран, способных построить такие сооружения.


Что такое многопоясное тросовое покрытие и как оно работает?

Чтобы понять, как работает многопоясное тросовое покрытие надо представить конструкцию любого известного большепролётного покрытия, которым перекрыли пролёт между двумя опорными зданиями. (например, пространственную перекрёстно-стержневую плиту). Если пролёт достаточно большой, то это покрытие под собственным весом неизбежно прогнётся, а при воздействии на него дополнительных внешних нагрузок (от снега, ветра и др) может разрушиться. Но, чтобы этого не произошло и большепролётное покрытие не обрушилось, мы натягиваем под ним высокопрочные стальные тросы в несколько рядов (поясов), от одного опорного здания до другого, выполняем их натяжение и устанавливаем (через определённые расстояния по длине тросов) между поясами образовавшейся тросовой системы, распорные стойки, а между соседними тросами во всех поясах тросовой системы – распорки и/или растяжки. Многопоясность помогает добиться того, что на любой длине пролета тросовая система является двояковыпуклой и подпирает собой снизу рассматриваемое прогнувшееся покрытие.

При этом, в покрытии, за счёт натяжения тросов и работы распорных стоек, не только исчезнет образовавшийся прогиб, но и возникнет прогиб с обратным знаком – вверх. Это позволяет покрытию не только не разрушится под воздействием на него предельных нагрузок, но, напротив, будет способствовать возможности восприятия им значительных дополнительных нагрузок, в соответствие тем расчётными характеристиками тросовой системы, которые ей будут заданы проектом.
Специалистам понятно, что система преднапряжённых тросовых конструкций, несущих жёсткое, прочное и устойчивое покрытие, невозможна без мощных опорных элементов (воспринимающих горизонтальные составляющие от распора тросовой системы), а также стабилизирующей системы, воспринимающей все временные нагрузки на покрытие, в том числе отрицательное давление ветра. Поэтому предлагаемая концепция строительства БСЗС учитывает все необходимые для этих сооружений условия.
Так, чтобы придать многопоясному тросовому покрытию неизменяемость под действием временных нагрузок, дополнительно предусмотрено, с помощью оттяжек, догрузить покрытие на расчетную величину. При этом, оттяжки покрытия крепятся к фундаментам опорных зданий, что позволяет избежать увеличения нагрузки на эти фундаменты от дополнительного веса большепролетного покрытия, вызванного натяжением оттяжек.

В результате совместной работы многопоясной тросовой системы и расположенного на ней остекленного рамного покрытия образовалось единое, легкое и надёжное большепролётное светопрозрачное тросовое покрытие, которое уже сегодня способно перекрывать пролёты в 200-350 и более метров.
Понятно, что кровельное покрытие, основой для которого являются большепролетные многопоясные тросовые системы, по желанию, можно выполнить из любого гидро-теплоизоляционного материала,в том числе и светопрозрачного. Например, в условиях низких температур окружающего воздуха, лучшим на сегодня светопрозрачным материалом являются многокамерные стектопакеты.

Преимущества многопоясных тросовых систем перед известными сегодня техническими решениями, применяющимися при перекрытии больших пролетов, очевидны. Это очень значительная прочность и надежность таких систем, превосходная несущая способность, легкость конструкций, возможность перекрывать существенно бОльшие пролеты, лучшая светопропускная способность покрытия, в несколько раз меньшая металлоемкость конструкций и, как следствие, относительно невысокая стоимость всего покрытия.

Применение многопоясных тросовых систем.

Надо отметить, что технология перекрытия больших и сверхбольших пролетов с помощью многопоясных тросовых систем позволит строить самые разнообразные по объему, форме и назначению сооружения. Это могут быть: самые большие по размерам ангары и производственные цеха, крытые легкоатлетические и футбольные стадионы, большепролетные общественные пространства, развлекательные и торговые центры, жилые кварталы под светопрозрачной оболочкой, большие стеклянные пирамиды и купола (в которых можно размещать самые разнообразные многофункциональные комплексы объектов недвижимости или корпоративные центры). Многопоясные тросовые системы также могут пригодиться в строительстве большепролетных висячих мостов нового дизайна, особенно в тех местах, где строительство других типов мостов невозможно, либо слишком дорого .


Рис.12. Светопрозрачное сооружение в виде ПИРАМИДЫ высотой 200м.

Представляется, что строительство большепролетных светопрозрачных комплексов должно развиваться как квартальная застройка. А одним из самых эффектных и оптимальным первоначальным вариантом для такой функциональной застройки может послужить, например, форма светопрозрачного квартала в виде правильной четырёхугольной ПИРАМИДЫ (рис. 11) со следующими параметрами:

  • высота пирамиды – 200 м;
  • размеры основания - 300х300 м;
  • площадь основания (территория, защищаемая светопрозрачными покрытиями) – 9,0 Га;
  • площадь ограждающих конструкций - 150 000 м 2 ;
  • геометрический объём пирамиды (П200) - 6,0 миллионов кубических метров.

В таком застекленном квартале, чтобы не перенаселять внутреннее пространство комплекса, разумно иметь лишь 320-450 тыс.кв.м полезных площадей (надземных), занятых под коммерческую и/или жилую недвижимость и расположенных, в основном, в опорных зданиях этого светопрозрачного комплекса. Остальной объем сооружения (более 4,0 млн.куб.м) – это многофункциональные атриумы.

Для сравнения, при увеличении высоты такой пирамиды П200 (геометрически идеальная пирамида имеет соотношения 3:4:5) всего на 50 метров, параметры П250 составят: основание – 375х375 м; Sосн = 14,1 га, Sостекл = 235,0 тыс.кв.м. Произойдёт почти двукратное увеличение внутреннего объёма светопрозрачного сооружения, который в этом случае будет равен - 11,7 млн. куб м., а количество площадей занятых под коммерческую недвижимость может возрасти до 0,8 - 1,0 млн. квадратных метров. При этом, что является особенно привлекательным, площадь ограждающих конструкций пирамиды П250 будет почти вдвое! меньше суммарной площади ограждающих конструкций внутренних опорных зданий. Для специалистов должна быть понятна важность этого соотношения.
При дальнейшем увеличении внутреннего объема БСЗС и придания ему куполообразной формы, уменьшение коэффициента соотношения площади ограждающих конструкций светопрозрачного комплекса, к сумме всех полезных площадей внутренних помещений (как и к сумме площадей ограждающих конструкций внутренних зданий), будет изменяться в очень приятной глазу прогрессии, т.е. процесс такого строительства будет становиться экономически всё более привлекательным!

Спортивные центры со светопрозрачным покрытием.
Другим перспективным направлением применения многопоясных тросовых светопрозрачных покрытий, сегодня видится строительство крытых футбольных стадионов и других большепролетных спортивных сооружений. С каждым годом спрос на крытые спортивные стадионы в мире возрастает (например, уже не только европейцы и североамериканцы строят для себя большие крытые стадионы, но и менее богатые страны, такие как Аргентина и Казахстан недавно построили такие сооружения, а Филиппины сегодня возводят, как уверяют, самый большой крытый стадион в мире). В преддверии подготовки к футбольному чемпионату 2018 года востребованность подобных объектов может наметиться и в России.

Уникальность и высокая стоимость ныне существующих большепролётных спортивных сооружений (с пролетом 120-150 м и более) состоит том, что каждое такое сооружение выполняется на максимуме возможностей строительной индустрии места своего строительства, сопряжено с многочисленными сложными и точными расчётами несущих конструкций, повышенной ответственностью и значительной материалоёмкостью реализуемых решений. Недостатки перекрытий всех этих большепролетных сооружений одни и те же: они сложны, громоздки, металлоёмки, и поэтому нерациональны и чрезвычайно дороги. Кроме этого, из-за мощных несущих металлоконструкций покрытия, инсоляция всех крытых стадионов сегодня чрезвычайно низка, что сильно затрудняет поддержание натурального травяного покрытия современных спортивных арен в надлежащем состоянии.

Рис.13.Футбольный стадион в Польше. На ЕВРО-2012.
Рис.14. Стадион Уэмбли – самый знаменитый стадион Англии

Думается, что применение светопрозрачных многопоясных тросовых покрытий должно кардинально изменить такое неблагоприятное положение дел при строительстве большепролётных спортивных объектов (на эскизах Рис.15-19 показан один из возможных вариантов для строительства относительно недорогого крытого многофункционального спорткомплекса).




Рис. 15-18 эскизные решения большого крытого стадиона.
.
1 и 2 – здания, служашие опорными конструкциями для светопрозрачного покрытия;
4 – многопоясные тросовые системы;
10 – оттяжки-пригрузы;
11 – 3-х поясное тросовое светопрозрачное покрытие;
18 и 19 – зрительские трибуны;
21 – самонесущие светопрозрачные конструкции


Рис. 19. Разрез 3-х поясного тросового светопрозрачного покрытия (см. обознач 4 и 11, на рис. 17)

5 - высокопрочный металический трос;
6 - пояс тросового покрытия;
7 - распорная стойка;
8 - горизонтальная распорка-растяжка:
12 - светопрозрачное элементы покрытия;
13 - рамная конструкция светопрозрачного покрытия.

Многопоясные тросовые системы (4) (перекрывающие пролет между опорами (1 и 2) наклонены наружу сооружения за счет разницы высот опорных зданий и являются основанием для размещения поверх них раздвижного светопрозрачного покрытия (11), выполненного из рамных конструкций (13) и светопрозрачных элементов (12) .
Многопоясность тросовой системы, оттяжки (10) и др специальные технические решения обеспечат тросовому покрытию необходимую жесткость и устойчивость к восприятию всех расчётных нагрузок.
Между опорными зданиями (1 и 2), по контуру наружных стен стадиона, предусмотрены самонесущие светопрозрачные конструкции (21), которые делают контур наружных стен замкнутым.
Применение многопоясных тросовых покрытий, сможет обеспечить всем новым стадионам самую простую, надежную и относительно недорогую конструкцию светопрозрачного покрытия, одновременно, обеспечивающую лучшую инсоляцию арены, чем на всех построенных до сего дня крытых стадионах.

Возведение большепролетных многопоясных тросовых светопрозразных покрытий сегодня не является сверхсложной задачей, так как в строительной практике существует многолетний опыт применения большепролетных вантовых покрытий, которые, в основном, используют теже самые технические решения, материалы, изделия и оборудование, и тех же самых технических специалистов.

Большой и красивый, крытый и комфортный современный спортивный центр необходим каждому развивающемуся городу не только для проведения в достойных условиях спортивных соревнований в течение всего года, но и для широкого вовлечения городского населения в активные занятия спортом и своим личным здоровьем. Для этого многофункциональный спортивный комплекс может включать в себя не только высококлассное футбольное поле, многочисленные спортивные залы, бассейны и фитнес-центры, но любой на выбор перечень объектов для оздоровительных и учебно-тренировочных занятий различными видами спорта, а высотная часть спорткомплекса, при желании, может принять, близкие профилю объекта, гостиничные и офисные центры.

С помощью лучших специализированных строительных компаний (например, французской «Freyssinet International & Cie» или японской «TOKYO ROPE MFG.CO, LTD.» , которые являются мировыми лидерами в проектировании и изготовлении вантовых конструкций) можно уже сегодня начинать строить предложенные большепролетные светопрозрачные объекты.


Рис.20.Защитное сооружение куполообразной формы со светопрозрачным покрытием.


Перспективы архитектуры большепролетных светопрозрачных комплексов.

Огромные атриумные пространства БСЗС могут объединять множество задач. Например, в атриумах с объемами в миллионы кубических метров смогут разместиться и самый большой роскошный аквапарк, и полноценный спортивный стадион, и многое другое одновременно. Но, думается, что в перспективе, большинство БСЗС предпочтет возможность размещения в своих атриумных пространствах обширных и уютных ландшафтных садов со спортивными и детскими площадками, фонтанами и водопадами, вольерами с экзотическими животными и живописными прудами, открытыми бассейнами и кафе на лужайках. Ведь каждый такой вечнозеленый цветущий сад даст возможность жителям и гостям БСЗС ежедневно общаться с живой природой - и в самые жаркие летние месяцы, и долгие дождливые дни осени, и в снежные холодные месяцы зимы.

Борцам за сохранение природы должен понравиться тот факт, что при строительстве БСЗС активизируется процесс проникновения живой природы внутрь огромных рукотворных светопрозрачных сооружений. Занимая в БСЗС специально подготовленные для нее пространства и образовывая в них (при активной помощи человека) устойчивые экосистемы, природа сможет качественно наполнить собой архитектурные объекты будущего, делая их функциональнее и привлекательнее для людей. При этом, в организованных людьми атриумных пространствах, лучших БСЗС, несомненно, произойдет мутуализм (взаимовыгодное сожительство) природы и человека.


Рис.21-22. Атриумы американских отелей, принадлежащие знаменитой «Gaylord Hotels.

Положительные результаты, которые будут получены при строительстве БСЗС, полностью отвечают запросам современного градостроительства. Это экономическая и экологическая привлекательность сооружений; интенсивное развитие искусственной среды обитания человека, тесно связанное с природным окружением и обеспечением высокого качества жизни людей; образование нового типа экогородов и улучшение экологической обстановки в существующих мегаполисах; появление новых востребованных направлений для развития технического прогресса и существенная экономия природных ресурсов.

БСЗС по многим критериям наилучшим образом соответствуют принципам «Зеленого строительства» (GreenBuildings), и будут способствовать не только улучшению качества строительных объектов, но и сохранению окружающей среды.

Строительство БСЗС поможет решить следующие важные задачи «устойчивого развития» и требований «зеленых» стандартов LEED, BREEAM, DGWB:
- снижение уровня потребления энергетических и материальных ресурсов зданиями;
- снижение неблагоприятного воздействия на природные экосистемы;
- обеспечение гарантированного уровня комфорта среды обитания человека;
- создание новых энергоэффективных и энергосберегающих продуктов, новых рабочих мест в производственном и эксплуатационном секторах;
- формирование общественной потребности в новых знаниях и технологиях в сфере возобновляемой энергетики.

Атриумы светопрозрачных сооружений обязательно вернут нашим дворам их былую актуальность и востребованность, как вновь созданное очаровательное во многих отношениях общественное пространство, освобожденное от автомобилей и наполненное солнечным светом, уютом, комфортом.

Конструктивные особенности БСЗС и разумное их использование, в перспективе позволят так оптимизировать строительство таких сооружений, что построить комплекс зданий накрытых светопрозрачным куполом окажется значительно дешевле, чем строительство в идентичных условиях такого же комплекса зданий, но без защитного купола.
Так, очевидно, что стоимость светопрозрачного покрытия и эксплуатационные расходы (при правильном и целенаправленном движении в этом направлении) будут уменьшаться при увеличении объёма сооружения (не в абсолютном измерении, но относительно расходов на 1 кв метр полезной площади). Этот естественный вывод подтверждают: и обычная логика, и здравый смысл, и математика.
А снижение в несколько раз площади ограждающий конструкций БСЗС, относительно суммы площадей ограждающих конструкций внутренних зданий, неминуемо приведёт к снижению расхода потребляемой энергии на отопление комплекса БСЗС и на его кондиционирование, относительно такого же объема обычных зданий, не защищённых светопрозрачной оболочкой.
При этом, все внутренние здания БСЗС будут иметь упрощенную отделку внешних стен (без дорогостоящих покрытий и отсутствия утеплителей), а оконные проемы - будет необязательно остеклять стеклопакетами, что неизбежно отразится и на стоимости фундаментов. Основные системы отопления и кондиционирования внутренних зданий могут быть вынесены в атриумные пространства, что сделает внутренние жилые и офисные помещения более простыми, эффективными и т.д.

Новые экогорода в будущем, думается, вполне могут состоять, в основном, из расположенных вблизи друг к другу и максимально автономных БСЗС. Такие светопрозрачные сооружения будут построены среди живой природы и вписаны в естественный ландшафт, а также связаны между собой и с другими городами самыми современными высокоскоростными транспортными коммуникациями. Вероятно, это приведет не только к полному отказу многими жителями экогородов будущего от личных транспортных средств, из-за их ненадобности, но так же сможет навсегда устранить места опасного пересечения потоков людей с потоками автомобилей.

Но самый главный результат строительства экоустойчивых большепролетных светопрозрачных сооружений - расширение и улучшение комфортной среды обитания человека, без негативных последствий для природы.

Санкт-Петербург
09.06.2013 г

Примечания :
. Купол над Хьюстоном" - http://youtu.be/vJxJWSmRHyE ;
. Самый большой шатёр в мире
- http://yo www.youtube.com/watchutu.be/W3PfL2WY5LM ;
. "Tropical Islands" - www.youtube.com/watch ;
. Masdar City - www.youtube.com/watch;
. Большепролетный висячий мост -
.

Список используемой литературы :
1. Marcus Vitruvius Pollio, de Architectura - труд Витрувия в английском переводе Гвилта (1826);
2. Л Г. Дмитриев, А. В. Касилов. «Вантовые покрытия». Киев. 1974 г;
3. Зверев А.Н. Большепролетные конструкции покрытий общественных и промышленных зданий. СПб ГАСУ - 1998 г;
4. Кирсанов Н.М. Висячие и вантовые конструкции. Стройиздат - 1981 г;
5. Смирнов В.А. Висячие мосты больших пролетов. Высшая школа.1970 г;
6. Евразийский патент № 016435 - Защитное сооружение с большепролётным светопрозрачным покрытием - 2012 г;
7.


Рис.23-28. Атриумы американской сети высококлассных отелей «Gaylord Hotels".

"...Большепролетные здания - здания, перекрытие которых в зависимости от назначения здания, может быть выполнено только большепролетными несущими строительными конструкциями. Эти конструкции могут быть металлическими, железобетонными, сталежелезобетонными и др..."

Источник:

(утв. ГУП "НИИМосстрой" 14.08.2008)

"...Большепролетные здания и сооружения - покрытие которых выполнено с применением большепролетных (более 36 м) конструкций..."

Источник:

" МРДС 02-08. Пособие по научно-техническому сопровождению и мониторингу строящихся зданий и сооружений, в том числе большепролетных, высотных и уникальных (Первая редакция)"

  • - Высотное здание Министерства иностранных дел.Москва. высо́тные зда́ния здания высотой, как правило, более 26 этажей...

    Москва (энциклопедия)

  • - общественные здания, предназначенные для размещения финансовых учреждений...

    Санкт-Петербург (энциклопедия)

  • - филат. назв. серии почт, марок СССР 1950 «Архитектура Москвы» . На марках проекты высотных зданий Москвы...

    Большой филателистический словарь

  • - изменение формы и размеров, а также потеря устойчивости здания под влиянием различных нагрузок и воздействий. Источник: "Дом: Строительная терминология", М.: Бук-пресс, 2006...

    Строительный словарь

  • - вид основных фондов, включающий архитектурно-строительные объекты, назначением которых является создание условий для труда, жилья, социально-культурного обслуживания населения и хранения материальных ценностей. 3...

    Большой бухгалтерский словарь

  • - общий термин для обозначения совокупности общественных и жилых зданий - съвкупност от обществени ь жилищни сгради - obytné a občanské budovy - Gesellschaftsbau...

    Строительный словарь

  • - та часть основных фондов, под которой понимаются строительные объекты...

    Словарь бизнес терминов

  • - вид основных фондов, включающий архитектурно-строительные объекты, назначением которых является создание условий для труда, жилья, социально-культурного обслуживания населения и хранения материальных ценностей...

    Большой экономический словарь

  • - ".....

    Официальная терминология

  • - "...Жилое здание - жилой дом постоянного типа, рассчитанный на длительный срок службы..." Источник: "Методическое пособие по содержанию и ремонту жилищного фонда. МДК 2-04.2004" ".....

    Официальная терминология

  • - "...Каркасные здания: здания с несущими рамами, полностью воспринимающими вертикальные и горизонтальные нагрузки...

    Официальная терминология

  • - группа в классификации основных средств, включающая корпуса цехов, мастерские, заводоуправление, здания и другие строительные объекты производственного, административно-хозяйственного и социально-бытового...

    Энциклопедический словарь экономики и права

  • - общественные здания, предназначенные служить в известные часы сборным пунктом для купечества данного города...
  • - сооружения в крепостях и городах для войск и их потребностей...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Многоэтажные здания...

    Большая Советская энциклопедия

  • - сущ., кол-во синонимов: 1 окладывание...

    Словарь синонимов

"Здания большепролетные" в книгах

Строители Здания

Из книги автора

Строители Здания Время для художественных работ еще не настало. Только два художника - Хайнц Митчер из Кёльна и Освальд Дубах, русский швейцарец, помогали доктору Штейнеру разрабатывать пластические мотивы для наружной отделки Здания. Похожий на великана швейцарский

Здания театров

Из книги Великие шедевры архитектуры. 100 зданий, которые восхитили мир автора Мудрова Анна Юрьевна

Здания театров Театр Дионисия Афины В V – IV веках до н. э. непременной частью религиозного культа в Древней Греции стали торжественные шествия в честь того или иного божества, принесение ему жертвы перед главным храмом и праздничные мероприятия, среди которых основными

Общественные здания

Из книги Архитектура Петербурга середины XIX века автора Пунин Андрей Львович

Общественные здания Середина XIX века в истории русской архитектуры представляет собой переходный этап от зодчества периода позднего классицизма к архитектуре пореформенной эпохи, когда бурное развитие капиталистических отношений, начавшееся после реформ 1860-х годов,

Захват здания

Из книги Многоточие сборки автора Андреева Юлия

Захват здания Это было удивительное время, когда можно было придти в Дом культуры, представиться руководителем курсов или желающим открыть свой театр режиссером, и тебе предоставляли помещение! Не на один день – на месяцы или даже годы. Тебя вписывали в расписание, и в

О чем говорят здания

Из книги Инвестиции в недвижимость автора Кийосаки Роберт Тору

О чем говорят здания Как я уже упоминал, здания сами по себе – это последняя вещь, на которую я обращаю внимание, знакомясь с городом или каким-то конкретным районом. Даже оценивая само здание, первым делом я обращаю внимание не на его вертикальную структуру,

Здания и сооружения

Из книги Бизнес-план на 100%. Стратегия и тактика эффективного бизнеса автора Абрамс Ронда

Здания и сооружения Как гласит старая поговорка, в торговле недвижимостью есть три важнейших фактора – место, место и еще раз место. Местоположение бизнеса может оказаться решающим условием его успеха. Например, в розничной торговле плохое местоположение означает, что

25.1. Здания без души

Из книги Стратагемы. О китайском искусстве жить и выживать. ТТ. 1, 2 автора фон Зенгер Харро

25.1. Здания без души «Раз за разом убирали новые жильцы все то, что прежде отличало здание: замечательный овальный читальный зал, бывший общедоступным центром и символическим сердцем библиотеки, «расчистили» и тем самым разрушили; от совершенно-функциональной и вместе с Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Многоэтажные здания

Из книги Большая Советская Энциклопедия (МН) автора БСЭ

Учебные здания

Из книги Большая Советская Энциклопедия (УЧ) автора БСЭ

Универсальные здания

Из книги Большая Советская Энциклопедия (УН) автора БСЭ

Из книги Над Евангелием автора (Грибановский) Михаил

VIII. "И когда выходил Он из храма, говорит Ему один из учеников Его: Учитель! Посмотри, какие камни и какие здания! Иисус сказал ему в ответ: видишь сии великие здания? все это будет разрушено так что не останется здесь камня на камне" Мк.13:1–2; Лк.21:5–6 Глубокая и

Большепролетные конструкции покрытий гражданских и промышленных зданий


Санкт-Петербург


здание покрытие балка купол

Введение

Историческая справка

Классификация

Плоскостные большепролетные конструкции покрытий

Пространственные большепролетные конструкции покрытий

1 Складки

3 Оболочки

Висячие (вантовые) конструкции

1 Висячие покрытия

4 Комбинированные системы

Трансформируемые и пневматические покрытия

1 Трансформируемые покрытия

Используемая литература


Введение


При проектировании и строительстве зданий с зальными помещениями возникает комплекс сложных архитектурных и инженерных задач. Для создания комфортных условий в зале, обеспечения требований технологии, акустики, изоляции его от других помещений и окружающей среды определяющее значение приобретает конструкция покрытия зала. Знание математических законов формообразования позволило делать сложные геометрические построения (парабол, гипербол, и т.д.), с использованием принципа произвольного плана.

В современной архитектуре формообразование плана является результатом развития двух тенденций: свободного плана, ведущего к конструктивной каркасной системе, и произвольного плана, требующего конструктивной системы, позволяющей организовать весь объем здания, а не только планировочную структуру.

Зал - основное композиционное ядро большинства общественных зданий. Наиболее часто встречающаяся конфигурация плана - прямоугольник, круг, квадрат, эллипсовидные и подковообразные планы, реже трапециевидные. При выборе конструкций покрытия зала решающее значение имеет необходимость связать зал с внешним миром посредством открытых остекленных поверхностей или наоборот полностью изолировать его.

Пространство, освобожденное от опор, перекрытое большепролетной конструкцией, придает зданию эмоциональную и пластическую выразительность.


1. Историческая справка


Большепролетные конструкции покрытий появились в древние времена. Это были каменные купола и своды, деревянные стропила. Так, например, каменное купольное покрытие Пантеона в Риме (1125 г.) имело диаметр около 44 м, купол мечети Айя - София в Стамбуле (537 г.) - 32 м, купол Флорентийского собора (1436 г.) - 42 м, купол Верхнего Совета в Кремле (1787 г.) - 22,5 м.

Строительная техника того времени не позволяла строить в камне легкие сооружения. Поэтому большепролетные каменные сооружения отличались большой массивностью, а сами сооружения возводились в течение многих десятилетий.

Деревянные строительные конструкции были дешевле и проще в возведении, чем каменные, давали возможность перекрывать также большие пролеты. Примером могут служить деревянные конструкции покрытия здания бывшего Манежа в Москве (1812 г.), пролетом 30 м.

Развитие черной металлургии в XVIII - XIX вв. дало строителям материалы более прочные, чем камень, дерево - чугун и сталь.

Во второй половине XIX в. большепролетные металлические конструкции получают широкое применение.

В конце XVIII в. появился новый материал для большепролетных зданий - железобетон. Совершенствование железобетонных конструкций в XX в. привело к появлению тонкостенных пространственных конструкций: оболочек, складок, куполов. Появилась теория расчета и конструирования тонкостенных покрытий, в которой приняли участие и отечественные ученые.

Во второй половине XX в. широко применяются висячие покрытия, а также пневматические и стержневые системы.

Применение большепролетных конструкций дает возможность максимально использовать несущие качества материала и получить за счет этого легкие и экономичные покрытия. Уменьшение массы конструкций и сооружений является одной из основных тенденций в строительстве. Уменьшение массы означает уменьшение объема материала, его добычи, переработки, транспортировки и монтажа. Поэтому вполне естественен интерес, который возникает у строителей и архитекторов к новым формам конструкций, что дает особенно большой эффект в покрытиях.


2. Классификация


Большепролетные конструкции покрытий можно разделить по их статической работе на две основных группы систем большепролетных покрытий:

·плоскостные (балки, фермы, рамы, арки);

·пространственные (оболочки, складки, висячие системы, перекрестно-стержневые системы и др.).

Балочные, рамные и арочные, плоскостные системы большепролетных покрытий проектируются обычно без учета совместной работы всех несущих элементов, так как отдельные плоские диски соединяются друг с другом сравнительно слабыми связями, не способными существенно распределить нагрузки. Это обстоятельство, естественно приводит к увеличению массы конструкций.

Для перераспределения нагрузок и снижения массы пространственных конструкций необходимы связи.

По материалу, применяемому для изготовления большепролетных конструкций, их разделяют на:

·деревянные

·металлические

·железобетонные

ØДревесина имеет хорошие несущие свойства (расчетное сопротивление сосны на сжатие и изгиб 130-150 кг/м2) и малую объемную массу (для воздушно-сухой сосны 500 кг/м3).

Существует мнение, что деревянные конструкции недолговечны. Действительно при плохом уходе деревянные конструкции могут очень быстро выйти из строя из-за поражения древесины различными грибками и насекомыми. Основным правилом для сохранения деревянных конструкций является создание условий для их вентиляции или проветривания. Важно также обеспечить, сушку древесины перед ее применением в строительстве. В настоящее время деревообрабатывающая промышленность может обеспечить эффективную сушку современными методами, в том числе токами высокой частоты и т.д.

Улучшение биологической стойкости древесины легко достигается с помощью давно разработанных и освоенных методов пропитки ее различными эффективно действующими антисептиками.

Еще чаще возникают возражения против использования древесины по соображениям пожарной безопасности.

Однако соблюдение элементарных правил противопожарной безопасности и надзора за сооружениями, а также использование антипиренов, повышающих огнестойкость древесины, позволяет значительно повысить противопожарные свойства древесины.

В качестве примера долговечности деревянных конструкций можно привести упоминавшийся уже Манеж в Москве, которому более 180 лет, шпиль в Адмиралтействе в Ленинграде высотой около 72 м, построенный в 1738 г., сторожевую башню в Якутске, возведенную около 300 лет тому назад, многие деревянные церкви во Владимире, Суздале, Кижах и других городах и селах Северной России, насчитывающие несколько столетий.

ØМеталлические конструкции, главным образом стальные, применяются широко.

Их достоинства: высокая прочность, относительно небольшая масса. Недостатком стальных конструкций является подверженность коррозии и низкая пожарная стойкость (потеря несущей способности при высоких температурах). Для борьбы с коррозией стальных конструкций существует много средств: окраска, покрытие полимерными пленками и т.д. В целях пожарной безопасности ответственные стальные конструкции можно обетонировать или осуществить набрызг на поверхность стальных конструкций теплоустойчивых бетонных смесей (вермикулит и т.д.).

ØЖелезобетонные конструкции не подвержены гниению, ржавлению, обладают высокой пожарной стойкостью, но они тяжелы.

Поэтому при выборе материала для большепролетных конструкций необходимо отдавать предпочтение тому материалу, который в конкретных условиях строительства наилучшим образом отвечает поставленной задаче.


3. Плоскостные большепролетные конструкции покрытий


В общественных зданиях массового строительства для покрытия зальных помещений применяются преимущественно традиционные плоскостные конструкции: настилы, балки, фермы, рамы, арки. Работа этих конструкций основана на использовании внутренних физико-механических свойств материала и передаче усилий в теле конструкции непосредственно на опоры. В строительстве плоскостной тип покрытий хорошо изучен и освоен в производстве. Многие из них пролетом до 36 м разработаны как сборные типовые конструкции. Идет постоянная работа по их усовершенствованию, снижению массы и материалоемкости.

Плоскостная конструкция покрытия зала в интерьерах общественных зданий почти всегда, ввиду ее низких эстетических качеств, закрывается дорогостоящим подвесным потолком. Этим в здании создаются излишние пространства и объемы в зоне конструкции покрытия, в редких случаях используемые под технологическое оборудование. В экстерьере сооружения такие конструкции из-за их невыразительности обычно спрятаны за высокими парапетами стен.



Балки изготавливаются из стальных профилей, железобетонными (сборными и монолитными), деревянными (на клею или на гвоздях).

Стальные балки таврового или коробчатого сечения (рис. 1, а, б) требуют большого расхода металла, имеют большой прогиб, который обычно компенсируется строительным подъемом (1/40-1/50 от пролета).

Примером может служить закрытый искусственный каток в Женеве, выстроенный в 1958 г. (рис. 1,в). Покрытие зала размерами 80,4 × 93,6 м выполнено из десяти цельно сваренных сплошных стальных балок переменного сечения, установленных через 10,4 м. За счет устройства консоли с оттяжкой на одном конце балки создается предварительное натяжение, способствующее уменьшению сечения балки.

Железобетонные балки имеют большой изгибающий момент и большую собственную массу, но просты в изготовлении. Они могут выполняться монолитными, сборно-монолитными и сборными (из отдельных блоков и цельные). Выполняются из железобетона с предварительным напряжением арматуры. Отношение высоты балки к пролету колеблется в пределах от 1/8 до 1/20. В практике строительства встречаются балки пролетом до 60 м, а с консолями - до 100 м. Сечение балок - в виде тавра, двутавра или коробчатое (рис. 2, а, б, в, г, д, ж).


а - стальная балка двутаврового сечения (составная);

б - стальная балка коробчатого сечения (составная);

в - искусственный закрытый каток в Женеве (1958). Покрытие имеет размеры 80,4 × 93,6 м.


Главные балки двутаврового сечения расположены через 10,4 м.

По главным балкам уложены алюминиевые прогоны.


Рис. 1 (продолжение)

г - схемы унифицированных горизонтальных ферм

с параллельными поясами. Разработаны ЦНИИЭП зрелищных и

спортивных сооружений;

д - схемы двускатных стальных ферм: полигональной и треугольной

ж - зал конгрессов в Ессене (ФРГ). Размеры покрытия 80,4 × 72,0.


Покрытие опирается на 4 решетчатых стойки. Главные фермы имеют пролет 72,01 м, второстепенные - 80,4 м с шагом 12 м


Рис. 2. Железобетонные балки и фермы

а - железобетонная односкатная балка с параллельными поясами

таврового сечения;

б - железобетонная двухскатная балка двутаврового сечения;

в - железобетонная балка горизонтальная с параллельными поясами

двутаврового сечения;

г - составная железобетонная горизонтальная балка с параллельным и

поясами таврового сечения;

д - железобетонная горизонтальная балка коробчатого сечения


Рис. 2 (продолжение)

е - составная двухскатная железобетонная ферма, состоящая из

двух полуферм с предварительно-напряженным нижним поясом;

ж - здание Британской заморской авиационной компании (ВОАС) в Лондоне 1955 г. Железобетонная балка имеет высоту 5,45 м, сечение балки - прямоугольное;

з - гимнастический зал средней школы в г. Спрингфилде (США)


В практике массового строительства в нашей стране широкое применение находят балки, приведенные на рис. 2, а, б, в.

Деревянные балки применяются в местностях, богатых лесом. Обычно они используются в зданиях III класса из-за их малой огнестойкости и долговечности.

Деревянные балки подразделяются на гвоздевые и клееные длиной до 30-20 м. Гвоздевые балки (рис. 3, а) имеют сшитую на гвоздях стену из двух слоев досок, наклоненных в разные стороны под углом 45°. Верхний и нижний пояса образуют за счет нашитых с обеих сторон вертикальных стенок балки продольных и поперечных брусьев. Высота гвоздевых балок 1/6-1/8 от пролета балки. Вместо дощатой стенки можно применять стенку из многослойной фанеры.

Клееные балки в отличие от гвоздевых обладают высокой прочностью и повышенной огнестойкостью даже без специальной пропитки. Сечение клееных деревянных балок может быть прямоугольным, двутавровым, коробчатым. Они изготавливаются из реек или досок на клею, уложенных плашмя или на ребро.

Высота таких балок 1/10-1/12 от пролета. По очертанию верхнего и нижнего поясов клееные балки могут быть с горизонтальными поясами, одно- или двухскатные, криволинейные (рис. 3, б).



Рис. 3 (продолжение)



Фермы, как и балки, могут изготавливаться из металла, железобетона и дерева. Стальные фермы в отличие от металлических балок за счет решетчатой конструкции требуют меньше металла. При подвесном потолке создается проходной чердак, обеспечивающий пропуск инженерных коммуникаций или свободный проход по чердаку. Фермы выполняют, как правило, из стальных профилей, а пространственные трехгранные фермы - из стальных труб.

Зал Конгрессов и спорта в Эссене имеет покрытие размером 80,4 × 72 м (рис. 1, ж). Покрытие опирается на четыре решетчатых стоики, состоящие из четырех ветвей. Одна из стоек жестко закреплена в фундамент, две стойки имеют катковые опоры, четвертая стойка выполнена качающейся и может перемещаться в двух направлениях. Две главные полигональные клепаные фермы опираются на опорные стойки и имеют пролет 72 м и высоту 5,94 и 6,63 м в середине пролета и соответственно 2,40 и 2,54 м - на опорах. Пояса главных ферм имеют коробчатое сечение шириной более 600 мм, раскосы - составные, двутаврового сечения. Двухконсольные, сварные второстепенные фермы пролетом 80,4 м опираются на главные фермы с шагом 12 м. Верхний пояс этих ферм имеет сечение в виде тавра, нижний - в виде двутавра с широкими полками. Для обеспечения свободных вертикальных деформаций на расстоянии 11 м от краев крыши устроены сквозные шарниры как в ограждающей конструкции покрытия, так и в фермах и в подвесном потолке. Концы ферм длиной 11 м опираются на легкие качающиеся стойки, расположенные на трибунах. Крестовые ветровые горизонтальные связи расположены между главными и между крайними второстепенными фермами, а также вдоль продольных стен на расстоянии 3,5 м от края покрытия. Прогоны и обрешетка изготовлены из двутавров. Здание покрыто плитами из прессованной соломы толщиной 48 мм, по которым уложен гидроизоляционный ковер из четырех слоев горячего битума на стекловолокне.

Фермы могут иметь различное очертание как верхнего, так и нижнего пояса. Наиболее распространены фермы треугольные и полигональные, а также горизонтальные с параллельными поясами (рис. 1, г, д, ж).

Железобетонные фермы изготавливаются: цельными - длиной до 30 м; составными - с предварительным напряжением арматуры, при длине более 30 м. Отношение высоты фермы к пролету 1/6-1/9.

Нижний пояс выполняется обычно горизонтальным, верхний пояс может иметь горизонтальное, треугольное, сегментное или полигональное очертания. Наибольшее распространение получили железобетонные полигональные (двухскатные) фермы, изображенные на рис. 2, ж. Максимальная длина запроектированных железобетонных ферм составляет около 100 м при шаге 12 м.

Недостатком железобетонных ферм является большая конструктивная высота. Для уменьшения собственной массы ферм необходимо применять высокопрочные бетоны и внедрять легкие плиты покрытия из эффективных материалов.

Деревянные фермы - могут быть представлены в виде бревенчатых или брусчатых висячих стропил. Деревянные фермы применяют для пролетов более 18 м и при условии выполнения профилактических мероприятий по пожарной безопасности. Верхний (сжатый) пояс и раскосы деревянных ферм изготавливают из брусьев квадратного или прямоугольного сечения со стороной, равной 1/50-1/80 от пролета, нижний (растянутый) пояс и подвески выполняют как из брусьев, так и из стальных тяжей с винтовыми нарезками на концах для натяжения их с помощью гаек с подкладными шайбами.

Устойчивость деревянных ферм обеспечивают деревянные раскосы и связи, установленные по краям и в середине фермы перпендикулярно их плоскости, а также кровельные настилы, образующие жесткий диск покрытия. В практике отечественного строительства применяют фермы пролетом 15, 18, 21 и 24 м, верхний пояс которых выполняется из неразрезного пакета досок шириной 170 мм на клею ФР-12. Раскосы выполняются из брусков такой же ширины, нижний пояс из прокатных уголков, а подвеск - из круглой стали (рис 3, в).

Металлодеревянные фермы - были разработаны ЦНИИЭП учебных зданий, ЦНИИЭП зрелищных зданий и спортивных сооружений и ЦНИИСК Госстроя СССР в 1973 г. Эти фермы устанавливаются через 3 и 6 м и могут быть использованы для кровельных покрытий в двух вариантах:

а) с теплым эксплуатируемым подвесным потолком и холодными кровельными панелями;

б) без подвесного потолка и теплыми кровельными панелями.



Рамы являются плоскостными распорными конструкциями. В отличие от безраспорной балочно-стоечной конструкции, ригель и стойка в рамной конструкции имеют жесткое соединение, которое является причиной появления в стойке изгибающих моментов от воздействия нагрузок на ригель рамы.

Рамные конструкции выполняют с жесткой заделкой опор в фундамент, если отсутствует опасность появления неравномерных осадок основания. Особая чувствительность рамных и арочных конструкций к неравномерным осадкам приводит к необходимости устройства шарнирных рам (двухшарнирных и трехшарнирных). Схемы арок на рис. 4, а, б, в, г.

Учитывая то, что рамы не имеют достаточной жесткости в своей плоскости, при устройстве покрытия необходимо обеспечить продольную жесткость всего покрытия путем замоноличивания элементов покрытия или установки рам диафрагм нормально к плоскости, или связей жесткости.

Рамы могут изготавливаться из металла, железобетона или дерева.

Металлические рамы могут выполняться как сплошного, так и решетчатого сечения. Решетчатое сечение характерно для рам с большими пролетами, так как оно более экономично благодаря небольшой собственной массе и способности одинаково хорошо воспринимать как сжимающие, так и растягивающие усилия. Высота сечения ригелей решетчатых рам принимается в пределах 1/20-1/25 пролета, а рам сплошного сечения 1/25-/30 пролета. Для уменьшения высоты сечения ригеля как сплошного, так и решетчатого металлических рам применяются разгружающие консоли, иногда снабженные специальными оттяжками (рис. 4, г).


Рамы: а - безшарнирная; б - двухшарнирная; в - трехшарнирная; г - двухшарнирная;

д - бесшарнирная; е - двух шарнирная; ж - трехшарнирная; и - двухшарнирная с разгружающими консолями; к - двухшарнирная с затяжкой, воспринимающей распор; h - высота рамы; I - стрела подъема арки; l - пролет; r1 и r2 - радиусы кривизны нижней и верхней грани арки; 0,01 и 02 центры кривизны; - шарниры; s - затяжка; d - вертикальные нагрузки на консоли.


Металлические рамы активно применяются в строительстве (рис. 5, 1,а, б, в, г, д; рис. 6, а, в).



Стальные, железобетонные и деревянные рамы

Железобетонные рамы - могут быть бесшарнирными, двухшарнирными, реже трехшарнирными.

При пролетах рам до 30-40 м их выполняют сплошными, двутаврового сечения с ребрами жесткости, при больших пролетах - решетчатыми. Высота ригеля сплошного сечения составляет около 1/20-1/25 пролета рамы, решетчатого сечения 1/12-1/15 пролета. Рамы могут быть однопролетными и многопролетными, монолитными и сборными. При сборном решении соединение отдельных элементов рамы целесообразно выполнить в местах минимальных изгибающих моментов. На рис. 5, 2, и, к, и рис.е 6, в приведены примеры из практики строительства зданий с использованием железобетонных рам.

Деревянные рамы подобно деревянным балкам выполняют из гвоздевых или клееных элементов для пролетов до 24 м. Их выгодно делать трехшарнирными для облегчения монтажа. Высота ригеля из гвоздевых рам принимается около 1/12 пролета рамы, у клееных рам - 1/15 пролета. Примеры строительства зданий с использованием деревянных рам приведены на рис 5, л, м, рис. 7.


Рис. 7 Каркас складского здания с деревянными клеефанерными рамами



Арки, как и рамы, являются плоскостными распорными конструкциями. Они еще более чувствительны к неравномерным осадкам, чем рамы и выполняются как бесшарнирными, так и двухшарнирными и трехшарнирными (рис. 4, д, е, ж, и, к) Устойчивость покрытия обеспечивается жесткими элементами ограждающей части покрытия. Для пролетов 24-36 м возможно применение трехшарнирных арок из двух сегментных ферм (рис. 8, а). Во избежание провисания затяжки устанавливают подвески.


а - трехшарнирная деревянная арка из многоугольных ферм;

б - решетчатая деревянная арка


Металлические арки выполняются сплошного и решетчатого сечения. Высота ригеля сплошного сечения арок применяется в пределах 1/50-1/80 , решетчатого 1/30-1/60 пролета. Отношение стрелы подъема к пролету у всех арок находится в пределах 1/2-1/ 4 при параболическом очертании кривой и 1/4-1/8 при круговой кривой. На рис. 8, а, рис. 9, рис. 1, рис. 10, а, б, в, представлены примеры из практики строительства.

Железобетонные арки, как и металлические, могут иметь сплошное и решетчатое сечение ригеля.

Конструктивная высота сечения ригеля сплошных арок составляет 1/30-1/40 пролета, решетчатых арок 1/25-1/30 пролета.

Сборные арки больших пролетов выполняются составными, из двух полуарок, бетонируемых на рис.е в горизонтальном положении, а затем поднимаемых в проектное положение (пример на рис. 9, 2, а, б, в).

Деревянные арки выполняются из гвоздевых и клееных элементов. Отношение стрелы подъема к пролету у гвоздевых арок составляет 1/15-1/20, у клееных - 1/20-1/25 (рис. 8, а, б, рис. 10, в, г).


а - арка с затяжкой на колоннах; б - опирание арки на рамы; или контрфорсы; в - опирание арки на фундаменты



4. Пространственные большепролетные конструкции покрытий


Большепролетные конструктивные системы разных эпох объединяет ряд существенных признаков, что дает возможность рассматривать их как технический прогресс в строительстве. С ними связана мечта строителей и архитекторов, покорить пространство, перекрыть максимально большую площадь. Объединяющим исторически сложившихся и современных криволинейных конструкций является поиск целесообразный формы, стремление к максимальному снижению их веса, поиск оптимальных условий распределения нагрузок, что приводит к открытию новых материалов и потенциальных возможностей.

Пространственные большепролетные конструкции покрытия включают в себя плоские складчатые покрытия, своды, оболочки, купола, перекрестно-ребристые покрытия, стержневые конструкции, пневматические и тентовые конструкции.

Плоские складчатые покрытия, оболочки, перекрестно-ребристые покрытия и стрежневые конструкции выполняются из жестких материалов (железобетон, металлические профили, дерево и др.) За счет совместной работы конструкций пространственные жесткие покрытия имеют небольшую массу, что снижает расходы как на устройство покрытия, так и на устройство опор и фундаментов.

Висячие (вантовые), пневматические и тентовые покрытия выполняются из нежестких материалов(металлические тросы, металлические рисовые мембраны, мембраны из синтетических пленок и тканей). Они в значительно большей степени, чем пространственные жесткие конструкции, обеспечивают снижение объемной массы конструкций, позволяют быстро возводить сооружения.

Пространственные конструкции дают возможность создавать самые разнообразные формы зданий и сооружений. Однако возведение пространственных конструкций требует более сложной организации строительного производства и высокого качества всех строительных работ.

Конечно, рекомендации по применению тех или иных конструкций покрытия для каждого конкретного случая дать нельзя. Покрытие как сложное подсистемное образование, находится в структуре сооружения в тесной связи со всеми его другими элементами, с внешними и внутренними воздействиями среды, с экономическими, техническими, художественными и эстетически-стилевыми условиями его формирования. Но некоторый опыт применения пространственных конструкций и результаты, которые он дал, могут помочь в понимании места той или иной конструктивной и технологической организации общественных зданий. Уже известные в мировой строительной практике системы конструкций пространственного типа позволяют перекрывать здания и сооружения практически с любой конфигурацией плана.


1 Складки


Складкой называют пространственное покрытие, образованное плоскими взаимно пересекающимися элементами. Складки состоят из ряда повторяющихся в определенном порядке элементов, опирающихся по краям и в пролете на диафрагмы жесткости.

Складки бывают пилообразные, трапецеидальные, из однотипных треугольных плоскостей, шатровые (четырехугольные и многогранные) и другие (рис. 11, а, б, в, г).



Складчатые конструкции, применяемые в цилиндрических оболочках и куполах, рассматриваются в соответствующих разделах.

Складки могут быть выпущены за пределы крайних опор, образуя консольные свесы. Толщину плоского элемента складки принимают около 1/200 пролета, высоту элемента не менее 1/10, а ширину грани - не менее 1/5 пролета. Складками обычно покрывают пролеты до 50-60 м, а шатрами до 24 м.

Складчатые конструкции имеют целый ряд положительных качеств:

простота формы и соответственно простота их изготовления;

большие возможности заводского сборного изготовления;

экономия высоты помещения и др.

Интересным примером применения плоской складчатой конструкции пилообразного профиля является покрытие лаборатории института бетона в Детройте (США) размером 29,1 × 11,4 (рис 11, д) проект архитекторов Ямасаки и Лейнвебера, инженеров Аммана и Уитни. Покрытие опирается на два продольных ряда опор, образующих средний коридор и имеет консольные выносы в обе стороны от опор длиной 5,8 м. Покрытие представляет комбинацию складок, направленных в противоположные стороны. Толщина складок 9,5 см.

В 1972 г. в Москве при реконструкции Курского вокзала была применена трапецеидальная складчатая конструкция, позволившая перекрыть зал ожидания размером 33 × 200 м (рис. 11, е).



Наиболее древняя и широко распространенная система криволинейного покрытия - сводчатое покрытие. Свод - конструктивная система, на основе которой был создан ряд архитектурных форм прошлого (вплоть до ХХ в.), позволивших решать проблему перекрытия разнообразных зальных помещений с различным функциональным назначением.

Цилиндрический и сомкнутый своды - простейшие формы свода, но пространство, образованное этими покрытиями, замкнуто, а форма лишена пластики. Введением распалубок в конструкции ложков этих сводов достигается зрительное ощущение легкости. Внутренняя поверхность сводов, как правило, украшалась богатым декором или имитировалась ложной конструкцией деревянного подвесного потолка.

Крестовый свод образуется вырезкой из пересечения двух цилиндрических сводов. Им перекрывали огромные залы терм и базилик. Большое применение крестовый свод нашел в готической архитектуре.

Крестовый свод - одна из распространенных форм покрытия в русском каменном зодчестве.

Широко применялись такие разновидности сводов, как парусный, свод-купол, балдахин.


3 Оболочки


Тонкостенные оболочки являются одним из видов пространственных конструкций и используются в строительстве зданий и сооружений с помещениями больших площадей (ангаров, стадионов, рынков и т.п.). Тонкостенная оболочка представляет собой изогнутую поверхность, которая при минимальной толщине и соответственно минимальной массе и расходе материала обладает очень большой несущей способностью, потому что благодаря криволинейной форме действует как пространственная несущая конструкция.

Простой опыт с рисом бумаги показывает, что очень тонкая изогнутая пластинка приобретает благодаря криволинейной форме большую сопротивляемость внешним силам, чем та же пластинка плоской формы.

Жесткие оболочки могут возводиться над зданиями любой конфигурации в плане: прямоугольной, квадратной, круглой, овальной и т.п.

Даже весьма сложные по конфигурации конструкции могут быть разделены на ряд однотипных элементов. На заводах строительных деталей создаются отдельные технологические линии для изготовления отдельных элементов конструкций. Разработанные методы монтажа позволяют возводить оболочки и купола с помощью инвентарных опорных башен или вообще без вспомогательных лесов, что существенно сокращает сроки возведения покрытий и удешевляет монтажные работы.

По конструктивным схемам жесткие оболочки делятся на: оболочки положительной и отрицательной кривизны, зонтичные оболочки, своды и купола.

Оболочки выполняются из железобетона, армоцемента, металла, дерева, пластмасс и других материалов, хорошо воспринимающих сжимающие усилия.

В обычных несущих системах, рассмотренных нами ранее, сопротивление возникающим усилиям сосредотачивается непрерывно по всей их криволинейной поверхности, т.е. так как это свойственно пространственным несущим системам.

Первая железобетонная купол-оболочка была построена в 1925 г. в Йене. Диаметр ее составлял 40м, это равно диаметру купола св. Петра в Риме. Масса этой оболочки оказалась в 30 раз меньше купола собора св. Петра. Это первый пример, который показал перспективные возможности нового конструктивного принципа.

Появление напряженно-армированного железобетона, создание новых методов расчета, измерение и испытание конструкций с помощью моделей наряду со статической и экономической выгодой их применения - все это способствовало быстрому распространению оболочек во всем мире.

Оболочки имеют и еще ряд преимуществ:

в покрытии они выполняют одновременно две функции: несущей конструкции и кровли;

они огнестойки, что во многих случаях ставит их в более выгодное положение даже при равных экономических условиях;

они не имеют себе равных по разнообразию и оригинальности форм в истории архитектуры;

наконец, по сравнению с прежними сводчатыми и купольными конструкциями, во много раз превзошли их по масштабам перекрываемых пролетов.

Если строительство оболочек в железобетоне получило достаточно широкое развитие, то в металле и дереве эти конструкции имеют пока ограниченное применение, так как не найдены еще достаточно простые свойственные металлу и дереву, конструктивные формы оболочек.

Оболочки в металле могут выполняться цельнометаллическими, где оболочка выполняет одновременно функции несущей и ограждающей конструкции в один, два и более слоев. При соответствующей разработке строительство оболочек может свестись к индустриальной сборке крупных панелей.

Однослойные металлические оболочки выполняются из стального или алюминиевого рис.а. Для увеличения жесткости оболочек вводятся поперечные ребра. При частом расположении поперечных ребер, связанных между собой по верхнему и нижнему поясу, можно получить двухслойную оболочку.

Оболочки бывают одинарной и двоякой кривизны.

К оболочкам одинарной кривизны относятся оболочки с цилиндрической или конической поверхностью (рис. 12, а, б).


Рис. 12. Наиболее распространенные формы оболочек

а - цилиндр: 1 - круг, парабола, синусоида, эллипс (направляющие); 2 -прямая (образующая); б - конус: 1 - любая кривая; 2 - прямая (образующая); г - поверхность переноса: 1 - парабола (направляющая); 2 - эллипс, круг (образующая); в - поверхность вращения (купол): 1-вращения; 2 - круг, эллипс, парабола (образующая); Поверхность вращения или переноса (сферическая оболочка): 1, 2 - круг, парабола (образующие или направляющие); 3 - круг, парабола(образующая); 4 - ось вращения д - образование оболочек двоякой кривизны одного направления: гиперболический параболоид: АВ-СД, АС-ВД - прямые (направляющие); 1 - парабола (направляющая).


Цилиндрические оболочки имеют круговое, эллиптическое или параболическое очертание и опираются на торцевые диафрагмы жесткости, которые могут быть выполнены в виде стен, ферм, арок илирам. В зависимости от длины оболочек их делят на короткие, у которых пролет по продольной оси не более чем полторы длины волны (пролет в поперечном направлении), и на длинные, у которых пролет по продольной оси более, чем полторы волны (рис. 13, а, в, д).

По продольным краям длинных цилиндрических оболочек предусматриваются бортовые элементы (ребра жесткости), в которых размещается продольная арматура, позволяющая работать оболочке вдоль продольного пролета подобно балке. Кроме того, бортовые элементы воспринимают распор от работы оболочек в поперечном направлении и поэтому должны обладать достаточной жесткостью и в горизонтальном направлении (рис. 13, а, д).



Длина волны длинной цилиндрической оболочки обычно не превышает 12 м. Отношение стрелы подъема к длине волны принимается не менее 1/7 пролета, а отношение стрелы подъема к длине пролета - не менее 1/10.

Сборные длинные цилиндрические оболочки членятся обычно на цилиндрические секции, бортовые элементы и диафрагму жесткости, арматура которых в процессе монтажа сваривается между собой и замоноличивается (рис. 13, д).

Длинные цилиндрические оболочки целесообразно применять для покрытий больших помещений с прямоугольным очертанием в плане. Длинные оболочки обычно располагают параллельно короткой стороне перекрываемого прямоугольного пространства для сокращения величины пролета оболочек вдоль продольной оси (рис. 13, е). Развитие длинных цилиндрических оболочек идет по линии поисков возможно более плоской дуги при небольшой величине стрелы подъема, что ведет к облегчению условий производства строительных работ, снижению объема здания и улучшению условий эксплуатации.

Особенно выгодно, в смысле конструктивной работы, устройство последовательного ряда плоских цилиндрических оболочек, так как в этом случае изгибающие усилия, действующие в горизонтальном направлении, погашаются соседними оболочками (кроме крайних).

Приведем примеры применения в строительстве длинных цилиндрических оболочек.

Многоволновая длинная цилиндрическая оболочка выполнена в гараже в Бурнемауте (Англия).

Размеры оболочки 45 × 90 м, толщина 6,3 см проект выполнен инженером Морганом (рис. 14, а).


в - ангар аэродрома в Карачи (Пакистан, 1944). Покрытие образованно длинными цилиндрическими оболочками длиной 39,6 м, шириной 10,67 м и толщиной 62,5 мм. Оболочки опираются на прогон длиной 58 м, являющемся перемычкой над воротам ангара; г - ангар Министерства авиации в АН! лип (1959). Для покрытия ангара были применены три цилиндрических оболочки, расположенные параллельно проему ворот ангара. Длина оболочек - 55 м. Глубина ангара - 32,5 м. Рандбалки, воспринимающие распор, имеют коробчатое сечение


Покрытие спортивного зала в Мадриде (1935 г.) выполнено по проекту архитектора Зуазо и инженера Торрохи. Покрытие представляет комбинацию двух длинных цилиндрических оболочек, опирающихся на торцевые стены и не требует опирания на продольные стены, которые по этой причине выполнены из легких материалов. Длина оболочки 35 м, пролет 32,6 м, толщина 8,5 см. (рис. 14, б).

Ангар аэродрома в Карачи, построенный в 1944 г., представлен оболочками длина которых 29,6 м, ширина 10,67 м и толщина 6,25 см. Оболочки опираются на прогон пролетом 58 м, который является перемычкой над воротами ангара (рис. 14, в).

Применение длинных цилиндрических оболочек практически ограничено пролетами до 50 м, так как за этим пределом высота бортовых элементов (рандбалок) получается чрезмерно большой.

Подобные оболочки часто используются в промышленном строительстве, но находят применение в общественных зданиях. В "Калининградгражданпроекте" разработаны длинные цилиндрические оболочки пролетами 18 × 24 м, шириной 3 м. Они изготавливаются сразу на пролет вместе с утеплителем - древесноволокнистой плитой. Сверху в заводских условиях на готовый элемент наносится слой гидроизоляции.

Длинные цилиндрические оболочки выполняются из железобетона, армоцемента, стали и алюминиевых сплавов.

Так для покрытия в Санкт-Петербурге Московского вокзала применена цилиндрическая оболочка, изготовленная из рис.ового алюминия. Длина температурного блока 48 м, ширина 9 м. Покрытие подвешено к железобетонным опорам, установленным на междупутье.

Короткие цилиндрические оболочки по сравнению с длинными оболочками имеют более значительную величину волны и стрелу подъема. Кривизна коротких цилиндрических оболочек соответствует направлению наибольшего пролета перекрываемого помещения. Эти оболочки работают как своды.

Форма кривой может быть представлена дугой круга или параболой. В связи с опасностью выпучивания в коротких оболочках в большинстве случаев вводятся поперечные ребра жесткости. Кроме бортовых элементов такие оболочки должны иметь затяжки для восприятия горизонтальных поперечных сил (рис. 13, в, д).

Широко известны короткие цилиндрические оболочки для зданий с сеткой колонн 24 × 12 м и 18 ×12 м. Они состоят из ферм-диафрагм, ребристых панелей 3 × 12 м и бортовых элементов (рис. 15, а-г).

Конструкции на указанные пролеты признаны типовыми.

Применение коротких цилиндрических оболочек не требует применения подвесного потолка.

Конические оболочки обычно используются для покрытий трапецеидальных в плане зданий или помещений. Конструктивные особенности этих оболочек такие же как и длинных цилиндрических (рис. 12, а). Примером интересного использования этой формы может служить покрытие ресторана на берегу озера в штате Джорджия (США), выполненное в виде ряда железобетонных грибовидных конусов диаметром 9,14 м. Пустотелые ножки грибов используются для отвода дождевой воды с поверхности покрытия. Треугольники, образованные краями трех соприкасающихся грибов, перекрыли железобетонными плитами с круглыми отверстиями для световых фонарей в виде куполов из пластмассы.


Рис. 15 Примеры применения коротких цилиндрических оболочек, выполненных в железобетоне


В волнообразных и складчатых оболочках с большими пролетами возникают значительные изгибающие моменты, вызываемые временными нагрузками от ветра, снега, изменений температуры и т.д.

Необходимое усиление таких оболочек достигалось устройством ребер. Снижение усилий было достигнуто переходом к волнообразным и складчатым профилям самой оболочки. Это дало возможность увеличить жесткость оболочек и снизить расход материала.

Такие конструкции дают возможность подчеркнуть контраст между плоскостью ограждающей стены, которая может быть независима от несущих опор и опирающимся на нее покрытием. Это дает возможность в этих конструкциях делать большие консольные вылеты для устройства подпорок и т.д. (Курский вокзал в Москве).

Складки и волны это интересная пластинчатая форма для потолка, а иногда и для стен в интерьерах.

Волнистая оболочка, когда для нее найдены масштаб, кривизна, форма, исходя из требований архитектурной эстетики, может быть достаточно выразительной. Этот тип конструкций разработан для пролетов более 100 м, которые были применены для покрытий самых различных объектов.

Многогранные складчатые своды-оболочки являются примером повышения жесткости цилиндрической оболочки путем придания многогранной формы.

Переход от оболочек одинарной кривизны к оболочкам двоякой кривизны знаменует собой новый этап в развитии оболочек, так как действие изгибающих усилий в них сводится к минимуму.

Такие оболочки применяются в зданиях с различными планами: квадратными, треугольными, прямоугольными и т.д.

Разновидностью таких оболочек на круглом или овальном плане является купол.

Оболочки двоякой кривизны могут выполняться как с вспарушенными так и пологими контурами.

К их недостаткам можно отнести: завышенный объем перекрываемого здания, большую поверхность кровли, не всегда благоприятные акустические характеристики. В покрытии возможно применение световых фонарей главным образом, в центре.

Такие оболочки могут выполняться в монолитном и сборно-монолитном варианте железобетона.

Пролеты этих зданий варьируются в пределах 24-30 м. Устойчивость оболочки обеспечивается системой предварительно-напряженных балок жесткости с сеткой 12×12 м. Контур оболочки опирается на преднапряженный пояс.

В ряде случаев целесообразно перекрывать зальные помещения шатровыми оболочками, имеющими форму усеченной пирамиды, выполненными из железобетона. Опираться они могут по контуру, по двум сторонам или углам.

Наиболее распространенные в строительной практике типы оболочек двоякой кривизны представлены на рис. 12, е, ж, з.



Купол представляет собой поверхность вращения. Усилия в нем действуют в меридиональном и широтном направлении. По меридиану возникают сжимающие напряжения. По широтам, начиная от вершины, возникают, также сжимающие усилия, переходящие постепенно в растягивающие, которые достигают своего максимума у нижнего края купола. Купольные оболочки могут опираться на опорное кольцо, работающее на растяжение, на колонны - через систему диафрагм или ребер жесткости, если оболочка имеет в плане квадратную или многогранную форму.

Купол возник в странах Востока и имел, прежде всего, утилитарное назначение. При отсутствии дерева покрытием для жилищ служили глиняные и кирпичные купола. Но постепенно, благодаря своим исключительным эстетическим и тектоническим качествам, купол приобрел самостоятельное смысловое содержание как архитектурная форма. Развитие формы купола связано с постоянным изменением характера его геометрии. От сферической и шаровой формы строители переходят к остроконечной со сложными параболическими очертаниями.

Купола бывают сферические и многогранные, ребристые, гладкие, гофрированные, волнистые (рис. 16, а). Рассмотрим наиболее характерные примеры купольных оболочек.

Покрытие дворца спорта в Риме (1960 г), построенного по проекту профессора П.Л. Нерви для Олимпийских игр, представляет собой сферический купол, выполненный из сборных армоцементных элементов шириной 1,67 до 0,34 м, имеющих сложную пространственную форму (рис. 17, а). 114 сегментов купола опираются на 38 наклонных опор (3 сегмента на 1 опору). После выполнения монолитных конструкций и замоноличивания сборных сегментов, конструкция купола стала работать как единое целое. Здание было построено за 2,5 месяца.



Купольное покрытие концертного зала в Мацуяма (Япония), выполненного в 1954 г. по проекту архитектора Кенцо Танге и инженера Цибон, представляет собой сегмент шара диаметром 50 м, стрелой подъема 6,7 м (рис. 17, б). В покрытии устроено 123 круглых отверстия диаметром 60 см для верхнего освещения зала.

Толщина оболочки в середине 12 см, у опор 72 см. Утолщенная часть оболочки заменяет опорное кольцо.



Купол над зрительным залом театра в Новосибирске (1932 г.) имеет диаметр 55,5 м, стрела подъема 13,6 м. Толщина оболочки 8 см (1/685 пролета). Она опирается на кольцо сечением 50 × 80 см (рис 17, в).

Купол выставочного павильона в Белграде (Югославия) сооружен в 1957 г. Диаметр купола 97,5 м со стрелой подъема 12-84 м. Купол представляет собой конструкцию, состоящую из монолитной центральной части диаметром 27 м, и кольцевой, полой, трапецеидального сечения железобетонной балки, на которую опирается 80 сборных железобетонных полуарок двутаврового сечения, раскрепленных тремя рядами кольцевых оболочек (рис 17, г).

Купольное покрытие стадиона в Опорто (Португалия), сооруженного в 1981 г. имеет диаметр 92 м.

Покрытие выполнено из 32 меридианально-расположенных ребер, опирающихся на треугольные рамы, и 8 железобетонных колец. Диаметр купола в зоне опирания его на треугольные рамы - 72 м, высота купола 15 м. По железобетонному каркасу выполнена оболочка купола из бетона на пробковом заполнителе.

В вершине купола сооружен световой фонарь (рис 17, д).

На рис. 18 приведены примеры куполов-оболочек, выполненных в металле. Опыт строительства таких зданий показал, что они не лишены недостатков. Так, главным из них является большой строительный объем зданий и чрезмерно большая масса строительных конструкций.

В последние годы появились первые купольные здания с раздвижной кровлей.

Например, для стадиона в Питсбурге (рис. 18) применены скользящие радиально по поверхности купола секторные элементы оболочки, изготовленные из алюминиевых сплавов.

В деревянных куполах (рис. 19, а, б, в) несущими конструкциями являются деревянные пиленые или клееные элементы. В современных пологих куполах основные элементы каркаса работают на сжатие, ввиду чего применение дерева особенно целесообразно.

Начиная со средних веков, дерево в куполостроении применяется в качестве конструкционного материала. Много деревянных куполов, относящихся к эпохе Средневековья, сохранилось до настоящеговремени в странах Западной Европы. Они часто представляют собой надчердачное покрытие над основным куполом, выполненное в кирпиче. Эти купола имели могучую систему связей жесткости. К числу таких куполов принадлежит, например, главный купол Троицкой церкви в Ленинграде. Купол диаметром 25 м и стрелой подъема 21, 31 м, возведен в 1834 г. и существует до настоящего времени. Из деревянных куполов того времени, этот купол был наибольшим в мире. Он имеет типичную брусчатую конструкцию, состоящую из 32 меридиональных ребер, соединенных несколькими брусами кольцевых связей.


Рис. 18 Примеры куполов-оболочек, выполненных в металле


В 1920-30 гг. в нашей стране было возведено несколько деревянных куполов значительных размеров. Деревянными тонкостенными куполами были перекрыты газгольдеры диаметром 32 м на Березниковском и Бобриковском химкомбинатах. В Саратове, Иванове и Баку деревянными куполами были перекрыты цирки диаметрами соответственно 46, 50 и 67 м. Эти купола имели ребристую конструкцию,где ребра представляли собой решетчатые арки (рис. 19, б).

Современная техника склейки древесины прочными водостойкими синтетическими клеями и большой опыт производства клееной древесины, и ее применение в строительстве, позволили ввести древесину как новый высококачественный материал в большепролетные сооружения. Конструкции из древесины прочны, долговечны, огнестойки и экономичны.


Рис 19. Примеры применения деревянных куполов оболочек


Купола из клееной древесины используются для перекрытия выставочных и концертных залов, цирков, стадионов, планетариев и других общественных зданий. Архитектурно-конструктивные типы куполов из клееной древесины очень разнообразны. Наиболее часто применяются ребристые купола, купола с треугольной сеткой и сетчатые купола с решеткой кристаллического типа, разработанные профессором М.С. Туполевым.

В США и Англии сооружен ряд куполов из клееной древесины.

В штате Монтана (США) над зданием спортивного центра на 15 тыс. зрителей в 1956 г. был возведен деревянный купол диаметром 91,5 м со стрелой подъема 15,29 м (рис. 19, в). Несущий остов купола состоит из 36 меридиональных ребер сечением 17,5×50 см. Ребра опираются на выполненное из прокатных профилей нижнее опорное кольцо и на сжатое верхнее металлическое кольцо. Купол установлен на железобетонные колонны высотой 12 м. В каждой ячейке, образованной ребрами и прогонами, по диагонали крест-накрест натянуты стальные тяжи. Монтаж купола производился спаренными полуарками вместе с прогонами и тяжами. Каждая полуарка длиной 45 м собиралась на земле из трех частей.

Складчатые купола монтируются из армоцементных пространственных скорлуп, расположенных в один или два яруса, или их выполняют монолитными (рис. 19, а).

Волнообразные купола применяют при пролетах более 50 м. Волнообразную форму поверхности купола придают для обеспечения большей жесткости и устойчивости (рис. 20, а, б).

Покрытие крытого рынка в Руайене (Франция) построенного по проекту архитекторов Симона и Морисео, инженера Сарже в 1955 г. представляет собой волнообразную сферическую оболочку из радиально расположенных 13 синусообразных параболоидов (рис. 20, а). Диаметр купола - 50 м, высота 10,15 м, ширина волны 6 м, толщина 10,5 см. Нижние края волн непосредственно опираются на фундамент.



Покрытие цирка в Бухаресте (1960 г.), выполнено по проекту института "Проект-Бухарест", представляет собой волнообразный купол диаметром 60,6 м, состоящий из 16 параболических волнсегментов (рис 20, б). Толщина оболочки 7 см в вершине, 12 см - у опор. Купол опирается на 16 столбов, связанных между собой полигональным предварительно-напряженным железобетонным поясом, воспринимающим усилия распора в куполе.

Оболочки с поверхностью переноса применяют при покрытии прямоугольных или многоугольных в плане помещений. Опираются такие оболочки на диафрагмы по всем сторонам многоугольника. Поверхность оболочки переноса образуется, при поступательном движении одной кривой по другой при условии, что обе кривые выгнуты кверху и находятся в двух взаимно перпендикулярных плоскостях (рис. 12, е).

Оболочки переноса (рис. 12, д) работают в поперечном и продольном направлении подобно сводам.

Мощные затяжки, подвешенные под продольными ребрами, воспринимают распор в направлении пролета. В поперечном направлении распор от оболочки в крайних пролетах воспринимают диафрагмы жесткости и бортовые элементы, а в средних пролетах распор погашается соседними оболочками. Поперечные сечения оболочек переноса по всей длине свода, кроме опорных зон, чаще принимают круговыми (рис. 16, б).

Примером оболочки с поверхностью переноса является покрытие резиновой фабрики в Бринморе (Южный Уэльс, Англия), построенной в 1947 г. (рис. 21, б). Покрытие состоит из 9 прямоугольных эллиптических оболочек размером 19 × 26 м. Толщина оболочек 7,5 см. Жесткость оболочек обеспечена боковыми диафрагмами.



В опорных зонах оболочка может заканчиваться коноидальными элементами, обеспечивающими переход от кругового поперечного сечения средней зоны к прямоугольному по линии опирания.

По этой системе в Ленинграде построено покрытие над автогаражом пролетом 96 м, состоящее из 12 сводов шириной 12 м каждый.

Сферические парусные оболочки образуются в том случае, если сферическая поверхность ограничивается вертикальными плоскостями, построенными на сторонах квадрата. Диафрагмы жесткости в этом случае одинаковы для всех четырех сторон (рис 12, в, д, рис. 16).

Сборные ребристые сферические оболочки размером 36×36 м находят использование при строительстве многих промышленных объектов (рис. 21, д). В этом решении применяются плиты четырех типоразмеров: в средней части квадратные 3×3 м, а к периферии - оболочки ромбические, близкие к размеру квадрата. Эти плиты имеют диагональные рабочие ребра и небольшие утолщения по контуру.

Концы арматуры диагональных ребер оголены. При монтаже их сваривают с помощью накладных стержней. В швы между плитами в зоне угловых стыков закладывают стержни с надетой на них спиральной арматурой. После этого швы замоноличивают.

Сферическое покрытие здания Новосибирского торгового центра имеет размеры в плане 102×102 м, подъем контурных арок равен 1/10 пролета. Такой же подъем имеет образующая кривая оболочки.

Общий подъем оболочки равен 20,4 м. Разрезка поверхности оболочки выполнена с учетом схемы переноса. На угловых участках плиты покрытия расположены диагонально в целях размещения в продольных (диагональных) швах напряженной арматуры.

Опорные части угловых участков покрытия, испытывающие наибольшие напряжения, решены в монолитном железобетоне.

Покрытия зала собраний на 1200 мест Массачусетского технологического института в Бостоне (США) выполнено по проекту архитектора Эро Сааринера. Оно представляет собой сферическую оболочку диаметром 52 м и имеет в плане форму треугольника.

Сферическая оболочка покрытия представляет собой 1/8 часть шаровой поверхности. По контуру оболочка опирается на три криволинейных несущих пояса, которые передают усилия на опоры, расположенные в трех точках (рис. 21, г). Толщина оболочки от 9 до 61 см.

Столь большая толщина оболочки у опор объясняется значительными изгибающими моментами, возникающими в оболочке из-за больших вырезов, что говорит о неудачном конструктивном решении.

Покрытие торгового центра в Каноэ (Гавайские острова, США) выполнено в виде сферической оболочки с гладкой поверхностью размером 39,01×39,01 м. Оболочка не имеет диафрагмы жесткости и опирается углами на 4 устоя. Толщина оболочки 76-254 мм. (рис. 21, а).

Покрытие (Испания) крытого рынка в Алхесиросе, построенного в 1935 г. по проекту инженера Торрохи и архитектора Аркаса, представляет собой восьмигранную сферическую оболочку диаметром 47,6 м.

Восемь опор, на которые опирается оболочка, связаны между собой полигональным поясом, воспринимающим распор от оболочки (рис. 21, в).


5 Оболочки с противоположным направлением кривизны


Оболочки с противоположным направлением одной и другой кривизны образуются путем перемещения прямой линии (образующей) по двум направляющим кривым. К ним относятся коноиды, однополые гиперболоиды вращения и гиперболические параболоиды (рис. 12, е, ж, з).

При образовании коноида образующая прямая опирается на кривую и на прямую линии (рис. 12, ж). В результате получается поверхность с противоположным направлением одной кривизны. Коноид применяется главным образом для шедовых крыш и дает возможность получать множество разнообразных форм. Направляющая кривой коноида может быть параболой или круговой кривой. Коноидная оболочка в шедовом покрытии позволяет обеспечить естественное освещение и проветривание помещений (рис. 16, г, д).

Опорными элементами коноидных оболочек могут являться арки, рандбалки и других конструкции.

Пролет таких оболочек составляет от 18 до 60 м. Возникающие в оболочке коноида растягивающие напряжения, передаются на жесткие диафрагмы. Нагрузка оболочки коноида воспринимается четырьмя опорами, размещенными обычно в четырех угловых точках оболочки.

Примером может служить приемный и складской корпус крытого рынка в Тулузе (Франция), построенный по проекту инженера Прата. Рынок перекрыт конструкцией, состоящей из параболических железобетонных арочных ферм пролетом 20 м, со стрелой подъема 10 м и коноидных оболочек толщиной 70 мм, расстояние между арками - 7 м. Расположенные вдоль продольных сторон здания погрузочные площадки перекрыты цилиндрическими оболочками в виде консолей длиной 7 м, удерживаемых с помощью вант, опирающихся на арки (рис.22, а).

Образующая прямая однополого гиперболоида вращения оборачивается вокруг оси, с которой она пересекается в наклонном положении (рис. 12, з). При перемещении этой прямой возникают как бы две системы образующих, пересекающихся на поверхности оболочки.

Примером применения этой оболочки являются трибуны ипподрома Зарзуэла в Мадриде (рис. 22, б) и рынок в Со (Франция) (рис. 22, в).

Образование поверхности гиперболического параболоида (гипара) определяется системами непараллельных и непересекающихся прямых (рис. 12, з), которые называются направляющими линиями. Каждая точка гиперболического параболоида является точкой пересечения двух образующих, входящих в состав поверхности.


Рис. 22 Примеры применения коноидальных оболочек и гиперболоидов вращения


При равномерно распределенной нагрузке напряжения во всех точках поверхности гипара имеют постоянную величину. Это объясняется тем, что усилия растяжения и сжатия одинаковы для каждой точки. Вот почему гипары имеют большую сопротивляемость к выпучиванию. Когда оболочка под действием нагрузки стремится прогнуться, растягивающее напряжение в направлении, нормальном к этому давлению, автоматически возрастает. Это позволяет выполнять оболочки малой толщины, часто безбортовых элементов.

Первые статические исследования гипаров опубликовал в 1935 г. француз Лафай, но практическое применение в работах они нашли лишь после второй мировой войны. Борони в Италии, Рубана в Чехословакии, Канделы в Мексике, Сальвадори в США, Сарже во Франции. Эксплуатационные и экономические достоинства гипаров и неограниченные эстетические возможности создают для их применения огромный простор.

На рис. 16, е, ж, з, и показаны возможные комбинации из поверхностей плоских гипаров.


Рис. 23 Примеры применения гипаров в строительстве


Покрытие городского театрального зала в Шизуске (Япония) архитектор Кенцо Танге, инженер Шошикацу Пауоби (рис. 23, а). В зале предусмотрено 2 500 мест для зрителей. Здание в плане квадратное, со стороной равной 54 м. Оболочка имеет форму гипара, поверхность которого усилена ребрами жесткости, расположенными параллельно сторонам квадрата через 2,4 м. Вся нагрузка от покрытия передается на две железобетонные опоры, связанные друг с другом под полом зала железобетонными прогонами. Дополнительными опорами рандбалок оболочки являются тонкие качающиеся стойки по фасадам здания. Ширина рандбалки 2,4 м, толщина 60 см, толщина оболочки 7,5 см.

Часовня и парковый ресторан в Мехико выполнены по проектам инженера Феликса Канделы. Вэтих сооружениях использованы сочетания нескольких гиперболических параболоидов (рис. 23, б, в)

По проекту Ф. Канделы выполнен также ночной клуб в Акапулько (Мексика). В этой работа применено 6 гипаров.

Мировая практика строительства богата примерами различных форм гипаров в строительстве.


6 Перекрестно-ребристые и перекрестно-стержневые покрытия


Перекрестно-ребристые покрытия представляют собой систему балок или ферм с параллельными поясами, перекрещивающимися в двух, а иногда и в трех направлениях. Эти покрытия по своей работе приближаются к работе сплошной плиты. За счет создания перекрестной системы появляется возможность уменьшить высоту ферм или балок до 1/6-1/24 пролета. Следует отметить, что перекрестные системы эффективны лишь для прямоугольных помещений с отношением сторон в пределах от 1:1 до 1,25:1. При дальнейшем увеличении этого отношения конструкция теряет свои преимущества, превращаясь в обычную балочную систему. В перекрестных системах очень выгодно применять консоли с вылетом до 1/5-1/4 пролета. Рациональное опирание перекрестных покрытий, использующее пространственный характер их работы, позволяет оптимизировать их применение и возводить разнообразные по габаритам и опиранию покрытия из однотипных сборных элементов заводского изготовления.

В перекрестно-ребристых покрытиях расстояние между ребрами применяется от 1,5 м до 6 м. Перекрестно-ребристые покрытия могут быть стальными, железобетонными, деревянными.

Перекрестно-ребристые покрытия, выполненные из железобетона в виде кессонов, рационально применять с пролетами до 36 м. При больших пролетах следует переходить на использование стальных или железобетонных ферм.

Деревянные перекрестные покрытия размером до 24 × 24 м выполняются из фанеры и брусков на клею и гвоздях.

Примером использования перекрестных ферм может быть проект Зала конгрессов в Чикаго выполненный в 1954 г. архитектором Ван Дер Роэ (США). Размеры покрытия зала 219,5 × 219,5 м (рис. 24, а).


Рис. 24 Перекрестно-ребристые покрытия, выполненные в металле


Высота зала до верха конструкций - 34 м. Перекрестные конструкции выполнены из стальных ферм с параллельными поясами с раскосной решеткой высотой 9,1 м. Вся конструкция опирается на 24 опоры (по 6 опор на каждой стороне квадрата).

В выставочном павильоне в Сокольниках (Москва) выстроенном в 1960 г. по проекту "Моспроекта", применена перекрестная система покрытия размером 46 × 46 м из алюминиевых ферм, опирающихся на 8 колонн Шаг ферм 6 м, высота - 2,4 м. Кровля выполнена из алюминиевых панелей длиной 6 м (рис. 24, б)

Институт ВНИИЖелезобетон совместно с ЦНИИЭПжилища разработали оригинальную конструкцию перекрестно-диагонального покрытия размером 64 × 64 м, выполненного из сборных железобетонных элементов. Покрытие опирается на 24 колонны, расположенные по сторонам квадрата 48 × 48 м, и состоит из пролетной части и консольной с выносом 8 м. Шаг колонн 8 м.

Данная конструкция нашла свое применение при строительстве Дома Мебели на Ломоносовском проспекте в Москве (авторы А. Образцов, М. Контридзе, В. Антонов и др.) Все покрытие выполнено из 112 сборных сплошных железобетонных элементов двутаврового сечения длиной 11,32 м и 32 аналогичных элементов длиной 5,66 м (рис. 25). Ограждающим элементом покрытия является легкий сборный утепленный щит, по которому укладывается многослойный гидроизоляционный ковер.

Стержневые пространственные конструкции из металла это дальнейшее развитие плоскостных решетчатых конструкций. Принцип стержневой пространственной конструкции известен человечеству с древнейших времен, он использован и в монгольских юртах и в хижинах жителей тропической Африки, и в каркасных постройках Средневековья, а в наше время - в конструкциях велосипеда, самолета, подъемного крана и т.д.

Стержневые пространственные конструкции получили широкое распространение во многих странах мира. это объясняется простотой их изготовления, легкостью монтажа, а самое главное - возможностью промышленного изготовления. какова бы ни была форма стержневой пространственной конструкции, в ней всегда можно выделить три типа элементов: узлы, соединительные стержни и зоны. соединенные между собой в определенном порядке, эти элементы образуют плоские пространственные системы.

К пространственным системам стержневых конструкций относятся:

Стержневые структурные плиты (рис. 26);

Сетчатые оболочки (цилиндрические и конические оболочки, оболочки переноса и купола) (рис. 27).

Стержневые пространственные конструкции могут быть однопоясными, двухпоясными и многопоясными. например, структурные плиты выполняют двухпоясными, а сетчатые купола и цилиндрические оболочки при обычных пролетах - однопоясными.

Узлы и соединительные стержни формируют пространство, заключенное между ними (зону). зоны могут быть в виде тетраэдра, гексаэдра (куба) октаэдра, додекаэдра, и т.д. форма зоны может обеспечивать или не обеспечивать жесткость стержневой системы, так например, тетраэдр, октаэдр и икосаэдр являются жесткими зонами. Проблема устойчивости для однослойных сетчатых оболочек связана с возможностью так называемого "прощелкивания" их подобно тонкостенным оболочкам (рис. 26).


Рис. 26 Стержневые конструкции из металла



Угол ? может быть значительно меньше ста градусов. Само прощелкивание не приводит к обрушению всей сетчатой конструкции, конструкция в этом случае приобретает другую устойчивую равновесную конструкцию.

Узловые соединения, применяемые в стержневых конструкциях, зависят от конструкции стержневой системы. так, в однослойных сетчатых оболочках должны применяться узловые соединения с жестким защемлением стержней в направлении нормальном к поверхности, чтобы избежать "прощелкивание" узлов, а в структурных плитах, как и вообще в многопоясных системах, жесткого соединения стержней в узлах не требуется. конструкция узлового соединения зависит от пространственного расположения стержней и возможностей завода-изготовителя.

Наиболее распространенные системы стержневых соединений, применяемые в мировой практике следующие:

Система "меко" (соединение на резьбе с помощью фасонного элемента - шара), получила широкое распространение благодаря простоте изготовления и монтажа (рис. 28, в);

Система "спейс-дек" из пирамидальных, сборных элементов, которые в плоскости верхнего пояса соединяются между собой на болтах, а в плоскости нижнего пояса связываются растяжками (рис. 28, а);

Соединение стержней на сварке с помощью кольцевых или шаровых фасонных деталей (рис. 28, б);

Соединение стержней с помощью гнутых фасонок на болтах и др. (рис. 28, г); стержневые (структурные) плиты имеют следующие основные геометрические схемы:

Двухпоясная структура с двумя семействами поясных стержней;

Двухпоясная структура с тремя семействами поясных стержней;

Двухпоясная структура с четырьмя семействами поясных стержней.

Первая структура - простейшая и чаще всего применяемая в настоящее время конструкция. Она характеризуется простотой узловых соединений (в одном узле сходятся не более девяти стержней), удобна для перекрытий помещений, прямоугольных в плане. Конструктивная высота структурной плиты принитается равной 1/20 … 1/25 пролета. при обычных пролетах до 24 м высота плиты равна 0,96 … 1,2 м. если конструкция выполняется из стержней одинаковой длины, эта длина равна 1,35 … 1,7 м. ячейки структурной плиты при таких размерах могут быть перекрыты обычными кровельными элементами (холодными или утепленными) без дополнительных прогонов или обрешетки. при значительных пролетах плиты необходимо устройство прогонов под кровлю, так как при пролете 48 м высота плиты составит около 1,9 м, а длина стержней около 2,7 м. Примеры применения в строительстве структурных плит приведены на рис. 29. Сетчатые цилиндрические оболочки выполняются в виде стержневых сеток с одинаковыми ячейками (рис. 27). Простейшая сетчатая цилиндрическая оболочка образуется изгибом плоской треугольной сетки. но цилиндрическая сетчатая оболочка может быть легко получена и при ромбической форме сетки. В этих оболочках узлы располагаются на поверхности различного радиуса, что подобно двойной кривизне, повышает несущую способность оболочки. Этого эффекта можно добиться и в треугольной стержневой сетке.


Рис. 28 Некоторые виды узловых соединений в стержневых конструкциях


Сетчатые купола, имея поверхность двоякой кривизны, как правило, выполняются из стержней различной длины. форма их весьма разнообразна (рис. 27, а). Геодезические купола, творцом которых является инженер Футтлер (США), представляют собой конструкцию, в которой поверхность купола разбита на равносторонние сферические треугольники, образованные либо стержнями различной длины, либо панелями различных размеров. Сетчатые конические оболочки по конструктивному решению аналогичны сетчатым куполам, уступая, однако, им в жесткости. Преимущества их - развертывающаяся поверхность, облегчающая раскрой элементов кровельного покрытия. Геометрическая структура сетчатых конических оболочек может быть построена на формах правильных многоугольников, при этом в вершине конуса могут сходиться три, четыре или пять равносторонних треугольников. Все стержни системы имеют одинаковую длину, но углы в смежных горизонтальных поясах оболочки изменяются. Другие формы сетчатых оболочек приведены на рис.е 27, б, в, д. кровельные покрытия в пространственных стержневых конструкциях, типа структурных плит, мало отличаются от обычно используемых для стальных конструкций. покрытия сетчатых оболочек одинарной и двоякой кривизны решены по другому. При применении легких теплоизоляционных материалов эти покрытия, как правило, не соответствуют теплотехническим требованиям (зимой холодно, летом жарко). в качестве теплоизоляции можно рекомендовать оптимальный материал - пенопорис.иролбетон.

Он может быть монолитным (наливной способ устройства кровли) и сборным, может укладываться непосредственно в формы, в которых изготавливаются железобетонные сборные элементы покрытий и т.д. этот материал легкий (плотность 200 кг/м3), трудносгораемый и не требует цементной стяжки. Также применяются другие полужесткие и мягкие синтетические утеплители.

Наиболее перспективным в настоящее время следует считать применение мастичных цветных кровель, так как они одновременно с проблемой гидроизоляции решают вопросы и внешнего вида конструкций, что особенно существенно для покрытий двоякой кривизны в нашей стране применяется мастика "кровелит", позволяющая получать различные цветовые оттенки кровли (разработана ниипроектполимеркровля). В конструкциях, где поверхность кровли не видна, могут применяться рубероидный ковер или синтетические пленки и ткани. хорошие результаты дает применение кровельных пакетов из гофрированных алюминиевых рис.ов с заштампованным в них жестким синтетическим утеплителем.

Покрытие кровли из металлических рис.овых материалов нецелесообразно экономически. Водоотвод с поверхности кровель решается в каждом случае индивидуально.


5. Висячие (вантовые) конструкции


В 1834 г. был изобретен проволочный трос - новый конструктивный элемент, нашедший очень широкое применение в строительстве, благодаря своим замечательным свойствам - высокой прочности, малой массе, гибкости, долговечности. В строительстве проволочные тросы были впервые применены в качестве несущих конструкций висячих мостов, а затем уже получили распространение в большепролетных висячих покрытиях.

Развитие современных вантовых конструкций началось в конце XIX в. На строительстве нижегородской выставки 1896 г. русский инженер в.г. Шухов впервые применил пространственно работающую металлическую конструкцию, где работа жестких элементов на изгиб была заменена работой гибких вант на растяжение.


1 Висячие покрытия


Висячие покрытия применяются на зданиях практически любых по конфигурации планов. Архитектурный облик сооружений с висячими покрытиями разнообразен. Для висячих покрытий используются проволоки, волокна, стержни, выполненные из стали, стекла, пластмасс и дерева. В нашей стране с начала века построено более 120 зданий с висячими покрытиями. Отечественной наукой создана теория расчета висячих систем и конструкций с применением ЭВМ.

В настоящее время существуют покрытия пролетом около 500 м. В висячих покрытиях на несущие элементы (тросы) расходуется примерно 5-6 кг стали на 1 м2 перекрываемой площади. Вантовые конструкции имеют высокую степень готовности, а монтаж их несложен.

Устойчивость висячих покрытий обеспечивается за счет стабилизации (предварительного натяжения) гибких тросов (вант). Стабилизация тросов может быть достигнута путем пригрузки в однопоясных системах, созданием двухпоясных систем (тросовых ферм) и самонапряжением тросов при перекрестных системах (тросовых сетках). В зависимости от способа стабилизации отдельных тросов можно создать различные плиты висячих конструкций (рис. 30, 1).

Висячие покрытия одинарной кривизны - это системы из одиночных тросов и двухпоясные вантовые системы. Система из одиночных тросов (рис. 30, 1, а) представляет собой несущую конструкцию покрытия, состоящую из параллельно расположенных элементов (тросов), образующих вогнутую поверхность.



Для стабилизации тросов этой системы применяют сборные железобетонные плиты. В случае замоноличивания тросов в конструкции покрытия получается висячая оболочка. Величина растягивающих усилий в тросах зависит от их провеса в середине пролета. оптимальное значение стрелы провеса составляет 1/15-1/20 пролета. Вантовые покрытия с параллельными одиночными тросами применяют для прямоугольных в плане зданий. Располагая точки подвеса тросов к опорному контуру в различных уровнях или давая им различную стрелу провеса, можно выполнить покрытие с кривизной в продольном направлении, что позволит осуществить наружный водоотвод с покрытия. Двухпоясная вантовая система, или тросовая ферма, состоит из несущего и стабилизирующего тросов, имеющих кривизну разного знака. Покрытия по ним могут иметь небольшую массу (40-60 кг/м2). Несущий и стабилизирующий тросы связывают между собой стержнями круглого сечения или тросовыми растяжками. достоинство двухпоясных вантовых систем с диагональными связями состоит в том, что они весьма надежны при динамических воздействиях и обладают малой деформативностью. Оптимальная величина стрелы провеса (подъема) поясов тросовых ферм для верхнего пояса 1/17-1/20, для нижнего пояса 1/20-1/25 пролета (рис. 30, рис. 1, в). На рис. 31 показаны примеры вантовых покрытий одинарной кривизны. Вантовые покрытия двоякой кривизны, могут быть представлены системой одиночных тросов и двухпоясными системами, а также перекрестными системами (тросовыми сетками). Покрытия, с применением систем из одиночных тросов, чаще всего выполняют в помещениях с круглым планом и радиальным размещением тросов. Ванты крепятся одним концом к сжатому опорному кольцу, а другим - к растянутому центральному кольцу (рис. 30, рис. 1, б). Возможен вариант установки в центре опоры. Двухпоясные системы принимают аналогично перекрытиям одинарной кривизны.


Рис. 31 Примеры вантовых покрытий одинарной кривизны


В покрытиях с круглым планом возможны следующие варианты взаимного расположения несущего и стабилизирующего тросов: тросы расходятся или сходятся от центрального кольца к опорному, тросы пересекаются между собой, расходясь в центре и у периметра покрытия (рис. 30). Перекрестная система (тросовые сетки) образуются двумя пересекающимися семействами параллельных тросов (несущих и стабилизирующих). Поверхность покрытия в этом случае имеет седловидную форму (рис. 30, рис. 1, г). Усилие предварительного напряжения в стабилизирующих тросах передается на несущие тросы в виде сосредоточенных сил, приложенных в узлах пересечения. применение перекрестных систем позволяет получить разнообразные форм вантовых покрытий. для перекрестных вантовых систем оптимальная величина стрелы подъема стабилизирующих тросов составляет 1/12-1/15 пролета, а стрела провеса несущих тросов - 1/25-1/75 пролета. возведение таких покрытий трудоемко. Впервые было применено мэтью новицким в 1950 г. (северная каролина). Перекрестная система позволяет применять легкие кровельные покрытия в виде сборных плит из легкого бетона или армоцемента.

На рис. 31 и 32 представлены примеры вантовых покрытий одинарной и двоякой кривизны. Форма вантового покрытия и очертание плана перекрываемого сооружения определяют геометрию опорного контура покрытия и, следовательно, форму опорных (поддерживающих) конструкций. Эти конструкции представляют собой плоские либо пространственные рамы (стальные или железобетонные) со стойками постоянной или переменной высоты. элементами опорной конструкции являются ригели, стойки, подкосы, тросовые оттяжки и фундаменты. опорные конструкции должны обеспечивать размещение анкерных креплений тросов (вант), передачу реакций от усилий в тросах на основание сооружения и создание жесткого опорного контура покрытия для ограничения деформаций вантовой системы.

В покрытиях с прямоугольным или квадратным планом тросы (тросовые фермы) обычно расположены параллельно друг другу. Передача распора может быть осуществлена несколькими способами:

Через жесткие балки, расположенные в плоском покрытии на торцевые диафрагмы (сплошные стены или контрфорсы); промежуточные стойки воспринимают лишь часть вертикальных составляющих усилий в тросах (рис. 33, в);

Передача распора на рамы, расположенные в плоскости тросов, с передачей усилий распора непосредственно на жесткие рамы или контрфорсы, состоящие из растянутых или сжатых стержней (стоек, подкосов). Возникающие в подкосах рамных контрфорсов большие растягивающие усилия воспринимаются с помощью специальных анкерных устройств в грунте в виде массивных фундаментов или конических (полых или сплошных) железобетонных анкеров (рис. 33, б);



Передача распора через тросовые оттяжки наиболее экономный способ восприятия распора; оттяжки могут крепиться к самостоятельным стойкам и анкерным фундаментам или объединяться по несколько оттяжек на одну стойку или одно анкерное устройство (рис. 33, а).

В круговых покрытиях тросы или тросовые фермы располагаются радиально. При действии на покрытие равномерно распределенной нагрузки усилия во всех тросах одинаковы, а наружное опорное кольцо равномерно сжато. В этом случае отпадает необходимость в устройстве анкерных фундаментов. При неравномерной нагрузке в опорном кольце могут возникать изгибающие моменты, которые необходимо учитывать и не допускать избыточных моментов.

Для круговых покрытий применяют три основных варианта опорных конструкций:

С передачей распора на горизонтальное наружное опорное кольцо (рис. 33, г);

С передачей усилий в тросах на наклонное наружное кольцо (рис. 33, д);

С передачей распора на наклонные контурные арки, опирающиеся

на ряд стоек, которые воспринимают вертикальные усилия от покрытия (рис. 33, е, ж).

Для восприятия усилий в арках их пяты опирают на массивные фундаменты, либо связывают затяжками. Теория расчета ферм из тросов в настоящее время разработана достаточно полно, имеются рабочие формулы и программы для ЭВМ.


2 Подвесные вантовые конструкции


В отличие от других видов висячих покрытий в подвесных покрытиях несущие ванты находятся над поверхностью кровли.

Несущую систему подвесных покрытий составляют ванты с вертикальными или наклонными подвесками, которые несут либо легкие балки, либо непосредственно плиты покрытия.

Ванты закреплены на стойках, расчаленных в продольном и поперечном направлениях.

Подвесные перекрытия могут иметь любую геометрическую форму и выполняются из любых материалов.

В подвесных вантовых конструкциях несущие стойки могут располагаться в один, два или несколько рядов в продольном или поперечном направлениях (рис. 34).



При устройстве подвесных вантовых конструкций вместо оттяжек можно применять консольные выносы покрытий, уравновешивающих натяжение в вантах.

Несколько примеров из практического строительства.

Подвесное покрытие с кровлей из прозрачной пластмассы было построено впервые в 1949 г. над автобусной станцией в Милане (Италия). Наклонное покрытие системой вант подвешено к наклонным же несущим стойкам. Равновесие достигается специальными оттяжками, прикрепленными к краям покрытия.

Подвесное покрытие над олимпийским стадионом в Скво-велли (США). Стадион вмещает 8000 зрителей. Размеры его в плане 94,82 × 70,80 м. подвесное покрытие представляет собой восемь пар наклонных коробчатых балок переменного сечения, поддерживаемых вантами. Ванты опираются на 2 ряда стоек, установленных через 10,11 м. по балкам уложены прогоны, а по ним коробчатого сечения плиты длиной 3,8 м. несущие ванты - тросы имеют диаметр 57 мм. При проектировании подвесных конструкций существенными вопросами являются защита подвесок от коррозии на открытом воздухе и решение узлов прохода подвесок через кровлю. Для этого целесообразно применять оцинкованные канаты закрытого профиля или профильную сталь, доступную для периодического осмотра и покраски во избежание коррозии.


3 Покрытия с жесткими вантами и мембраны


Жесткая ванта представляет собой ряд стержневых элементов из профильного металла, шарнирно соединенных между собой и образующих при закреплении крайних точек на опорах свободно провисающую нить. Соединение жестких вант между собой и с опорными конструкциями не требует применения сложных анкерных устройств и высоко квалифицированной рабочей силы.

Основным достоинством этого покрытия явилась его высокая устойчивость к воздействию ветрового отсоса и флаттера (изгибно-крутильных колебаний) без установки специальных ветровых связей и предварительного напряжения. Это достигнуто благодаря применению жестких вант и повышению постоянной нагрузки на покрытие.

Висячие оболочки из различных рис.овых материалов (сталь, алюминиевые сплавы, синтетические ткани и т.д.) принято называть мембранами. Мембраны могут выполняться на заводе и доставляться на стройку свернутыми в рулоны. В одном конструктивном элементе совмещаются несущие и ограждающие функции.

Эффективность мембранных покрытий возрастает, если для повышения их жесткости вместо тяжелых кровель и специального пригруза применить предварительное натяжение. Стрела провиса мембранных покрытий принимается 1/15-1/25 пролета.

По контуру мембрана подвешивается к стальному или железобетонному опорному кольцу.

Мембрана применяется при любой геометрической форме плана. Для мембран на прямоугольном плане применяют цилиндрическую поверхность покрытия, на круглом плане - сферическую или коническую (пролет ограничен до 60 м).


4 Комбинированные системы


При проектировании большепролетных сооружений встречаются здания, в которых целесообразно применить комбинацию простого конструктивного элемента (например, балки, арки, плиты) с натянутым тросом. Некоторые плиты комбинированных конструкций известны давно. Это шпренгельные конструкции в которых пояс-балка работает на сжатие, а металлический стержень или трос воспринимает растягивающие усилия. В более сложных конструкциях появилась возможность упростить конструктивную схему и за счет этого получить экономический эффект по сравнению с традиционными большепролетными конструкциями. Арочновантовая ферма была применена при возведении дворца спортивных игр "зенит" в ленинграде. здание в плане прямоугольное размерами 72 × 126 м. несущий каркас этого зала решен в виде десяти поперечных рам с шагом 12 м и двух торцевых фахверковых стен. каждая из рам выполнялась в виде блока из двух наклонных v-образных колонн-подкосов, четырех колонноттяжек и двух арочно-вантовых ферм. ширина каждого блока 6 м. железобетонные колонны-подкосы защемлены в подошве и шарнирно примыкают к арочно-вантовой ферме. Колонны-оттяжки вверху и внизу закреплены шарнирно. уравновешивание сил распора происходит, в основном, в самом покрытии. Этим данная система выгодно отличается от чисто вантовых конструкций, которые на прямоугольном плане требуют постановки оттяжек, контрфорсов или других специальных устройств. Предварительное напряжение вант обеспечит значительное снижение моментов в арке, возникающих при некоторых видах нагрузок.

Сечение стальной арки двутавровое высотой 900 мм. Ванты выполнены из канатов закрытого типа с заливными анкерами.

Железобетонная плита, подкрепленная шпренгелями, применена для покрытия девяти секций с размерами в плане 12 × 12 м универмага в Киеве. Верхний пояс каждой ячейки системы набирается из девяти плит размером 4 × 4 м. нижний пояс выполнен из перекрестных арматурных стержней. Эти стержни шарнирно закреплены к диагональным ребрам угловых плит, что позволяет замкнуть усилия системы внутри нее, передавая на колонну лишь вертикальную нагрузку.


5 Конструктивные элементы и детали вантовых покрытий


Проволочные тросы (канаты). основной конструктивный материал вантовых покрытий - изготавливаются из стальной холоднотянутой проволоки диаметром 0,5-6 мм, с пределом прочности до 220 кг/мм2. Различают несколько типов тросов:

Спиральные тросы (рис. 35, 1, а), состоящие из центральной проволоки, на которую спирально навиты последовательно в левом и правом направлении несколько рядов круглых проволок;

Многопрядевые тросы (рис. 35, рис. 1, б), состоящие из сердечника (пенькового каната или проволочной пряди), на который навиты односторонней или перекрестной круткой проволочные пряди (пряди могут иметь спиральную свивку) в этом случае трос будет называться спирально-прядевым;

Закрытые или полузакрытые тросы (рис. 35, рис. 1, в, г), состоящие из сердечника (например, в виде спирального троса), вокруг которого навиты ряды проволок фигурного сечения, обеспечивающие их плотное прилегание (при полузакрытом решении трос имеет один ряд навивки из круглых и фигурных проволок);

Тросы (пучки) из параллельных проволок (рис. 35, рис. 1, д), имеющие прямоугольное или многоугольное сечение и связанные между собой через определенные расстояния или заключенные в общую оболочку;

Плоские ленточные тросы (рис. 35, рис. 1, е), состоящие из ряда витых тросов (обычно четырехпрядевых) с попеременной правой или левой круткой, связанных между собой одинарной или двойной прошивкой проволокой или тонкими проволочными прядями, требуют надежной защиты от коррозии. возможны следующие способы антикоррозийной защиты тросов: оцинкование, лакокрасочные покрытия или смазки, покрытие пластмассовой оболочкой, покрытие оболочкой из рис.овой стали с нагнетением в оболочку битума или цементного раствора, обетонирование.



Окончания тросов должны быть выполнены таким образом, чтобы обеспечивать прочность окончания не меньше прочности троса и передачу усилий от троса на другие элементы конструкции. Традиционный вид концевого крепления тросов - петля со сплеткой (рис. 35, рис. 2, а), когда конец троса распускается на пряди, которые вплетаются в трос. для обеспечения равномерной передачи усилия в соединении в петлю вкладывают коуш. по длине тросы сращивают также сплеткой, кроме закрытых соединений. Вместо сплетки для скрепления и сращивания тросов часто применяют зажимные соединения:

Запрессовывание обеих ветвей троса при петлевом креплении в овальную муфту из легкого металла, внутренние размеры которой соответствуют диаметру троса (рис. 35, рис. 2, б);

Винтовые соединения, когда конец троса распускают на пряди, которые укладывают вокруг стержня с винтовой нарезкой, а затем запрессовывают в муфту из легкого металла (рис. 35, рис. 2, в);

Крепление посредством хомутов (рис. 35, рис. 2, д, к), не рекомендуемых для напряженных тросов вантовых покрытий, так как они с течением времени ослабевают;

Крепление тросов с заливкой металлом (рис. 35, рис. 2, е, ж), когда конец троса расплетают, очищают, обезжиривают и помещают в коническую внутреннюю полость специальной муфты-наконечника, а затем заливают муфту расплавленным свинцом или сплавом свинца с цинком (возможна заливка бетоном);

Клиновые крепления тросов, редко применяемые в строительстве;

Стяжные муфты (рис. 35, рис. 2, г), применяемые для корректировки длины тросов при монтаже и их предварительного натяжения. Анкерные узлы служат для восприятия усилий в тросах и передачи их на опорные конструкции. в предварительно напряженных вантовых покрытиях они используются также для предварительного натяжения тросов. На рис.е 35, рис. 2, и показана анкеровка радиального троса кругового вантового покрытия в сжатом опорном кольце. чтобы обеспечить свободное перемещение троса при изменении угла его наклона, в опорном кольце и примыкающей к нему оболочке покрытия устроены конические гильзы, заполненные битумом. жесткое опорное кольцо и гибкая оболочка разделены деформационным швом.

Покрытия и кровли в зависимости от типа вантовой системы применяют тяжелую или легкую конструкцию покрытия.

Тяжелые покрытия выполняют из железобетона. их масса достигает 170-200 кг/м2, при сборных покрытиях применяют плоские или ребристые плиты прямоугольного или трапециевидного очертания. сборные плиты обычно подвешивают между тросами, а швы между плитами замоноличивают.

Легкие покрытия массой 40-60 кг/м2 обычно выполняются из крупноразмерных стальных или алюминиевых профилированных рис.ов, которы служат одновременно и несущими элементами ограждения и кровлей, если теплоизоляция отсутствует или крепится снизу. при размещении теплоизоляции поверх рис.ов необходимо устройство дополнительного кровельного покрытия. легкие покрытия целесообразно выполнять из легких металлических панелей с размещением утеплителя внутри панелей.


6. Трансформируемые и пневматические покрытия


1 Трансформируемые покрытия


Трансформируемые покрытия - это покрытия, легко поддающиеся сборке, перевозке на новое место и даже полной замене конструкции на новое конструктивное решение.

Причины развития таких конструкций в архитектуре современных общественных зданий многообразны. К ним относятся: быстрое моральное старение функций сооружений, появление новых легких и прочных строительных материалов, тенденция сближения людей с окружающей средой, тактичное вписывание сооружений в ландшафт и наконец растущее число зданий временного назначения или нерегулярного пребывания в них людей.

Для того, чтобы создать легкие сборно-разборные конструкции, потребовалось прежде всего отказаться от ограждающих конструкций из железобетона, армоцемента, стали, дерева и перейти на легкие тканевые и пленочные покрытия, позволяющие защищать помещения от погодных факторов (дождя, снега, солнца и ветра), но почти не решающих комфортно психологических задач: надежности защиты от непогоды, долговечности, теплоизоляционной функции и др. несущие функции трансформируемых конструкций выполняются различными приемами. В соответствии с этим их можно подразделять на три основные группы: тепловые покрытия, пневматические конструкции и трансформируемые жесткие системы.


2 Тентовые и пневматические конструкции


Тентовые пневматические конструкции по сути своей мембранные покрытия, но ограждающие функции выполняют тканевые и пленочные материалы, несущие функции дополняются системами из тросов и мачт, или конструкциями жестких каркасов. В пневматических конструкциях несущая функция выполняется воздухом или другим легким газом. пневматические и тентовые конструкции относятся к классу мягких оболочек и им можно придавать любую форму. особенностью их является способность воспринимать только растягивающие усилия. Для усиления мягких оболочек применяют стальные тросы, которые изготавливают из коррозиостойких сортов стали или из обычной стали с полимерным покрытием. Весьма перспективны тросы из синтетических и натуральных волокон.

В зависимости от применяемых материалов мягки оболочки можно разделить на два основных типа:

Изотропные оболочки (из металлических рис.ов и фольги, из пленочных и рис.овых пластмасс или резин, из неориентированных волокнистых материалов);

Анизотропные оболочки (из тканей и армированных пленок, из проволочных и тросовых сеток с заполнением ячеек пленками или тканями).

По конструктивному признаку мягкие оболочки имеют следующие разновидности:

Пневматические конструкции - мягкие замкнутые оболочки, стабилизированные избыточным давлением воздуха (они в свою очередь подразделяются на пневмокаркасные, пневмопанельные и воздухоопорные конструкции);

Тентовые покрытия, при которых устойчивость формы обеспечивается соответствующим выбором кривизны поверхности (несущие тросы отсутствуют);

Вантово-тентовые представлены в виде мягких оболочек одинарной и двоякой кривизны, подкрепленные по всей поверхности и по краям системой тросов (вант), работающих совместно с тентовой оболочкой;

Вантовые покрытия имеют основную несущую конструкцию в виде системы тросов (вант) с рис.овым, тканевым или пленочным заполнителем ячеек тросовой сетки, воспринимающим лишь местные усилия и выполняющим главным образом функции ограждения.

Пневматические конструкции появились в 1946 г. Пневматическим конструкциями называются мягкие оболочки, предварительное напряжение которых достигается благодаря нагнетаемому в них воздуху. Материалы, из которых они выполняются - воздухонепроницаемые ткани и армированные пленки. Они имеют высокое сопротивление растяжению, но не способны сопротивляться никаким видам напряжения. Наиболее полное использование конструктивных свойств материала Ведет к образованию разнообразных форм, но любая из форм должна быть подчинена определенным законам. Неправильно запроектированные пневматические конструкции обнаружат ошибку архитектора образованием трещин и складок, искажающих форму, или же потерей устойчивости.

Поэтому при создании форм пневматических сооружений очень важно оставаться в определенных границах, выходить за пределы которых не позволяет сама природа мягких оболочек, напряженных внутренним давлением воздуха.

В разных странах, в том числе и в нашей стране, возведены десятки пневматических сооружений различного назначения. В промышленности их применяют для различного рода складских сооружений, в сельском хозяйстве возводят животноводческие фермы, в гражданском строительстве используют под временные помещения: выставочные залы, торговые и зрелищные, спортивные сооружения.

Пневматические конструкции классифицируются на воздухоопорные, воздухонесомые и комбинированные. Воздухоопорные пневматические конструкции - это системы, в которых создается избыточное давление воздуха в тысячные доли атмосферы. Такое давление практически не ощущается человеком и поддерживается с помощью вентиляторов или воздуходувок низкого давления. Здание воздухоопорного типа состоит из следующих конструктивных элементов: гибкой тканевой или пластмассовой оболочки, анкерных устройств для подачи воздуха и поддержания постоянной разницы давления. Герметичность сооружения обеспечивается воздухонепроницаемостью материала оболочки и плотным сопряжением с основанием. Входной шлюз имеет две попеременно открывающиеся двери, что уменьшает расход воздуха при эксплуатации оболочки. Основанием воздухоопорного сооружения служит контурная труба из мягкого материала, заполненная водой или песком, которая располагается прямо на выровненной площадке. В более капитальных сооружениях делается сплошное бетонное основание, на котором укреплена оболочка. Варианты крепления оболочки к основанию разнообразны.

Наиболее простой формой сооружений воздухоопорного типа является сферический купол, напряжения в котором от внутреннего давления воздуха во всех точках одинаковы. Большое распространение получили цилиндрические оболочки со сферическими окончаниями и тороидальные оболочки. Формы воздухоопорных оболочек определяются их планом. Размеры воздухоопорных конструкций ограничены прочностью материалов.

Для их усиления применяют систему разгружающих канатов или сеток, а также внутренние оттяжки. К воздухонесомым относятся такие пневматические конструкции в которых избыточное давление воздуха создается в герметичных полостях несущих элементов пневмокаркасов. пневмокаркасы могут быть представлены в виде арок или рам, состоящих из криволинейных или прямолинейных элементов.

Сооружения, каркасом которых служат арки или рамы, покрываются тентом или соединяются тентовыми вставками. при необходимости производится стабилизация сооружения с помощью тросов или канатов. невысокая несущая способность пневмокаркаса приводит иногда к необходимости расстановки пневмоарок вплотную друг к другу. при этом сооружение приобретает новое качество, которое можно рассматривать как особую разновидность воздухонесомых сооружений - пневмопанельные. Их достоинством является совмещение несущих и ограждающих функций, высокие теплотехнические качества, повышенная устойчивость. Еще одной разновидностью является пневмолинзовое покрытие, образованное двумя оболочками, а в пространство между ними подается воздух под давлением. Нельзя не сказать о железобетонных оболочках, возведенных с помощью пневмооболочек. для этого свежая бетонная смесь укладывается на арматурный каркас, расположенный на земле по пленке пневмооболочки. Бетон закрывается слоем пленки, а в пневмооболочку, разложенную на землю подается воздух и она вместе с бетоном поднимается в проектное положение, где бетон набирает прочность. таким образом, можно формировать купольные здания, пологие оболочки с плоским контуром и другие формы покрытий.

Трансформируемые жесткие системы. при проектировании общественных зданий иногда возникает необходимость предусмотреть раздвижку покрытия и закрытия ее в случае непогоды. первым таким сооружением явился купол покрытия над стадионом в питтсбурге (сша). створки купола, скользя по направляющим, задвигались при помощи электродвигателей за две створки, жестко закрепленные в железобетонном кольце и консольно нависающие над стадионом с помощью специальной треугольной формы. В московском архитектурном институте разработано несколько вариантов трансформируемых покрытий, в частности складное перекрестное покрытие размером в плане 12 × 12 м и высотой 0,6 м из стальных труб прямоугольного профиля. Складная перекрестная конструкция состоит из взаимно перпендикулярных плоских решетчатых ферм. Фермы одного направления - сквозные жесткого типа, фермы другого направления состоят из звеньев, расположенных в промежутке между жесткими фермами.

Раздвижные решетчатые пространственные конструкции покрытий разрабатываются также в институт. Покрытие размерами 15 × 15 м высотой 2 м запроектировано в виде двух плит, опирающихся по углам. Раздвижная решетка выполняется в виде раскосной системы, состоящей из попарно пересекающихся стержней уголкового профиля, шарнирно соединенных в точках пересечения узловых деталей, шарнирно объединяющих концы раскосов. В сложенном для транспортирования положении конструкция имеет размеры 1,4 × 1,4 × 2,9 м и массу 2,0 т. При этом ее объем меньше проектного в 80 раз.

Элементы пневматических конструкций. Воздухоопорные сооружения включают в качестве необходимых элементов конструкции: собственно оболочку, анкерные устройства для крепления сооружения к грунту, крепление самой оболочки к основанию, входные выездные шлюзы, системы поддержания избыточного давления воздуха, системы вентиляции, освещения и т.п.

Оболочки могут иметь разнообразную форму. Отдельные полосы оболочки сшиваются или склеиваются. при необходимости иметь разъемные соединения используют застежки-молнии, шнуровки и т.д. Анкерные устройства применяемые для обеспечения равновесия системы, могут быть в виде балластных грузов (сборных и монолитных бетонных элементов, балластных мешков и емкостей, шлангов с водой и т.д.), анкеров (винтовых анкеров диаметром 100-350 мм, распорных и грейферных анкеров, анкерных свай и плит) или стационарных конструкций сооружения. Крепление оболочки к основанию сооружения осуществляется либо с помощью зажимных деталей или анкерных петель, либо балластных мешков и тросов. жесткое крепление является более надежным, но менее экономичным.

Практика применения пневматических конструкций воздухоопорного типа. Идея использования "воздушных баллонов" для перекрытия помещений была выдвинута еще в 1917 г. У. Ланчестером. Впервые пневматические конструкции были использованы в 1945 г. фирмой "бэрдэр" (США) для покрытий самых разнообразных сооружений (выставочных залов, мастерских, зернохранилищ, складов, плавательных бассейнов, теплиц и т.д.). Крупнейшие полусферические оболочки этой фирмы имели диаметр 50-60 м. первые пневматические сооружения отличались формами, продиктованными не требованиями архитектурной выразительности, а соображениями простоты раскроя полотнищ. За время прошедшее со дня монтажа первого пневматического купола, пневматические сооружения быстро и широко распространились во всех странах мира, имеющих развитую промышленность химии полимеров.

Однако творческая фантазия архитекторов, обращавшихся к пневматическим конструкциям, искала новые формы. в 1960 г. ряд южноамериканских столиц объехала передвижная выставка, размещенная под пневматической оболочкой. Ее спроектировал архитектор Виктор Ланди, которого следует считать все-таки первооткрывателем пневматической архитектуры, поскольку он старался привести форму в соответствие не только с функцией сооружения, но и с общим архитектурным замыслом. И, действительно, здание имело интересную эффектную форму и привлекло внимание посетителей (рис. 36). Длина здания 92 м, наибольшая ширина 38 м, высота 16,3 м. общая перекрываемая площадь 2500 м2.

Это сооружение интересно и тем, что покрытие образуют две тканевые оболочки. Чтобы удержать их на постоянном расстоянии друг от друга, использовалась градация внутреннего давления. каждая из оболочек имеет независимые источники нагнетания. пространство между наружной и внутренней оболочкой разделено на восемь отсеков для того, чтобы обеспечить несущую способность оболочки в случае местного прорыва оболочки. воздушная прослойка между оболочками является хорошей изоляцией от солнечного перегрева, что позволило отказаться от охлаждающих установок. В торцах оболочки установлены жесткие рамы, в которые вмонтированы вращающиеся двери для входа посетителей. К диафрагмам примыкают входные навесы в виде прочных воздухонесомых сводов. Эти своды служат для установки двух временных гибких диафрагм, образующих шлюз, когда в павильон вносятся громоздкие экспонаты и оборудование.

Форма сооружения и применение тканевых оболочек обеспечивают во внутренних аудиториях хорошие акустические условия. Общая масса сооружения, включая все металлические детали (двери, воздуходувки, крепления и т.д.) составляет 28 тн. при транспортировке здание занимает объем 875 м3 и помещается в одном железнодорожном вагоне. Для возведения сооружения требуется 3-4 рабочих дня при числе работающих 12. Весь монтаж производится на земле без применения кранового оборудования. Оболочка заполняется воздухом за 30 мин и рассчитана на восприятие ветровой нагрузки до 113 км/ч. автор проекта павильона архитектор В. Ланди.

Станция космической радиосвязи в Райстинге (ФРГ), выстроена по проекту инженера у. Бэрда (США) в 1964 г., имеет мягкую оболочку диаметром 48м, выполненную из двухслойной ткани дакрон с покрытием из хайпалона. Полотнища ткани в слоях расположены под углом 45 градусов друг к другу,

Что придает оболочке некоторую жесткость при сдвиге. Внутреннее давление в оболочке может находиться в пределах 37-150 мм водяного столба (рис. 36). Выставочный павильон фирмы Фуджи на всемирной выставке в Осаке (1970 г.) создан по проекту архитектора Мурата и представляет собой пример решения здания с использованием прогрессивных технических решений. Покрытие павильона состоит из 16 воздушных рукавов-арок диаметром 4 м и длиной 72 м каждая, соединенных друг с другом через 5,0 м. наружняя поверхность их покрыта неопреновой резиной. Избыточное давление в рукавах-арках - 0,08-0,25 атм. между каждыми двумя арками уложены два напряженных стальных троса для стабилизации всего сооружения (рис. 37).

Архитектор В. Ланди и инженер Бэрд запроектировали несколько пневматических куполов для всемирной выставки в Нью-Йорке 1964 г., предназначенных для размещения ресторанов. купола были скомпанованы в виде пирамиды или сфер. оболочки из ярких цветных пленок имели фантастически нарядный вид.

Покрытие летнего театра в бостоне (США) выполненное инженером У. Брендом в 1959 г., представляет собой круглую в плане дискообразную оболочку диаметром 43,5 м и высотой в центре 6 м. в край оболочки заделан трос, который в отдельных точках прикреплен к опорному кольцу из стальных профилей. избыточное внутреннее давление воздуха в оболочке поддерживается двумя непрерывно работающими воздуходувками и составляет 25 мм водного столба. масса конструкции оболочки 1,22 кг/м2. на зиму покрытие убирается.

Павильон на сельскохозяйственной выставке в Лозанне (Швейцария). Автор проекта Ф. Отто (Штутгарт), фирма "Штромейер" (ФРГ). Покрытие в виде "парусов" гиперболопараболической формы представляет собой оболочку из армированной поливинилхлоридной пленки, усиленной системой пересекающихся предварительно напряженных тросов, которые крепятся к анкерам и стальным мачтам высотой 16,5 м. пролет 25 м (рис. 38, а). Открытая аудитория на сельскохозяйственной выставке в Маркклееберге (ГДР). Авторы: объединение "Деваг", Бауэр (Лейпциг), Рюле (Дрезден). Складчатое покрытие в виде системы предварительно напряженных проволочных тросов диаметром 8, 10 и 15 мм натянутой между ними оболочки. Покрытие подвешено к 16 гибким стальным стойкам и закреплено оттяжками к 16 анкерным болтам. Покрытие рассчитано как вантовая конструкция на ветровой напор и откос равные 60 кг/м2 (рис. 38) история многовекового развития мирового строительного искусства свидетельствует о той большой роли, которую играют пространственные конструкции в общественных зданиях. во многих выдающихся произведениях зодчества пространственные конструкции являются неотъемлемой частью, органически вписывающихся в единое целое. Усилия ученых, проектировщиков и строителей должны быть направлены на создание таких конструкций, которые открывали бы широкие возможности для различной функциональной организации зданий, на совершенствование конструктивных решений не только с инженерной стороны, но и с точки зрения улучшения их архитектурно-художественных качеств. Вся проблема должна решаться комплексно, начиная с изучения физико-механических свойств новых материалов и кончая вопросами композиции интерьера. Это позволит архитекторам и инженерам подойти к решению главной задачи - массовому строительству функционально и конструктивно оправданных, экономичных и архитектурно-выразительных общественных зданий и сооружений самого различного назначения, достойных современной эпохи.


Используемая литература


1.Здания с большепролетными конструкциями - А.В. Демина

.Большепролетные конструкции покрытий общественных и промышленных зданий - Зверев А.Н.

Интернет-ресурсы:

.#"justify">.#"justify">.#"justify">.http://www.bibliotekar.ru/spravochnik-129-tehnologia/96.htm - электронная библиотека.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Плоскостные конструкции

а

ЛЕКЦИЯ 7. КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ

Каркасы промышленных зданий

Стальной каркас одноэтажных зданий

Стальной каркас одноэтажных зданий состоит из тех же элементов, что и железобетонный (рис.)

Рис. Стальной каркас здания

В стальных колоннах различают две основные части: стержень (ветвь) и базу (башмак) (рис.73) .

Рис. 73. Стальные колонны.

а – постоянного сечения с консолью; б – раздельного типа.

1 – подкрановая часть колонны; 2 – надколонник, 3 – добавочная высота надколонника; 4 – шатровая ветвь; 5 – подкрановая ветвь; 6 – башмак; 7 – подкрановая балка; 8 – подкрановый рельс; 9 – ферма покрытия.

Башмаки служат для передачи нагрузки от колонны на фундамент. Башмаки и нижние части колонн, соприкасающиеся с землей, во избежание коррозии обетонивают. Для опирания стен между фундаментами крайних колонн устанавливают сборные железобетонные фундаментные балки.

Стальные подкрановые балки бывают сплошные и решетчатые. Наибольшее применение получили сплошные подкрановые балки, имеющие двутавровое сечение: несимметричное, применяемые при шаге колонн 6 метров, или симметричное при шаге 12 метров.

Основными несущими конструкциями покрытий в зданиях со стальным каркасом являются стропильные фермы (рис. 74).

Рис. 74. Стальные фермы:

а – с параллельными поясами; б – то же; в – треугольная; г – полигональная;

д – конструкция полигональной фермы.

По очертанию они могут быть с параллельными поясами, треугольные, полигональные.

Фермы с параллельными поясами применяют в зданиях с плоскими крышами, а также в качестве подстропильных.

Треугольные фермы применяют в зданиях с кровлями, требующими больших уклонов, например из асбоцементных листов.

Жесткость стального каркаса и восприятие им ветровых нагрузок и инерционных воздействий от кранов обеспечивается устройством связей. Между колоннами в продольных рядах ставят вертикальные связи – крестовые или портальные. Горизонтальные поперечные связи ставят в плоскостях верхнего и нижнего поясов, а вертикальные – по осям опорных стоек и в одной или нескольких плоскостях посередине пролета.

Деформационные швы

В каркасных зданиях деформационные швы расчленяют на отдельные участки каркас здания и все опирающиеся на него конструкции. Различают швы поперечные и продольные.

Поперечные температурные швы устраивают на спаренных колоннах, поддерживающих конструкции смежных, разрезанных швом, участков здания. Если шов является одновременно осадочным, то он устраивается и в фундаментах спаренных колонн.

В одноэтажных зданиях ось поперечного деформационного шва совмещают с поперечной разбивочной осью ряда. Так же решают деформационные швы в перекрытиях многоэтажных зданий.

Продольные температурные швы в зданиях с железобетонным каркасом решают на двух продольных рядах колонн, а в зданиях со стальным каркасом – на одном ряде колонн.

Стены промышленных зданий

В зданиях бескаркасных и с неполным каркасом наружные стены являются несущими и выполняются из кирпича, крупных блоков или других камней. В зданиях с полным каркасом стены выполняют из тех же материалов самонесущими по фундаментным балкам или панельными – самонесущими или навесными. Наружные стены располагают с внешней стороны колонн, внутренние стены зданий опирают на фундаментные балки или на ленточные фундаменты.

В каркасных зданиях при значительной протяженности и высоте стен для обеспечения устойчивости между элементами основного каркаса вводят дополнительные стойки, иногда ригели, образующие вспомогательный каркас, называемый фахверком .

При наружном водостоке с покрытий продольные стены промышленных зданий выполняют с карнизами, а торцовые – с парапетными стенками. При внутреннем водоотводе парапеты возводят по всему периметру здания.

Стены из крупных панелей

Железобетонные ребристые панели предназначаются для неотапливаемых зданий и зданий с большими производственными тепловыделениями. Толщина стенки 30 миллиметров.

Панели для отапливаемых зданий применяют железобетонные утепленные или из легких ячеистых бетонов. Железобетонные утепленные панели имеют толщину 280 и 300 миллиметров.

Панели разделяются на рядовые (для глухих стен), панели-перемычки (для установки сверху и снизу оконных проемов) и парапетные.

На рис. 79 показан фрагмент стены каркасного панельного здания с ленточным остеклением.

Рис. 79. Фрагмент стены из крупных панелей

Заполнение оконных проемов панельных зданий производится преимущественно в виде ленточного остекления. Высота проемов принимается кратной 1,2 метров, ширина – равной шагу пристенных колонн.

При отдельных оконных проемах меньшей ширины применяются простеночные панели с размерами 0,75, 1,5, 3,0 метра в соответствии с размерами стандартных переплетов.

Окна, двери, ворота, фонари

Фонари

Для обеспечения освещения удаленных от окон рабочих мест и для аэрации (вентиляции) помещений в промышленных зданиях устраивают фонари.

Фонари бывают световые, аэрационные и смешанного типа:

Световые с глухими остекленными переплетами, служащие только для освещения помещений;

Светоаэрационные с открывающимися остекленными створками, служащие для освещения и проветривания помещений;

Аэрационные без остекления, применяемые только для целей аэрации.

Фонари могут быть различного профиля с вертикальным, наклонным или горизонтальным остеклением.

По профилю фонари бывают прямоугольные с вертикальным остеклением, трапециедальные и треугольные с наклонным остеклением, зубчатые с односторонним вертикальным остеклением. В промышленном строительстве обычно применяют прямоугольные фонари. (рис. 83).

Рис. 83. Основные схемы световых и светоаэрационных фонарей:

а – прямоугольный; б – трапециевидный; в – зубчатый; г – треугольный.

По расположению относительно оси здания различают фонари продольные и поперечные. Наибольшее распространение получили продольные фонари.

Отвод воды с фонарей бывает наружный и внутренний. Наружный применяют при фонарях шириной 6 метров или при отсутствии в здании внутреннего водоотвода.

Конструкция фонарей является каркасной и состоит из ряда поперечных рам, опирающихся на верхние пояса ферм или балок покрытия, и системы продольных связей. Конструктивные схемы фонарей и их параметры унифицированы. Для пролетов 12, 15, и 18 метров применяют фонари шириной 6 метров, для пролетов 24, 30 и 36 метров – шириной 12 метров. Ограждение фонаря состоит из покрытия, боковых и торцовых стенок.

Фонарные переплеты изготавливают стальными длиной 6000 миллиметров и высотой 1250, 1500 и 1750 миллиметров. Переплеты остекляют армированным или оконным стеклом.

Аэрацией называют естественный, управляемый и регулируемый воздухообмен.

Действие аэрации основывается:

На тепловом подпоре, возникающем вследствие разности температур внутреннего и наружного воздуха;

На высотном перепаде (разности центров вытяжных и приточных отверстий);

На действии ветра, который обдувая здание, создает на подветренной стороне разрежение воздуха (рис. 84).

Рис. 84. Схемы аэрации зданий:

а – действие аэрации при отсутствии ветра; б – то же, при действии ветра.

Недостатком светоаэрационных фонарей является необходимость закрывать переплеты с наветренной стороны, так как может происходить задувание ветром загрязненного воздуха обратно в рабочую зону.

Двери и ворота

Двери промышленных зданий по конструкции не отличаются от щитовых дверей гражданских зданий.

Ворота предназначаются для ввода внутрь здания транспортных средств и пропуска больших масс людей.

Размеры ворот определяются в соответствии с размерами перевозимого оборудования. Они должны превышать габариты подвижного состава в груженом состоянии по ширине на 0,5-1,0 метра, а по высоте – на 0,2 – 0,5 метра.

По способу открывания ворота бывают распашные, раздвижные, подъемные, шторные и т.д.

Распашные ворота состоят из двух полотнищ, навешенных посредством петель в воротной раме (рис. 81). Рама может быть деревянной, стальной или железобетонной.

Рис. 81. Распашные ворота:

1 – стойки железобетонной рамы, обрамляющей проем; 2 – ригель.

При отсутствии места для распахивания полотен ворота делают раздвижными. Раздвижные ворота бывают однопольные и двупольные. Полотна их имеют конструкция подобную распашным, но в верхней части снабжены стальными роликами, которые при открывании и закрывании ворот передвигаются по рельсу, прикрепленную к ригелю железобетонной рамы.

Полотна подъемных ворот – цельнометаллические, подвешены на тросах и двигаются по вертикальным направляющим.

Полотнище шторных ворот состоит из горизонтальных элементов, образующих стальную штору, которая при подъеме навертывается на вращающийся барабан, горизонтально расположенный над верхом проема.

Покрытия

В одноэтажных промышленных зданиях покрытия выполняются бесчердачными, состоящими из основных несущих элементов покрытия и ограждения.

В неотапливаемых зданиях и зданиях с избыточными производственными тепловыделениями ограждающие конструкции покрытий выполняются неутепленными, в отапливаемых зданиях – утепленными.

Конструкция холодного покрытия состоит из основания (настила) и кровли. В утепленное покрытие включают пароизоляцию и утеплитель.

Элементы настила подразделяют на мелкоразмерные (длиной 1,5 – 3,0 метра) и крупноразмерные (длиной 6 и 12 метров).

В ограждениях из мелкоразмерных элементов возникает необходимость применения прогонов, которые располагают вдоль здания по балкам или фермам покрытия.

Крупноразмерные настилы укладывают по основным несущим элементам и покрытия в этом случае называют беспрогонными.

Настилы

Беспрогонные железобетонные настилы выполняются из железобетонных предварительно напряженных ребристых плит шириной 1,5 и 3,0 метра и длиной, равной шагу балок или ферм.

В неутепленных покрытиях по верху плит устраивается цементная стяжка, по которой наклеивают рулонную кровлю.

В утепленных покрытиях в качестве утеплителя применяются малотеплопроводные материалы и устраивается дополнительная пароизоляция. Пароизоляция особенно необходима в покрытиях над помещениями с повышенной влажностью воздуха.

Мелкоразмерные плиты могут быть железобетонными, армоцементными или из армированных легких и ячеистых бетонов.

Рулонные кровли выполняются рубероидными. По верхнему слою рулонных кровель устраивается защитный слой гравия, втопленный в битумную мастику.

Также применяются настилы из листовых материалов.

Одним из таких настилов является стальной оцинкованный профилированный настил, укладываемый на прогонах (при шаге ферм 6 метров) или по решетчатым прогонам (при шаге 12 метров).

Скатные холодные покрытия часто выполняются из асбоцементных волнистых листов усиленного профиля толщиной 8 миллиметров.

Кроме того, применяются листы из волнистого стеклопластика и других синтетических материалов.

Водоотвод с покрытий

Водоотвод продлевает срок эксплуатации здания, предохраняя его от преждевременного старения и разрушения.

Водоотвод с покрытий промышленных зданий может быть наружным и внутренним.

В одноэтажных зданиях наружный водоотвод устраивают неорганизованным, а в многоэтажных – с применением водосточных труб.

Система внутреннего водоотвода состоит из водоприемных воронок и сети расположенных внутри здания труб, отводящих воду в ливневую канализацию (рис. 82).

Рис. 82. Внутренний водоотвод:

а – водоприемная воронка; б – чугунный поддон;

1 – корпус воронки; 2 – крышка; 3 – патрубок; 4 – воротник патрубка; 5 – чугунный поддон; 6 – отверстие для патрубка; 7 – мешковина, пропитанная битумом; 8 – рулонная кровля; 9 – заполнение расплавленным битумом; 10 – железобетонная плита покрытия.

Внутренний водоотвод устраивают:

В многопролетных зданиях с многоскатными крышами;

В зданиях, имеющих большую высоту или значительные перепады высот отдельных пролетов;

в зданиях с большими производственными тепловыделениями, вызывающими подтаивание снега на покрытии.

Полы

Полы в промышленных зданиях выбирают с учетом характера производственных воздействий на них и предъявляемых к ним эксплуатационных требований.

Такими требованиями могут быть: жаростойкость, химическая стойкость, водо- и газонепроницаемость, диэлектричность, неискримость при ударах, повышенная механическая прочность и другие.

Подобрать полы, удовлетворяющие всем необходимым требованиям, иногда бывает невозможно. В таких случаях в пределах одного помещения приходится применять полы различного типа.

Конструкция пола состоит из покрытия (одежды) и подстилающего слоя (подготовки). Кроме того, в конструкцию пола могут входить прослойки различного назначения. Подстилающий слой воспринимает через покрытие передаваемую на полы нагрузку и распределяет ее на основание.

Подстилающие слои бывают жесткие (бетонные, железобетонные, асфальтобетонные) и нежесткие (песчаные, гравийные, щебеночные).

При устройстве полов по междуэтажным перекрытиям основанием служат плиты перекрытий, а подстилающий слой или отсутствует вовсе, или его роль выполняют тепло- и звукоизоляционные слои.

Грунтовые полы применяют в складах и горячих цехах, где они могут подвергаться ударам от падения тяжелых предметов или соприкасаться с раскаленными деталями.

Каменные полы применяют в складах, где возможны значительные ударные нагрузки, или в зонах действия транспорта на гусеничном ходу. Полы эти прочные, но холодные и жесткие. Покрытием таких полов служат обычно брусчатка (рис. 85).

Рис. 85. Каменные полы:

а – булыжные; б – из крупной брусчатки; в – из мелкой брусчатки;

1 – булыжный камень; 2 – песок; 3 – брусчатка; 4 – битумная мастика; 5 – бетон.

Бетонные и цементные полы применяют в помещениях, где пол может подвергаться постоянному увлажнению или действию минеральных масел (рис. 86).

Рис. 86. Бетонные и цементные полы:

1 – бетонная или цементная одежда; 2 – бетонный подстилающий слой.

Асфальтовые и асфальтобетонные полы обладают достаточной прочностью, водостойкостью, водонепроницаемостью, эластичностью, легко ремонтируются (рис. 87). К недостатками асфальтовых полов относят их способность размягчаться при повышении температуры, вследствие чего их не устраивают в горячих цехах. Под действием длительных сосредоточенных нагрузок в них образуются вмятины.

Рис. 87. Асфальтовые и асфальтобетонные полы:

1 – асфальтовая или асфальтобетонная одежда; 2 – бетонный подстилающий слой.

К керамическим полам относятся клинкерные, кирпичные и плиточные полы (рис. 88). Такие полы хорошо сопротивляются действию высокой температуры, стойки против кислот, щелочей и минеральных масел. Их применяют в помещениях, требующих большой чистоты, при отсутствии ударных нагрузок.

Рис. 88. Полы из керамических плиток:

1 – керамическая плитка; 2 – цементный раствор; 3 – бетон.

Металлические полы применяют лишь на отдельных участках, где к полам прикасаются раскаленные предметы и в то же время нужна ровная твердая поверхность и в цехах при сильных ударных нагрузках (рис. 89).

Рис. 89. Металлические полы:

1 – чугунные плитки; 2 – песок; 3 – грунтовое основание.

Так же в промышленных зданиях могут применяться полы дощатые и из синтетических материалов . Применяются такие полы в лабораториях, инженерных корпусах, административных помещениях.

В полах с жестким подстилающим слоем во избежание появления трещин устраивают деформационные швы. Их располагают по линиям деформационных швов здания и в местах сопряжения полов разного типа.

Для прокладки инженерных коммуникаций в полах устраивают каналы.

Примыкание полов к стенам, колоннам и фундаментам станков делают с зазорами для свободной осадки.

В мокрых помещениях для стока жидкостей полам придают рельеф с уклонами по направлению к чугунным или бетонным водоприемникам, которые называются трапами. Трапы соединяют с канализацией. Вдоль стен и колонн необходимо устройство плинтусов и галтелей.

Лестницы

Лестницы промышленных зданий подразделяются на следующие виды:

- основные, применяемые в многоэтажных зданиях для постоянного сообщения между этажами и для эвакуации;

- служебные, ведущие на рабочие площадки и антресоли;

- пожарные наружные , обязательные при высоте здания более 10 метров и предназначенные для подъема на крышу бойцов пожарных команд (рис. 90).

Рис. 90. Пожарная лестница

- аварийные наружные , устраиваемые для эвакуации людей при недостаточном количестве основных лестниц (рис. 91);

Рис. 91. Аварийная лестница

Противопожарные преграды

Классификация зданий и помещений по взрывопожарной и пожарной опасности применяется для установления требования пожарной безопасности, направленных на предотвращение возможности возникновения пожара и обеспечения противопожарной защиты людей и имущества в случае возникновения пожара. По взрывопожарной и пожарной опасности помещения подразделяются на категории А, Б, В1-В4, Г и Д, а здания на категории А, Б, В, Г и Д.

Категории помещений и зданий определяются, исходя из вида находящихся в помещениях горючих веществ и материалов, их количества и пожароопасных свойств, а также, исходя из объемно-планировочных решений помещений и характеристик проводимых в них технологических процессов.

Противопожарные преграды устраивают с целью предотвратить распространение по зданию огня в случае возникновения пожара. Горизонтальными преградами в многоэтажных зданиях служат несгораемые перекрытия. Вертикальными преградами являются противопожарные стены (брандмауэры).

Брандмауэр предназначается для предотвращения распространения пожара из одного помещения или здания в смежное помещение или здание. Брандмауэры выполняются из несгораемых материалов – камня, бетона или железобетона, и должны иметь предел огнестойкости не менее четырех час. Брандмауэры должны опираться на фундаменты. Брандмауэры делаются на всю высоту здания, разделяя сгораемые и трудносгораемые покрытия, перекрытия, фонари и другие конструкции и должны возвышаться над сгораемыми кровлями не менее чем на 60 сантиметров, а над несгораемыми кровлями на 30 сантиметров. Двери, ворота, окна, крышки люков и другие заполнения проемов в брандмауэрах должны быть несгораемыми с пределом огнестойкости не менее 1,5 часа. Брандмауэры рассчитываются на устойчивость в случае одностороннего обрушения при пожаре перекрытий, покрытий и других конструкций (рис. 92).

Рис. 92. Брандмауэры:

а – в здании с несгораемыми наружными стенами; б – в здании со сгораемыми или трудносгораемыми наружными стенами; 1 – гребень брандмауэра; 2 – торцовый брандмауэр.

Контрольные вопросы

1. Назовите конструктивные схемы промышленных зданий.

2. Назовите основные типы каркасов промышленных зданий.

3. Какие существуют виды стен промышленных зданий?

ЛЕКЦИЯ 8 . КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ

Теплицы и парники

Теплицы и парники представляют собой застекленные сооружения, в которых искусственно создаются нужные климатические и почвенные условия, позволяющие выращивать ранние овощи, рассаду и цветы.

Здания теплиц строят преимущественно из сборных железобетонных остекленных панелей, скрепленных между собой сваркой закладных деталей.

Конструкция парника состоит из сборных железобетонных рам, устанавливаемых в грунт по длине парника и сборных железобетонных парубней (продольный лежень парника), укладываемых на консоли рам. Съемные остекленные парниковые рамы выполняются деревянными (рис. 94).

Рис. 94. Парник из сборных железобетонных элементов:

1 – железобетонные рамы; 2 – железобетонный парубень северный; 3 – то же, южный;

4 – песок; 5 – питательный слой грунта; 6 – отопительные трубы в слое песка;

7 – остекленная деревянная рама.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Маклакова Т. Г., Нанасова С. М. Конструкции гражданских зданий: Учебник. – М.: Издательство АСВ, 2010. – 296 с.

2. Будасов Б. В. , Георгиевский О. В., Каминский В. П. Строительное черчение. Учеб. для вузов / Под общ. ред. О. В. Георгиевского. – М.: Стройиздат, 2002. – 456 с.

3. Ломакин В. А. Основы строительного дела. – М.: Высшая школа, 1976. – 285 с.

4. Красенский В.Е., Федоровский Л.Е. Гражданские, промышленные и сельскохозяйственные здания. – М.: Стройиздат, 1972, – 367 с.

5. Короев Ю. И Черчение для строителей: Учеб. для проф. Учеб. заведений. – 6-е изд., стер. – М.: Высш. шк., Изд. Центр «Академия», 2000ю – 256 с.

6. Чичерин И. И. Общестроительные работы: учебник для нач. проф. Образования. – 6-е изд., стер. – М.: Издательский центр «Академия», 2008. – 416 с.

ЛЕКЦИЯ 6. КОНСТРУКЦИИ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ С ПРОСТРАНСТВЕННЫМИ ПОКРЫТИЯМИ

В зависимости от конструктивной схемы и статической работы несущие конструкции покрытий можно разделить на плоскостные (работающие в одной плоскости) и пространственные.

Плоскостные конструкции

К этой группе несущих конструкций относятся балки, фермы, рамы и арки. Они могут выполняться из сборного и монолитного железобетона, а также металлическими или деревянными.

Балки и фермы совместно с колоннами образуют систему поперечных рам, продольная связь между которыми осуществляется плитами покрытия и ветровыми связями.

Наряду со сборными рамами в ряде зданий уникального характера при повышенных нагрузках и больших пролетах применяют монолитные железобетонные или металлические рамы (рис. 48).

Рис. 48. Большепролетные конструкции:

а - рама железобетонная монолитная двухшарнирная.

Для перекрытия пролетов свыше 40 метров целесообразно использовать арочные конструкции. Арки конструктивно можно разделить на двухшарнирные (имеющие шарниры на опорах), трехшарнирные (с шарнирами на опорах и в середине пролета) и бесшарнирные.

Арка работает в основном на сжатие и передает на опоры не только вертикальную нагрузку, но и горизонтальное давление (распор).

По сравнению с балками, фермами и рамами арки имеют меньший вес и экономичнее по расходу материалов. Арки применяются в конструкциях в сочетании со сводами и оболочками.

Общие положения

Большепролетными считаются здания, у которых расстояние между опорами (несущих конструкций) покрытий составляет более 40 м.

К таким зданиям относятся:

− цехи заводов тяжелого машиностроения;

− сборочные цехи судостроительных, машиностроительных заводов, ангары и т.п.;

− театры, выставочные залы, крытые стадионы, вокзалы, крытые стоянки автотранспорта и гаражи.

1. Особенности большепролетных зданий:

а) большие размеры зданий в плане, превосходящие радиус действия монтажных кранов;

б) специальные способы монтажа элементов покрытия;

в) наличие в отдельных случаях под покрытием больших частей и конструкций здания, этажерок, трибун крытых стадионов, фундаментов под оборудование, громоздкого оборудования и т.п.

2. Методы возведения большепролетных зданий

Применяются следующие методы:

а) открытый;

б) закрытый;

в) комбинированный.

2.1. Открытый метод заключается в том, что сначала возводят все конструкции здания, находящиеся под покрытием, т.е.:

− этажерки (одно – или многоярусное сооружение под покрытием промзданий для технологического оборудования, контор и т.п.);

− конструкции для размещения зрителей (в театрах, цирках, крытых стадионах и т.п.);

− фундаменты под оборудование;

− иногда громоздкое технологическое оборудование.

Затем устраивают покрытие.

2.2. Закрытый метод состоит в том, что сначала устраняют покрытие, а потом возводят все конструкции, находящиеся под ним (рис. 18).

Рис. 18. Схема возведения спортзала (поперечный разрез):

1 – вертикальные несущие элементы; 2 – мембранное покрытие; 3 – встроенные помещения с трибунами; 4 – передвижной стреловой кран

2.3. Комбинированный метод состоит в том, что на отдельных участках (захватках) на каждом выполняют сначала все конструкции, находящиеся ниже покрытия, а потом устраивают покрытие (рис. 19).


Рис. 19. Фрагмент стройгенплана:

1 – смонтированное покрытие здания; 2 – этажерка; 3 – фундаменты под оборудование; 4 – подкрановые пути; 5 – башенный кран

Применение методов возведения большепролетных зданий зависит от следующих основных факторов:

− от возможности расположения грузоподъемных кранов в плане по отношению к возводимому зданию (вне здания или в плане);

− от наличия и возможности применения кранбалок (мостовых кранов) для возведения внутренних частей конструкций здания;

− от возможности устройства покрытий при наличии выполненных частей здания и конструкций, находящихся под покрытием.

При возведении большепролетных зданий особую трудность составляет устройство покрытий (оболочек, арочных, купольных, вантовых, мембранных).

Технология устройства остальных конструктивных элементов обычно не составляет трудностей. Производство работ по их устройству расмотрено в курсе "Технология строительных процессов".

Рассмотрена в курсе ТСП и не будет рассматриваться в курсе ТВЗ и С и технология устройства балочных покрытий.

3.1.3.1. ТВЗ в виде оболочек

За последние годы разработано и внедрено большое количество тонкостенных пространственных железобетонных конструкций покрытий в виде оболочек, складок, шатров и т.п. Эффективность таких конструкций обусловлена более экономным расходом материалов, меньшим весом и новыми архитектурными качествами. Уже первый опыт эксплуатации таких сооружений позволил обнаружить два основных достоинства пространственных тонкостенных железобетонных покрытий:

− экономичность, являющуюся следствием более полного, по сравнению с плоскостными системами, использования свойств бетона и стали;

− возможность рационального применения железобетона для покрытия больших площадей без промежуточных опор.

Железобетонные оболочки по методу возведения разделяют на монолитные, сборочно-монолитные и сборные. Монолитные оболочки целиком бетонируются на месте строительства на стационарной или передвижной опалубке. Сборно-монолитные оболочки могут состоять из сборных контурных элементов и монолитной скорлупы, бетонируемой на передвижной опалубке, чаще всего подвешиваемой к смонтированным диафрагмам или бортовым элементам. Сборные оболочки собирают из отдельных, заранее изготовленных элементов, которые после установки их на место стыкуются между собой; причем соединения должны обеспечить надежную передачу усилий от одного элемента к другому и работу сборной конструкции как единой пространственной системы.

Сборные оболочки могут быть разделены на следующие элементы: плоские и криволинейные плиты (гладкие или ребристые); диафрагмы и бортовые элементы.

Диафрагмы и бортовые элементы могут быть как железобетонными, так и стальными. Следует отметить, что выбор конструктивных решений оболочек находится в тесной взаимосвязи со способами строительства.

Оболочки двоякой (положительной гауссовой) кривизны , квадратные в плане, образуются из сборных железобетонных ребристых скорлуп и контурных ферм . Геометрическое очертание оболочек двоякой кривизны создает выгодные условия статической работы, так как 80 % площади скорлупы оболочки работает только на сжатие и лишь в угловых зонах имеются растягивающие усилия. Скорлупа оболочки имеет форму многогранника с ромбовидными гранями. Поскольку плиты плоские, квадратные, ромбовидная форма граней достигается замоноличиванием швов между ними. Средние типовые плиты формуют размером 2970×2970 мм, толщиной 25, 30 и 40 мм, с диагональными ребрами высотой 200 мм, а с бортовыми – 80 мм. Контурные и угловые плиты имеют диагональные и бортовые ребра той же высоты, что и средние, а у бортовых ребер, примыкающих к краю оболочки, сделаны утолщения и пазы для выпусков арматуры контурных ферм. Соединение плит между собой осуществляется сваркой выпусков каркасов диагональных ребер и замоноличиванием швов между плитами. В угловых плитах оставлен треугольный вырез, который замоноличивается бетоном.

Контурные элементы оболочки изготавливают в виде цельных ферм или предварительно напряженных раскосных полуферм, стык которых в верхнем поясе выполняется сваркой накладок, а в нижнем – сваркой выпусков стержневой арматуры с последующим их обетонированием. Оболочки целесообразно использовать для покрытия больших площадей без промежуточных опор. Железобетонные оболочки, которым практически можно придать любую форму, способны обогатить архитектурные решения как общественных, так и производственных зданий.



На рис. 20 представлены геометрические схемы сборных железобетонных оболочек, прямоугольных в плане.

Рис. 20. Геометрические схемы оболочек:

а – разрезка плоскостями, параллельными контуру; б – радиально-кольцевая разрезка; в – разрезка на ромбовидные плоские плиты

На рис. 21 представлены геометрические схемы покрытия зданий с прямоугольной сеткой колонн оболочками из цилиндрических панелей.

В зависимости от типа оболочки, размера ее элементов, а также размеров оболочки в плане монтаж осуществляют различными методами, отличающимися в основном наличием или отсутствием монтажных лесов.


Рис. 21. Варианты образования сборных цилиндрических оболочек:

а – из криволинейных ребристых панелей с бортовыми элементами; б – то же с одним бортовым элементом; в – из плоских ребристых или гладких плит, бортовых балок и диафрагм; г – из криволинейных панелей больших размеров, бортовых балок и диафрагм; д – из арок или ферм и сводчатых или плоских ребристых панелей (короткая оболочка)

Рассмотрим пример возведения двухпролетного здания с покрытием из восьми квадратных в плане оболочек двоякой положительной гауссовой кривизны. Габариты элементов конструкций покрытия представлены на рис. 22, а . Здание имеет два пролета, каждый из которых содержит по четыре ячейки размером 36 × 36 м (рис. 22, б ).

Значительный расход металла на опорные леса при монтаже оболочек двоякой кривизны снижает эффективность применения этих прогрессивных конструкций. Поэтому для возведения таких оболочек размером до 36 × 36 м применяют катучие телескопические кондукторы с сетчатыми кружалами (рис. 22, в ).

Рассматриваемое здание является однородным объектом. Монтаж оболочек покрытия включает следующие процессы: 1) установку (перестановку) кондуктора; 2) монтаж контурных ферм и панелей (установку, укладку, выверку, сварку закладных деталей); 3) замоноличивание оболочки (заливку швов).


Рис. 22. Возведение здания с покрытием из сборных оболочек:

а – конструкция оболочки покрытия; б – схема расчленения здания на участки; в – схема работы кондуктора; г – последовательность монтажа элементов покрытия одного участка; д – последовательность возведения покрытия по участкам здания; I–II – номера пролетов; 1 – контурные фермы оболочки, состоящие из двух полуферм; 2 – плита покрытия размером 3×3 м; 3 – колонны здания; 4 – телескопические башни кондуктора; 5 – сетчатые кружала кондуктора; 6 – шарнирные опоры кондуктора для временного крепления элементов контурных ферм; 7 – 17 – последовательность монтажа контурных ферм и плит покрытия.

Поскольку при монтаже покрытия используют катучий кондуктор, перемещаемый лишь после выдерживания раствора и бетона, то за монтажный участок принимается одна ячейка пролета (рис. 22, б ).

Монтаж панелей оболочки начинают с наружных, опирающихся на кондуктор и контурную ферму, затем монтируют остальные панели оболочки (рис. 22, г , д ).

3.1.3.2. Технология возведения зданий с купольными покрытиями

В зависимости от конструктивного решения монтаж куполов выполняют с использованием временной опоры, навесным способом или в целом виде.

Сферические купола возводят кольцевыми ярусами из сборных железобетонных панелей навесным способом. Каждый из кольцевых ярусов после полной сборки обладает статической устойчивостью и несущей способностью и служит основанием для вышележащего яруса. Таким способом монтируют сборные железобетонные купола крытых рынков.

Панели поднимают башенным краном, установленным в центре здания. Временное крепление панелей каждого яруса осуществляют при помощи инвентарного приспособления (рис. 23, б ) в виде стойки с оттяжками и стяжной муфтой. Число таких приспособлений зависит от числа панелей в кольце каждого яруса.

Работы производят с инвентарных подмостей (рис. 23, в ), устраиваемых снаружи купола и перемещаемых по ходу монтажа. Смежные панели соединяют между собой болтами. Швы между панелями заделывают цементным раствором, который сначала укладывают по краям шва, а затем растворонасосом нагнетают в его внутреннюю полость. По верхней кромке панелей собираемого кольца устраивают железобетонный пояс. После того как раствор швов и бетон пояса приобретут требуемую прочность, стойки с оттяжками снимают, а цикл монтажа повторяют на следующем ярусе.

Сборные купола навесным способом монтируют также последовательной сборкой кольцевых поясов при помощи передвижной металлической фермы-шаблона и стоек с подвесками для удерживания сборных плит (рис. 23, г ). Этот способ применяют при монтаже сборных железобетонных куполов цирков.

Для монтажа купола в центре здания устанавливают башенный кран. На башню крана и кольцевой рельсовый путь, расположенный по железобетонному карнизу здания, устанавливают передвижную ферму-шаблон. Башню крана для обеспечения большей жесткости расчаливают четырьмя расчалками. При недостаточном вылете стрелы и грузоподъемности одного крана на кольцевом пути возле здания устанавливают второй кран.

Сборные панели купола монтируют в следующем порядке. Каждую панель в наклонном положении, соответствующем ее проектному положению в покрытии, поднимают башенным краном и устанавливают нижними углами на наклонно приваренные накладки узла, а верхними - на установочные винты фермы-шаблона.


Рис. 23. Возведение зданий с купольными покрытиями:

а – конструкция купола; б – схема временного крепления панелей купола; в – схема крепления подмостей для возведения купола; г – схема монтажа купола при помощи передвижной фермы-шаблона; 1 – нижнее опорное кольцо; 2 – панели; 3 – верхнее опорное кольцо; 4 – стойка инвентарного приспособления; 5 – оттяжка; 6 – стяжная муфта; 7 – монтируемая панель; 8 – смонтированные панели; 9 – подкос с отверстиями для изменения уклона кронштейна подмостей; 10 – стойка для перил; 11 – ригель кронштейна; 12 – проушина для крепления кронштейна к панели; 13 – монтажные стойки; 14 – расчалки стоек; 15 – подвески для удержания плит; 16 – ферма-шаблон; 17 – расчалки крана; 18 – панелевоз

Далее производят выверку верхних кромок закладных деталей верхних углов панели, после чего стропы снимают, панель крепят подвесками к монтажным стойкам и подвески натягивают при помощи стяжных муфт. Затем установочные винты фермы-шаблона опускают на 100 – 150 мм и передвигают ферму-шаблон в новое положение для монтажа смежной панели. После монтажа всех панелей пояса и сварки узлов стыки замоноличивают бетоном.

Следующий пояс купола монтируют после приобретения бетоном стыков нижележащего пояса требуемой прочности. По окончании монтажа верхнего пояса снимают подвески с панелей нижележащего пояса.

В строительстве применяют также метод подъема в целом виде забетонированных на земле покрытий диаметром 62 м при помощи системы домкратов, установленных на колоннах.

3.1.3.3. Технология возведения зданий с вантовыми покрытиями

Наиболее ответственным процессом при возведении таких зданий является устройство покрытия. Состав и последовательность выполнения монтажа вантовых покрытий зависит от их конструктивной схемы. Ведущим и наиболее сложным процессом при этом является монтаж вантовой сети.

Конструкция висячего покрытия с системой вантов состоит из монолитного железобетонного опорного контура; закрепленной на опорном контуре вантовой сети; сборных железобетонных плит, уложенных на вантовой сети.

После проектного натяжения вантовой сети и замоноличивания швов между плитами и вантами оболочка работает как единая монолитная конструкция.

Вантовая сеть состоит из системы продольных и поперечных вант, расположенных по главным направлениям поверхности оболочки под прямым углом друг к другу. В опорном контуре ванты закрепляют при помощи анкеров, состоящих из гильз и клиньев, с помощью которых обжимают концы каждого ванта.

Вантовую сеть оболочки монтируют в следующей последовательности. Каждую ванту с помощью крана устанавливают на место в два приема. Сначала с помощью крана один ее конец, снятый с барабана траверсой, подают к месту установки. Анкер ванты протягивают сквозь закладную деталь в опорном контуре, потом закрепляют и раскатывают оставшуюся на барабане часть ванты. После этого двумя кранами поднимают ванту до отметки опорного контура, одновременно подтягивая лебедкой второй анкер к опорному контуру (рис. 24, а ). Анкер протягивают через закладную деталь в опорном контуре и закрепляют гайкой с шайбой. Ванты поднимают вместе со специальными подвесками и контрольными грузами для последующей геодезической выверки.


Рис. 24. Возведение здания с вантовым покрытием:

а – схема подъема рабочей ванты; б – схема взаимоперпендикулярного симметричного натяжения вант; в – схема выверки продольных вант; г – детали окончательного крепления вант; 1 – электролебедка; 2 – оттяжка; 3 – монолитный железобетонный опорный контур; 4 – поднимаемая ванта; 5 – траверса; 6 – нивелир

По окончании монтажа продольных вант и предварительного натяжения их на усилие 29,420 – 49,033 кН (3 – 5 тс) выполняют геодезическую поверку их положения путем определения координат точек вантовой сети. Заранее составляют таблицы, в которых для каждой ванты указывают расстояние точек крепления контрольных грузов на гильзе анкера от начала отсчета. В этих точках на проволоке подвешивают контрольные грузы массой 500 кг. Длины подвесок различны и подсчитаны заранее.

При правильном провисании рабочих вант контрольные грузы (риски на них) должны находиться на одной отметке.

После выверки положения продольных вант устанавливают поперечные. Места их пересечения с рабочими вантами закрепляют постоянными сжимами. Одновременно с этим устанавливают временные оттяжки, закрепляющие положение мест пересечения вант. Затем повторно проверяют соответствие проекту поверхности вантовой сети. После этого вантовую сеть натягивают в три этапа при помощи 100-тонных гидравлических домкратов и траверс, присоединенных к гильзоклиновым анкерам.

Последовательность натяжения определяют из условий натяжения вант группами, одновременного натяжения групп в перпендикулярном направлении, симметричности натяжения групп относительно оси здания.

По окончании второго этапа натяжения, т.е. при достижении усилий, определенных проектом, на вантовую сеть укладывают сборные железобетонные плиты в направлении от нижней отметки к верхней. При этом на плитах до их подъема устанавливают опалубку для замоноличивания швов.

3.1.3.4. Технология возведения зданий с мембранными покрытиями

К металлическим висячим покрытиям относят тонколистовые мембранные, совмещающие несущие и ограждающие функции.

Достоинствами мембранных покрытий являются их высокая технологичность изготовления и монтажа, а также характер работы покрытия на двухосное растяжение, что позволяет перекрывать 200-метровые пролеты стальной мембраной толщиной всего 2 мм.

Висячие растянутые элементы обычно закрепляют за жесткие опорные конструкции, которые могут быть в виде замкнутого контура (кольца, овала, прямоугольника), опирающегося на колонны.

Рассмотрим технологию монтажа мембранного покрытия на примере покрытия спорткомплекса “Олимпийский” в Москве.

Спортивный комплекс "Олимпийский" решен в виде пространственной конструкции эллиптической формы 183×224 м. По наружному контуру эллипса с шагом 20 м расположены 32 стальные решетчатые колонны, жестко связанные с наружным опорным кольцом (сечением 5×1,75 м). К наружному кольцу подвешено мембранное покрытие – оболочка со стрелой провисания 12 м. Покрытие имеет 64 радиально расположенные с шагом по наружному контуру 10 м стабилизирующие фермы высотой 2,5 м, соединенные кольцевыми элементами – прогонами. Лепестки мембраны крепили между собой и к радиальным элементам "постели" высокопрочными болтами. В центре мембрана замыкается внутренним металлическим кольцом эллиптической формы размером 24×30 м. Мембранное покрытие крепилось к наружному и внутреннему кольцам высокопрочными болтами и сваркой.

Монтаж элементов мембранного покрытия производили крупными пространственными блоками башенным краном БК – 1000 и двумя шеврами-установщиками (грузоподъемностью 50 т), перемещавшимися по наружному опорному кольцу. По длинной оси на двух стендах производилась сборка одновременно двух блоков.

Все 64 стабилизирующие фермы покрытия были объёдинены попарно в 32 блока девяти типоразмеров. Один такой блок состоял из двух радиальных стабилизирующих ферм, прогонов по верхним и нижним поясам, вертикальных и горизонтальных связей. В блок были вмонтированы трубопроводы систем вентиляции и кондиционирования. Масса блоков стабилизирующих ферм в сборе достигала 43 т.

Поднимали блоки покрытия с помощью траверсы-распорки, которая воспринимала усилие распора от стабилизирующих ферм (рис. 25).

Перед подъемом блоков ферм выполняли предварительное напряжение верхнего пояса каждой фермы на усилие около 1300 кН (210 МПа) и закрепляли их при этом усилии к опорным кольцам покрытия.

Установка преднапряженных блоков производилась поэтапно путем симметричной установки нескольких блоков по радиусам одного диаметра. После монтажа восьми симметрично установленных блоков вместе с траверсами-распорками производилось одновременное их раскружаливание с передачей усилий распора равномерно наружному и внутреннему кольцам.

Блок стабилизирующих ферм поднимали краном БК – 1000 и шевром-установщиком примерно на 1 м выше наружного кольца. Затем шевр перемещали к месту установки данного блока. Расстроповку блока производили только после его полного проектного закрепления на внутреннем и наружном кольцах.

Мембранная оболочка массой 1569 т состояла из 64 секторных лепестков. Лепестки мембраны монтировали после окончания монтажа системы стабилизации и закрепляли высокопрочными болтами диаметром 24 мм.

Полотнища мембраны поступали на монтажную площадку в виде рулонов. Стеллажи для раскатывания располагались на месте сборки стабилизирующих ферм.


Рис. 25. Схема монтажа покрытия укрупненными блоками:

а – план; б – разрез; 1 – шевр-установщик; 2 – стенд для укрупнительной сборки блоков; 3 – траверса-распорка для подъема блока и предварительного напряжения верхних поясов ферм с помощью рычажного устройства (5); 4 – укрупненный блок; 6 – монтажный кран БК – 1000; 7 – центральное опорное кольцо; 8 – центральная временная опора; I – V – последовательность монтажа блоков и демонтажа траверс-распорок

Монтаж лепестков выполняли в последовательности установки стабилизирующих ферм. Натяжение лепестков мембраны осуществляли двумя гидравлическими домкратами усилием по 250 кН каждый.

Параллельно с укладкой и натяжением лепестков мембраны вели сверление отверстий и установку высокопрочных болтов (97 тыс. отверстий диаметром 27 мм). После сборки и проектного закрепления всех элементов покрытия производилось его раскружаливание, т.е. освобождение центральной опоры и плавное включение в работу всей пространственной конструкции.



2024 stdpro.ru. Сайт о правильном строительстве.