Биологические фильтры. Биологический фильтр для очистки сточных вод Биологический фильтр для очистки сточных вод
Процесс изъятия и окисления органических загрязнений сточных вод в биологических фильтрах принципиально не отличается от аналогичных процессов, протекающих при очистке сточных вод в других сооружениях биологической очистки, однако ход процесса в биологических фильтрах во многом зависит от конструктивных особенностей этих сооружений. В частности, конструкцией биологического фильтра обусловлена специфика гидродинамических условий в нем, а следовательно, характер и скорость подвода органических веществ и кислорода воздуха к клеткам микроорганизмов биологической пленки, отвода от них продуктов биохимических реакций, что в свою очередь влияет на скорость процесса очистки сточных вод и эффективность работы сооружений.
Очистка осуществляется при контакте протекающей сточной воды через загрузку с неподвижно закрепленной на ее поверхности биологической пленкой. Ход массообменных процессов, происходящих в элементарном объеме биологаческого фильтра, схематично представлен на рис. 2.1 а. Перенос загрязнений определяется законами молекулярной и турбулентной диффузии вещества. При молекулярной диффузии массообмен происходит как за счет разности концентраций веществ на границе раздела фаз жидкость - воздух (максимальная концентрация загрязнений) и жидкость - биопленка (минимальная концентрация). Турбулентная диффузия происходит вследствие перемешивания жидкости при ее протоке через загрузку биологического фильтра. При этом скорость турбулентной диффузии может намного превышать скорость молекулярной диффузии.
t/почнал Soda
Эаеряонени*
воздух
Ppo?f/ктм реакций -
Лоробос
I HjP?/точмая I сТиоплснка

Оресничес/fue бещестба биогенные j/гсменты MP da, Mg, б и dp.
Рислород
А в I P I » I *u
биологическая
пленка

C0 Zl H;0, H0 2j Wj
Энергия
Прирост биомассы
Энергетические WMC
Нонструктиш обмен
Рис. 2.1. Схемы массообменных процессов, протекающих при очистке сточных вод на биологических фильтрах (а), и окислительных процессов , происходящих в биопленке (б)
Кислород воздуха, необходимый для протекания биологического процесса, поступает к биопленке из порового пространства загрузки биологического фильтра. Перенос и фиксирование (сорбция) органических веществ на поверхности клетки или в околоклеточном пространстве сопровождаются гидролизом сложных соединений под действием различных ферментов, а также в результате диффузии веществ через проницаемую мембрану клетки.
В ходе внутриклеточных процессов происходит окисление органических веществ (энергетический обмен) и синтез нового материала клетки (конструктивный обмен). Процесс окисления сопровождается выделением энергии, процесс синтеза идет с ее потреблением (рис. 2.16).
Продукты распада органических загрязнений выносятся из биогшенки в слой жидкости и отводятся с потоком жидкости (растворенные вещества) и с потоком воздуха (газообразные). Одновременно потоком жидкости вымывается избыточная (прирастающая) биопленка, которая выносится из биологического фильтра вместе с очищенной водой. Для отделения избыточной биопленки очищенные сточные воды после биологических фильтров отстаивают во вторичных отстойниках.
Характер протекания процесса очистки сточных вод на биологическом фильтре показан на рис. 2.2. Как видно из рисунка, концентрация органических загрязнений Ь н сначала быстро снижается при продолжительности процесса от г 0 До что свидетельствует о высоких скоростях изъятия загрязнений на этом участке. Одновременно резко увеличивается количество биопленки (кривая 2) по сравнению с начальным С н, причем скорость роста микроорганизмов биоиленки по мере уменьшения концентрации загрязнений в жидкости постепенно снижается. К моменту времени /1 количество биопленки становится стабильным, так как недостаток питания тормозит дальнейший рост клеток.

Рис. 2.2.
1 - концентрация органических загрязнений; 2 - общая масса биогшенки, закретенной на загрузке и циркулирующей; 3 -масса биопленки, закрепленной на загрузке биологического фильтра; 4 - концентрация нитритов и нитратов; 5 - зольность биомассы
Прирост биомассы в этот момент времени максимальный. При дальнейшем увеличении продолжительности процесса очистки сточных вод в биологическом фильтре концентрация органических загрязнений продолжает снижаться (кривая /), но скорость на участках б - / 2 и / 2 - Ь значительно ниже, чем в начале процесса. Ввиду низкой остаточной концентрации загрязнений в жидкости, отсутствия достаточного питания для жизнедеятельности микроорганизмов биопленки на этих участках начинается процесс отмирания (самоокисления) биомассы. Часть биопленки смывается с за1рузки биологического фильтра и поступает в очищаемую жидкость. Вследствие распада биомассы ее общее количество уменьшается (кривая 2), также уменьшается количество биопленки, закрепленной на загрузке (кривая 3), зольность биомассы повышается (кривая 5).
Участок I (см. рис. 2.2) при продолжительности процесса очистки сточных вод от /] до? 2 характеризует режим работы биологических фильтров при неполной биологической очистке. При работе в этом режиме концентрация загрязнений по ВПК снижается до 100...30 мг/л, наблюдается большой прирост биомассы, процесс идет без нитрификации.
При продолжительности процесса очистки от до Ь (участок II) биологические фильтры работают в режиме полной биологической очистки; ВПК жидкости снижается до Ь 0 - = 15...25 мг/л, в очищенной жидкости появляются нитриты и нитраты (кривая 4). Количество биомассы как закрепленной на загрузке биологического фильтра, так и выносимой с очищенной жидкостью, снижается вследствие процессов самоокисления.
Увеличение продолжительности процесса от и до / 4 сопровождается дальнейшим распадом и следовательно, уменьшением количества биомассы в биологическом фильтре (кривые 2 и 3), зольность ее повышается. Этот участок III характеризует режим стабилизации биомассы , аналогичный режиму продолженной аэрации при очистке сточных вод с активным илом. При работе биологических фильтров в этом режиме можно получить наименьший прирост биопленки, высокую степень минерализации выносимой из биологического фильтра избыточной биопленки, что позволяет облегчить дальнейшую ее обработку. Стабилизированная избыточная биомасса, выносимая из биологических фильтров, работающих в этом режиме, не требует дополнительного сбраживания и может быть сразу направлена на иловые площадки для подсушивания.
Концентрация загрязнений сточных вод на участке III не только не снижается по сравнению с концентрацией загрязнений на участке II, но и может даже несколько увеличиваться (кривая 1 ) за счет вторичного загрязнения очищенной жидкости продуктами распада биомассы. В конце участка III при продолжительности процесса Ц в биологическом фильтре развиваются микроорганизмы, адаптированные к остаточным трудноокисляемым загрязнениям сточных вод, что обусловливает дальнейшее снижение концентрации загрязнений.
Участок IV характеризует работу биологических фильтров в режиме доочистки сточных вод до величины остаточных загрязнений по ВПК Ь й = 15...5 мг/л. В этом режиме прирост биомассы крайне незначительный, зольность избыточной биомассы высокая, процесс нитрификации протекает интенсивно.
Рассмотренный ход процесса очистки сточных вод на биологических фильтрах на контакте иллюстрирует возможность работы этих сооружений в различных режимах, а их режим работы, принятый на основании местных условий и требуемого качества очищенных сточных вод, обусловливает выбор конструкции этих сооружений, технологических параметров их работы, схемы всей очистной станции.
Основные технологические параметры, определяющие режим работы биологических фильтров: нагрузка по органическим загрязнениям, окислительная мощность, гидравлическая нагрузка, средняя продолжительность протока сточных вод, коэффициент рециркуляции, расход подаваемого воздуха.
измеряется количеством органических загрязнений, подаваемых вместе со сточными водами на биологический фильтр в единицу времени, и является основным показателем, определяющим режим и условия биологического процесса (см. рис. 2.2). Обычно пользуются удельной нагрузкой по БПК полн, отнесенной к 1 м 3 объема биологического фильтра: N - Ь еп QJW, где N - удельнаянагрузка по БПК П0Л11 , г/сут-м 3 ; Ь еп - БПК полн исходных сточных вод, г/м 3 ; 0^, - расход сточных вод, м 3 /сут; ]Г- объем биологического фильтра, м 3 .
Для сравнения режимов работы биологических фильтров удельную нагрузку правильнее определять на единицу площади поверхности биопленки или площади поверхности фракций загрузки: Ы = Ь е „ 0,^ а, где - удельная нагрузка, г/сут-м 2 ; /в - площадь поверхности загрузки, м 2 .
Окислительную мощность, или производительность биологического фильтра по количеству изъятых органических загрязнений в процессе очистки сточных вод, выражают в граммах БПК полн на 1 м 3 загрузки в сутки: ОМ = (Ь еп ~ ()*/№, где ОМ - окислительная мощность, г/сут-м 3 ; А^-БПКполн очищенных сточных вод, г/м 3 .
- количество сточных вод, поступающих на биологический фильтр, отнесенное к 1 м 2 площади сооружения в плане: ц - ()„/Г, где q - гидравлическая нагрузка, м 3 /м 5 -сут; площадь биологического фильтра, м 2 .Средняя продолжительность протока сточных вод через биологический фильтр Г со зависит от гидравлической нагрузки, высоты биологического фильтра, способа подачи сточных вод на поверхность загрузки, типа загрузки и распределения в ней биопленки. Величина г ср является показателем продолжительности процесса очистки сточных вод в биологическом фильтре. При повышении гидравлической нагрузки увеличивается скорость движения жидкости через биологический фильтр и уменьшается продолжительность протока; с увеличением высоты биологического фильтра увеличивается продолжительность пребывания сточных вод в загрузке. Загрузка, а также закрепленная на ней биопленка, оказывая сопротивление движению протекающей жидкости, тем самым определяют путь, по которому движется поток жидкости, а следовательно, влияют на продолжительность протока.
Коэффициент рециркуляции - отношение расхода рециркулируемой очищенной жидкости к общему расходу исходных сточных вод, поступающих на биологический фильтр, п = (2и-
Рециркуляция, т.е. повторный пропуск части очищенной ЖИДкости через биологический фильтр, позволяет увеличить продолжительность процесса очистки, снизить начальную концентрацию загрязнений исходных сточных вод и повысить гидравлическую нагрузку, обеспечивающую промывку загрузки сооружения в процессе его работы. Коэффициент рециркуляции принимают в зависимости от предельно допустимой концентрации загрязнений по БПК полн смеси исходных и рециркулируемых сточных вод, которую можно направить на биологический фильтр без опасений заиливания пор загрузки в результате прироста биопленки. Коэффициент рециркуляции определяют по формуле п = (L en - L mix)/ (L mix - L ex ), где L mix -БПК п0ЛН смеси исходных и рециркулируемых сточных вод, г/м 3 .
Количество кислорода, требуемое для окисления органических загрязнений сточных вод микроорганизмами биопленки, должно обеспечиваться подачей в тело биологического фильтра соответствующего количества воздуха. Недостаток кислорода замедляет скорость биологического процесса. Однако влияние количества подаваемого воздуха на скорость процесса очистки сказывается только до тех пор, пока процесс не будет полностью обеспечен требуемым количеством кислорода. Если достаточный воздухообмен в поровом пространстве загрузки биологических фильтров не обеспечивается естественной вентиляцией, то предусматривают принудительную подачу воздуха.
Наиболее важным конструктивным элементом биологического фильтра является загрузка. Тип и характеристика загрузки существенно влияют на протекание процесса очистки сточных вод. Загрузка биофильтра характеризуется следующими основными параметрами: высотой слоя, удельной площадью поверхности, пористостью и плотностью загрузки. Высота слоя загрузки, или рабочая высота биологического фильтра, определяет наравне с другими параметрами продолжительность пребывания сточных вод в биологическом фильтре.
От удельной площади поверхности загрузки зависит и общая площадь поверхности закрепленной на ней биопленки, а следовательно, и площадь, через которую осуществляется перенос органических загрязнений из жидкости, обтекающей загрузку, к бактериальным клеткам. Как правило, процесс массо-переноса является фактором, лимитирующим скорость изъятия загрязнений, и потому от площади поверхности загрузки в значительной мере зависит окислительная мощность биологического фильтра.
Следует отметить, что для процесса очистки сточных вод важным является площадь поверхности биопленки, а не общее количество биомассы в загрузке. При накоплении биомассы увеличивается толщина биопленки, а активно работающим остается по-прежнему только наружный аэробный слой. Внутри, у поверхности загрузки, образуется анаэробная зона (рис. 2.1а), которая почти не участвует в процессе изъятия и окисления загрязнений. Увеличение количества биомассы уменьшает объем порового пространства загрузки, затрудняет воздухообмен в биологическом филыре, а также снабжение микроорганизмов кислородом воздуха. Пористость загрузки биологических фильтров должна быть такой, чтобы при установившемся режиме работы сооружения (когда количество биопленки в загрузке остается постоянным и ее прирост соответствует выносу) объехМ свободных пор был достаточен для снабжения биоплёнки кислородом воздуха.
Загрузку, применяемую для биологических фильтров, условно можно разделить на два вида: объемную и плоскостную. В качестве объемной загрузки используют щебень, гравий прочных горных пород, кокс, керамзит и другие материалы, характеризуемые определенной крупностью фракций, механической прочностью и стойкостью к разрушению . Такой материал имеет пористость 40...50 %, плотность 500... 1500 кг/м 3 , удельную поверхность в зависимости от размера фракций загрузки 30... 120 м 2 /м 3 .
В качестве плоскостной загрузки применяют листовой материал (пластмассу, асбестоцемент и др.), мягкие рулонные материалы (пластмассовую пленку, синтетические ткани), а также засыпные элементы (кольца, отрезки труб и др.). Загрузку из листовых материалов выполняют в виде различных блоков и кассет, которые укладывают в тело биологического фильтра, мягкие рулонные материалы закрепляют на каркасах или свободно подвешивают.
Пористость плоскостной загрузки из листовых материалов составляет 80...97 %, из рулонных материалов - 94...99, из засыпных элементов - 70...90 %. Удельная поверхность листовой и рулонной загрузки - 80... 130 м 2 /м 3 , засыпной - 70... 100 м 2 /м 3 , плотность листовой загрузки 40-100 кг/м 3 , рулонной - 5.. .60 кг/м 3 , засыпной- 100...600 кг/м 3 .
Применение плоскостной загрузки позволяет упростить конструкцию биологического фильтра, снизить строительные и монтажные расходы.
Сооружения биологической очистки сточных вод. Биофильтры
Биофильтры. Представляют собой прямоугольные или круглые в плане сооружения со сплошными стенками и двойным дном: верхним в виде колосниковой решетки, и нижним сплошным. Колосниковая решетка или дырчатое днище, дренаж биофильтров устраивается из железобетонных плит. Общая площадь отверстий дренажа принимается не менее 5—8% площади поверхности фильтра.
Фильтрующим материалом служит щебень, галька горных пород, керамзит, шлак. Загрузка фильтрующего слоя по всей его высоте должна производиться материалом одинаковой крупности (табл.61).

Таблица 61. Крупность зерен загрузочного материала для биофильтра (СНиП II-Г. 6—62)
Мелочи в загрузочном материале должно быть не более 5%. Нижний поддерживающий слой во всех типах биофильтров должен применяться с размерами 60—100 мм.
Орошение биофильтров сточными водами производится через небольшие равномерные промежутки времени. Распределение сточных вод может быть капельным, струйным или в виде тонкого слоя.
Кислород, обеспечивающий жизнедеятельность бактерий, поступает в тело фильтра естественной или искусственной вентиляцией. Количество кислорода, получаемое с 1 м3 фильтрующего материала в сутки для снижения БПК сточных вод, называется окислительной мощностью. Она зависит от температуры сточных вод, наружного воздуха, характера загрязнений (табл. 62).

Таблица 62. Окислительная мощность, г, кислорода в сутки на 1 м3 загрузочного материала биофильтров (СНиП II-Г. 6—62)
Примечания: 1. Указанные в табл. 62 величины окислительной мощности определены для сточных вод со среднезимней температурой +10°. При другой среднезимнеи температуре сточных вод значения окислительной мощности следует увеличивать илн уменьшать пропорционально отношению фактической температуры к 10°С
2. При значении часового коэффициента неравномерности притока более 2, объем фильтрующего материала следует увеличить пропорционально отношению фактического коэффициента неравномерности К=2.
При среднегодовой температуре наружного воздуха ниже + 10°С и коэффициенте рециркуляции сточных вод более 4, а также при среднегодовой температуре воздуха до +3°С биофильтры любой производительности, и при среднегодовой температуре от +3 до +6°C биофильтры с производительностью до 500 м3 в сутки необходимо размещать в отапливаемых помещениях с расчетной температурой внутреннего воздуха на +20С выше температуры сточных вод и пятикратным воздухообменом в час. При производительности более 500 м3/сутки и среднегодовой температуре воздуха от +3 до +6°C биофильтры можно размещать в неотапливаемых помещениях облегченной конструкции.
При поступлении сточных вод с перерывами в течение суток строительство биофильтров в неотапливаемых помещениях или открытого типа должно обосновываться теплотехническим расчетом. При этом необходимо принимать во внимание опыт эксплуатации очистных сооружений, находящихся в данном районе или в других районах с аналогичными условиями.
Окислительную мощность биофильтра ОМ можно определить по формулам:
при работе с рециркуляцией
, (135)
без рециркуляции
, (136)
где LCM — БПК5 смеси поступающих сточных вод, мг/л;
Ld — БПКб поступающих на очистку сточных вод, мг/л;
Lt — БПК5 очищенных сточных вод, мг/л;
QcyT — суточный расход сточных вод, м3/сутки;
F — площадь фильтра, м2;
Н — высота загрузки фильтра, м;
q — расход сточных вод, л/сек;
n — коэффициент рециркуляции, определяемый по формуле (133).
При расчете биофильтров для промышленных сточных вод предприятий пищевой промышленности можно рекомендовать коэффициент скорости биохимического окисления Кс.б, указывающий на интенсивность прироста биологической пленки, определяемый по формуле
Кс.б = 21/a, (137)
где а — разность, проц., между ХПК и БПК20 сточных вод.
Низкие значения коэффициента указывают на нецелесообразность биохимических способов очистки сточных вод. Обратная величина коэффициента скорости биохимического окисления характеризует скорость прироста биологической пленки.
Коэффициент скорости биохимического окисления смеси сточных вод с различным размером загрязнений определяется по формуле
, (138)
где Q1, Q2...Qn — расходы различных по концентрации сточных вод;
а1, а2,...an — соответствующие разности, проц., между ХПК и БПК20.
Чем меньше коэффициент, тем больше интенсивность фактора прироста биологической пленки, поэтому коэффициент оказывает влияние на выбор фильтрующего материала (табл. 63).

Таблица 63. Зависимость вида загрузочного материала от коэффициента скорости биохимического окисления
Биофильтры подразделяются на капельные, высоконагружаемые, аэрофильтры, башенные.
Отличительной особенностью капельных биофильтров является небольшой диаметр фракций загрузочного материала (30— 50 мм) и высота загрузки (2 м), при этом нижний поддерживающий слой высотой 0,2 м принимается размером 60—100 мм, а также низкая нагрузка по сточной воде от 0,5 до 1,0 мг на 1 мг загрузки фильтра.
Высоконагружаемые биофильтры отличаются от капельных значительно большей гидравлической нагрузкой. Для капельных биофильтров нагрузка на 1 м2 поверхности в сутки составляет 1—2 м3 сточных вод, для высоконагружаемых — 10—30 м3 на 1 м2 поверхности в сутки, т. е. в 10—30 раз больше.
Более высокая окислительная мощность высоконагружаемых биофильтров обусловливается незаиляемостыо, лучшим обменом воздуха, что достигается благодаря более крупному загрузочному материалу и повышенной нагрузкой по воде. Значительные скорости прохода воды через загрузочный материал обеспечивают постоянный вынос трудноокисляемых примесей и отмирающей биопленки. Крупность частиц загрузки принимается размером 40—60 мм, что обеспечивает большой объем пор.
Конструктивные и эксплуатационные особенности высоконагружаемых биофильтров и их отличие от капельных следующие:
- высота слоя фильтрующей загрузки доходит до 4 м. Количество загрязнений, вносимых на 1 м2 площади фильтра в сутки, зависит от высоты фильтра. При высоте его 4 м окислительная мощность составляет 2400 г 02/м2, 3м — 2200, 2,5 м — 2000, 1 м— 1800 г 02/м2;
- крупность зерен доходит до 65 мм по всей высоте загрузки;
- искусственная вентиляция фильтра обеспечивается особой конструкцией днища и дренажа (ограждение глухими стенами с гидрозатвором) ;
- интервалы в орошении фильтра сточной водой должны быть сокращены до минимума. Нагрузка по воде должна быть повышенной и постоянной;
- направление концентрированных сточных вод на фильтры недопустимо, поэтому для поддержания повышенной нагрузки по воде необходимо их разбавление условно чистыми или очищаемыми водами при помощи рециркуляции;
- высоконагружаемые биофильтры могут работать на заданную степень очистки сточных вод;
- применяются как для полной, так и для частичной очистки сточных вод.
Высоконагружаемые биофильтры могут быть одно- (рис. 19) и двухступенчатые.

Рис. 19. Схема одноступенчатых высоконагружаемых биофильтров: П.О. — первичный отстойник; Н.С. — насосная станция; Б — биофильтр; В.О. — вторичный отстойник, К.Б, — коигакгиый бассейн; 1,2 — возможные варианты рециркуляции очищенной жидкости, 3 — удаление избыточной биопленки; 4 — хтораторная; 5 — очищенные и обеззараженные сточные воды иа выпуск.
Применение двухступенчатых высоконагружаемых биофильтров рекомендуется при благоприятном рельефе местности и при необходимости более глубокой очистки сточных вод. Разновидностью высоконагружаемых биофильтров могут быть сооружения перемежающейся фильтрации (рис. 20).

Рис. 20. Схема двухступенчатых высоконагружаемых биофильтров с перемежающейся фильтрацией: ПО — первичный отстойник, K1, К2 — камеры переключения, ИС — насосная станция, Б — биофильтры, ВО — вторичные отстойники, КБ контактный бассейн, 1 — удаление избыточной бнопленки, 2 — хлораторная, 3 — очищенные сточные воды на выпуск
Разновидностью высоконагружаемых биофильтров являются аэрофильтры. Особенность фильтров этого типа.— большая высота (3—4 м) и принудительная вентиляция, которая может осуществляться вентиляторами низкого давления.
Материал загрузки тела аэрофильтра должен быть по возможности гладким. Аэрофильтры устраиваются двух- и трехслойные. Нижний слой рекомендуется устраивать толщиной 0,2 м из кусков загрузочного материала размером 50—70 мм, а верхний — размером 30—40 мм (рис. 21).

Рис. 21. Схема аэрофильтра: 1 — загрузка, 2 — реактивный водораспределитель, 3 — гидрозатвор
Устойчивой работы и высокого эффекта очистки на аэрофильтрах можно достичь, если сточные воды, направляемые на очистку, будут иметь БПК не более 150 мг/л. Расчет аэрофильтров можно проводить по их окислительной мощности (табл. 64).

Таблица 64. Окислительная мощность, г, кислорода на 1 м3 загрузки аэрофильтра (СНиП II-Г. 6—62)
Данные табл. 64 определены для сточных вод со среднезимней температурой +10°C. При температуре сточных вод более или менее +10оС окислительную мощность аэрофильтра необходимо увеличивать или уменьшать соответственно пропорционально отношению фактической температуры к+10°С.
Что из себя представляет биофильтр? Это приспособление имеет ёмкость определённой формы, которая при использовании биоматериалов очищает сточные воды.
Что из себя представляет биофильтр? Это приспособление имеет ёмкость определённой формы, которая при использовании биоматериалов очищает сточные воды. Данные биоматериалы состоят из различных микроорганизмов. С помощью перепадов температуры атмосферы и очищаемой жидкости, в процессе очистительных работ осуществляется бесперебойная циркуляция воздуха. Это нужно для того, чтобы микроорганизмы в ёмкости получили кислород, который необходим им для жизни.
Разновидности биологических фильтров.
В биофильтрах существуют различные материалы, которые в них загружают. Можно выделить такие, как:
- Фильтры, использующие объёмную нагрузку. В них может содержаться галька, щебень и так далее.
- Технология плоской нагрузки. Производятся из крепких видов пластмассы, функционирующие в температурном спектре от 6 до 30 градусов.
По технологическим схемам разделяют:
- Биофильтры с двумя этапами очистки, производящие воду высокой степени очищенности. Их обычно используют при тяжёлых погодных условиях или ограниченности высоты прибора.
- Биологические фильтры с одним этапом.
По качеству очистки разделяют следующие виды:
- Полная очистка.
- Не полная очистка.
По типу передачи воздуха фильтры подразделяются на:
- С природной подачей.
- С искусственной циркуляцией воздуха.
Так же можно выделить 2 режима функционирования биофильтров:
- С рециркуляцией - сильно загрязнённая жидкость подаётся небольшими объёмами для более качественной очистки.
- Без рециркуляции - применяется, если вода загрязнена не очень сильно.
В зависимости от количества очищенной воды за промежуток времени выделяют:
- Капельные - с небольшой проходимостью воды.
- Высоконагружаемые - с возможностью очистки больших объёмов.
Биологические фильтры применяющие объёмную нагрузку подразделяются на:
- Капельные. Им свойственна небольшая производительность. Если размер слоя будет 2 метра, то их загрузка составит 2-3 сантиметра.
- Высоконагружаемые. При 4-ёх метровом слое их загрузка составит 4-6 сантиметра.
- Башенные фильтры производятся высотой в 16 метров и имеют зернистость 4-6 сантиметров.
Все вышеперечисленные разновидности биофильтров могут быть реализованы, смонтированы и запущены нашей компанией сайт.
Фильтры использующие плоскую загрузку.
Усиленная загрузка производится элементами труб, кольцами и похожими компонентами. В резервуар закладывают металлическую или пластмассовую крошку. Слой очистки может составлять до 6 метров.
Смягчённая нагрузка производится металлической сеткой, синтетикой или пластмассовой плёнкой. Нагрузку закладывают рулонным методом или прикрепляют на корпус. Высота нагрузки составит 8 метров, а пористость не менее 95 процентов.
Биологические фильтры для погружения - ёмкости с вогнутым дном. Металлические, пластмассовые или асбестовые диски прикрепляются выше уровня очищаемой жидкости. Эти диски прикрепляются на расстояние 1-2 сантиметра друг от друга.
Схема функционирования биофильтра.
Подача воды может быть двух типов: струйным и капельным. Воздушные массы собираются с поверхности. Очищенные до этого сточные воды с низким загрязнением сами протекают в распределительное отделение, которое частями выдаёт её поверх массы загрузки. После этого, водная масса течёт в систему дренажа, затем на лотки за границами биофильтра. С другого отстойника убирается биоплёнка.
Биологические фильтры капельного типа подразумевают работу с небольшой, органической загрузкой. Для того, чтобы фильтр своевременно очищался от мертвой плёнки, производится гидравлическая загрузка.
Биофильтры капельного типа не могут быть отрегулированы под переменчивость внешних факторов. При использовании смотрят на степень загрязнённости и состояние фильтров. Намного выгоднее производить полную смену загрузки, так как её очистка стоит очень дорого. В фильтр должны заливаться сточные воды с концентрацией взвешенных частиц не более 100 миллиграмм на литр.
Очень значимым фактором при использовании является аэризация биофильтра. Количество кислорода не должно быть ниже, чем 2 миллиграмма на литр. Время от времени важно производить очистку углубления под дренажем и над дном.
Биофильтр капельного типа очень тяжело реагирует на зимние холодные ветра. Для качественной эксплуатации фильтра устанавливают защиту от ветра. Разная нагрузка ведёт за собой заболачивание биофильтра, которую можно убрать сменой загрузки. Эксплуатации фильтра так же могут вредить посторонние вещества в загрузке и дозирующих ёмкостях.
Высоконагружаемые биологические фильтры
Данному виду биофильтров характерен увеличенный воздухообмен и, следственно, окислительная мощность. Производится увеличенный воздухообмен большой фракцией загрузки и увеличенной нагрузки воды.
Очищаемые водные массы передвигаются на высокой скорости и сносят трудно-окисляемые вещества и биоплёнку. На остальное загрязнение тратится кислород.
Фильтрам с высокой нагрузкой характерен высокий слой загрузки, увеличенная зернистость дренажа и дно специального типа для того, чтобы была произведена искусственная циркуляция воздушных масс.
Промывка данного типа биофильтра может осуществляться только при бесперебойной и постоянной подаче воды.
Чем выше высота загрузки, тем эффективнее биологический фильтр и наоборот.
Устройство и функционирование фильтров
К составу биофильтров могут относиться:
- Тело биофильтра - загрузка для фильтрации, которая находится в ёмкости, открытой для поступления в неё водных масс. Наполнители обязаны быть с невысокой плотностью и увеличенной площадью поверхности.
- Приспособление, которое распределяет воду. Оно обеспечивает планомерное орошение загрузки неочищенной водой.
- Дренаж.
- Приспособление, которое распределяет воздушные массы. Производит реакции окисления с помощью кислорода. Эти реакции в биологических фильтрах похожи на орошение земельных угодий, но в более высоком темпе.
Принцип работы биологического фильтра
Загрузка производит очистку воды от не растворившихся веществ, которые прошли через отстойники. Микроорганизмы в ней существуют с помощью окисления органики. Остальные органические вещества служат для повышения биологической массы. Производится 2 эффективных процесса: в воде убиваются ненужные органические вещества и повышается биоплёнка. Массы сточной воды заберут с собой мёртвую часть биоплёнки. Вентиляция подаёт кислород двумя способами: искусственным и естественным.
Расчёт фильтров
Биофильтры капельного типа
Расчёт нужен для того, чтобы найти эффективный размер загрузки и параметров устройства водораспределения, а так же размера лотка, для отвода жидкости. Размер загрузки вычисляется по мощности окисления - ОМ. Мощность окисления - это количество обязательного кислорода в день. На неё оказывает влияние температура жидкости и воздуха, материалы загрузки, способы подачи воздуха и так далее. При среднегодовой температуре ниже трёх градусов, биологический фильтр должен быть перенесён в более обогреваемую среду с 5-кратной подачей воздуха.
Для биологических фильтров с высокой нагрузкой существует точный метод подсчёта:
Рассчитывается предельная концентрация загрязнения входящей водной массы. Далее, с помощью формул определяется коэффициент рециркуляции. Существуют методики подсчёта биофильтров, для которых используются усложнённые формулы, но которые дадут результаты высокой точности.
Вентилирование биофильтров
Как упоминалось выше по тексту, биологические фильтры имеют 2 типа передачи кислорода, естественный и искусственный. Тип вентилирования выбирают в зависимости от вида биофильтра и погодных условий.
Для фильтров с высокой нагрузкой применяют вентиляцию с невысоким давлением. Что касается аэрофильтров, то для них используют искусственное вентилирование. Установка фильтра в замкнутом пространстве подразумевает обязательную подачу воздушных масс в него.
Должна производиться постоянная циркуляция воздуха, ведь перебои могут повысить температуру до 60 градусов и вызвать появление неприятных запахов от гниения биологической плёнки.
Фильтр эффективно функционирует при температурах более шести градусов. В случаях, когда температура жидкости ниже шести градусов, нужно подогревать её перед подачей.
Для того, чтобы в холодные времена года биофильтр не замерзал, используют защиту от ветра и понижают коэффициент неравномерной подачи воды. Далее проводят ограничения по поступлению прохладного воздуха: за 60 минут на 1 кв. метр производится подача не более 20 куб. метров. Вентилируемые решётки оснащаются жалюзями, защитой из ткани.
Ширина биологической плёнки прямо влияет на равновесие в биофильтре. Чем больше ширина, тем больше вероятность, что воздушные массы перестанут поступать и начнётся процесс гниения. С этой проблемой чаще всегда сталкиваются при использовании фильтров капельного типа.
Раньше думали, что естественное поступление кислорода возможно только из-за различных температур. Но в итоге стало известно, что на него оказывает влияние процессы диффузии.
Б.1. ОБЩИЕ СВЕДЕНИЯ
Биологический фильтр (биофильтр) - сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой (биопленкой), образованной колониями микроорганизмов (рис. Б.1).
Биофильтр состоит из следующих частей:
Фильтрующей загрузки, помещенной в резервуаре круглой или прямоугольной формы в плане;
Водораспределительного устройства, обеспечивающего равномерное орошение сточной водой поверхности загрузки биофильтра;
Дренажного устройства для удаления профильтрованной воды;
Воздухораспределительного устройства, с помощью которого поступает необходимый для окислительного процесса воздух.
Рис. Б.1.Схема биологического фильтра: 1 - подача сточных вод; 2- водораспределительное устройство; 3 - фильтрующая загрузка; 4 - дренажное устройство; 5 - профильтрованная сточная вода; 6 - воздухораспределительное устройство
Процессы окисления в биофильтре аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.

Рис. Б.2. Схема обмена веществ в элементарном слое биофильтра: 1- анаэробный слой биопленки; 2 - аэробный слой биопленки; 3 - слой сточной воды
Проходя через загрузку биофильтра, загрязненная вода оставляет в ней нерастворимые примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, сорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда получают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и, в то же время, увеличивается масса активной биологической пленки в теле биофильтра.
Отработавшая и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра (рис. Б.2).
Биофильтр, как и любой другой биоокислитель, представляет собой открытую экологическую систему, ограниченную в пространстве, включающую живую (биоценоз биопленки) и неживую (конструктивная часть биофильтра, компоненты движущихся жидкой и газовой фаз) среду, обеспеченную источниками энергии и питания. Экосистема - биофильтр отличается устойчивым равновесием, т.е. способностью за счет саморегулирования возвращаться в исходное состояние по производительности и эффективности работы после отклонений от стабильного режима в результате воздействия окружающей среды и условий функционирования. Многообразие видового состава биоценозов является показателем жизнестойкости системы. Эффективность работы биофильтров зависит от многих факторов: влияния окружающей среды, состава сточных вод, режима эксплуатации, конструкции биофильтров, состава биоценозов биопленки и др.
Техническая информация


Серия PLASTEPUR имеет множество неоценимых преимуществ:
- Значительные нововведения в области индивидуальных систем очистки сточных вод:
- Компакные формы и конструкции, отвечающие требованиям установки, безопасности и гарантирующие высокую устойчивость к снижению давления.
- Встроенные выступающие оголовки — крышки позволяющие легко определить местонахождение резервуара и упрощающие его техобслуживание.
- Комплектная серия: однородность всего оборудования индивидуальной системы очистки сточных вод.
- Оптимизированное движение жидкости: специально разработанные формы.
- Преимущества, связанные с использованием экструзионно — выдувного формования из полиэтилена сверхвысокой молекулярной массы:
- Легкость: облегченный бетонный септик на 3000 л весит 1,3 т, резервуар PLASTEPUR на 3000 л весит 120 кг, т. е. приблизительно в 10 раз меньше.
- Экономия при следующих операциях:
- Подъемные операции (погрузка, выгрузка), хранение на складе.
- Транспортировка (использование менее мощных транспортных средств).
- Установка в местах, недоступных для тяжелых строительных машин.
- Ручные операции, так что автопогрузчики на складе или тракторная лопата на стройке могут использоваться для других операций.
- Меньший объем земляных работ: упрощение и ускорение установки.
- Функциональные формы: ручки для подъема и / или проушины для п еремещения краном.
- Общее повышение рентабельности.
- Выбор способа установки (заглубление или поверхностная установка) для большинства аппаратов (см. технические карты).
- Безопасность и надежность полиэтилена сверхвысокой молекулярной массы:
- Абсолютная герметичность, отсутствие опасности утечек.
- Исключительная ударная прочность и устойчивость к температурным колебаниям.
- Резкое снижение риска несчастных случаев, повышенная безопасность для персонала.
- Цельноблочный комплекс, полученный экструзионно — выдувным формованием из высококачественного материала на автоматизированных установках: отсутствие сборки разнородного оборудования.
- Отсутствие опасности различного старения с ходом времени.
- Негниющий полиэтилен: высокая устойчивость к агрессивным агентам сточных вод (сернистые ангидриды, разрушающие бетон) и к коррозионному воздействию внешней среды (кислые почвы).


-
Система индивидуальной очистки сточных вод включает следующие блоки:
- Жироловка (по спецзаказу): незаменимая в установке раздельной очистки сточных вод, она рекомендуется в системе очистки любых сточных вод, если септик находится на расстоянии более 5 м от жилья.
- септик для любых сточных вод
- Либо:
- Фильтр предварительной очистки / сепаратор коллоидов
- Распределительная камера , за которой следует подземное поле орошения либо
- Биофильтр — перколятор
- Аэрационно — контрольный колодец , за которым следует сброс в открытый водоем или в систему ливневых стоков.
- Система очистки любых сточных вод
- Санитарные сточные воды вместе с бытовыми стоками (которые вначале могут пропускаться через жироловку) направляются в септик для любых сточных вод.
- Система раздельной очистки сточных вод
- Применение этой т. н. традиционной системы разрешается санитарно — гигиеническим надзором лишь в исключительных случаях. В септик поступают лишь санитарные сточные воды. Бытовые сточные воды очищаются в жироловке.
Основные принципы
ПРЕДВАРИТЕЛЬНАЯ ОЧИСТКА
- Жироловка выполняет механическую очистку бытовых сточных вод с извлечением крупных твердых загрязнений и всплывающих жиров после их о твердения.
- Септик , в котором происходит осаждение, а затем анаэробная биологическая очистка частично сжиженного осадка.
- Фильтр предварительной очистки / сепаратор коллоидов или септик EPURBLOC : фильтрация стоков за счет сифонного эффекта (фильтр предварительной очистки встроен).
- Принудительная вентиляция (O 100) обеспечивает вытяжку образующихся при брожении газов через верхнюю отдушину, обязательную по нормативной документации
ОЧИСТКА
- Предварительно очищенные стоки направляются с помощью перелива на сооружение дополнительной очистки (подземное поле орошения, дренируемое поле фильтрации или биофильтр — перколятор).
- Затем они либо: окисляются, проходя через несколько вертикальных или горизонтальных слоев фильтрующего материала системы естественной очистки (поле орошения, поле фильтрации и т. п.);
- Либо: окисляются в биофильтре — перколяторе , проходя по вертикали через слои пористых материалов, оснащенных мощными аэраторами. Аэрационная камера обеспечивает кислородом биофильтр — перколятор с целью аэробной биологической очистки.
Стоки, прошедшие предварительную очистку в одной из этих систем, при возможности, направляются на подземное поле орошения или на другое сооружение окончательной очистки, допускаемое действующей нормативной документацией (перед выполнением работ обратиться в управление санитарно — гигиенического надзора).
Установка
Подземная установка (см. технические карты)
- Дно котлована покрывается слоем песка толщиной 10 см. Блоки устанавливаются абсолютно горизонтально с учетом направления движения сточных вод. Боковая засыпка (толщиной приблизительно 20 см) песком или грунтом, не содержащим никаких острых или режущих предметов, производится по мере заполнения водой. После заполнения септика водой и завершения засыпки выполняется окончательное подсоединение труб. Уклон соединительных труб должен быть не менее 2%.
- После окончания работ блоки должны быть заподлицо с грунтом, а пробки канализационной прочистки должны выступать над грунтом.
- Некоторые особые случаи, требующие специальных мер защиты установки: прохождение транспортных средств, нестабилизированный грунт, наличие грунтовых вод, подъем водоносного горизонта, водонепроницаемый грунт, препятствующий прониканию воды, и т. п.
- В таких случаях требуется дополнительная обмуровка установки (тип обмуровки должен быть определен вместе с подрядчиком). Примеры: стабилизированный песок, бетон, плита распределения давления, крепь и т. п.
Наземная установка (см. технические карты)
- Установка в помещении, не соприкасающемся непосредственно с жилыми комнатами, кухней, торговыми залами, помещениями подъемно — транспортных работ или продуктовыми складами. Это помещение должно иметь системы верхней и нижней аэрации, обеспечивающие воздухообмен и имеющие выход наружу. Для облегчения слива блоков в случае необходимости минимальная высота помещения должна быть равна высоте блока плюс 1 метр.
- Блоки устанавливаются в ограде из кирпичей, строительных блоков или аналогичного материала высотой 60 см. Блок устанавливается на плоскую и абсолютно горизонтальную поверхность (соблюдать направление движения сточных вод). Зазор между оградой и блоками засыпается песком на высоту 50 см. Затем емкости заполняются водой, после чего подсоединяются трубы.
В случае опасности замерзания предусмотреть соответствующее утепление. Металлические обручи устанавливаются на фильтры предварительной очистки / сепараторы коллоидов, биофильтры — перколяторы и сепараторы объемом 800 л и более.
Жироловка
- Используется для удаления жира из бытовых сточных вод. Представляет собой цельноблочный резервуар с приемной и выпускной трубами, пробкой канализационной прочистки, разделительной перегородкой и элементами жесткости. Это устройство обязательно при раздельной очистке сточных вод. Применение необходимо, если септик находится на расстоянии более 5 м от жилья.
- Бак сепаратора должен быть заполнен очищенной водой.
Септик (запатентованная конструкция)
- Используется для механической и анаэробной очистки сточных вод. Септик представляет собой цельноблочный резервуар с приемной и выпускной трубами, погруженными в массу заполняющей септик жидкости, с дыхательным отверстием в верхней части, одной или несколькими пробками канализационной прочистки, ручкой для переноски и / или проушиной для перемещения с помощью крана.
- Септик заполняется очищенной водой.
Септик EPURBLOC
- Септик для любых сточных вод со встроенным индикатором засорения представляет собой цельноблочный резервуар с приемной и выпускной трубами, погруженными в массу заполняющей септик жидкости, с дыхательным отверстием в верхней части, двумя пробками канализационной прочистки, ручкой для переноски и / или проушиной для перемещения с помощью крана. Внутри находится съемный индикатор засорения, заполняемый фильтрующим материалом. Септик Эпюрблок должен быть заполнен очищенной водой.
Фильтр предварительной очистки/сепаратор коллоидов
- Используется для задержки взвешенных частиц сточных вод, выходящих из септика. Представляет собой цельноблочную конструкцию с верхними приемной и выпускной трубами, сифонной системой и пробкой канализационной прочистки. Фильтр предварительной очистки / сепаратор коллоидов заполняется, фильтрующим материалом, который заливается очищенной водой
Биофильтр-перколятор (вертикальной конструкции)
- Используется для аэробного окисления сточных вод. Представляет собой цельноблочный резервуар с верхней приемной и нижней выпускной трубами, оборудованный распределителем в верхней части, дренажным лотком, служащим опорой фильтрующего материала, в нижней части и пробкой канализационной прочистки. Биологический фильтр заполняется фильтрующим материалом указанного объема.
Смотровые колодцы(цельноблочные цилиндры со съемной пробкой)
- аэрационно — контрольный колодец SL — RAP 1000: вход сверху и выход снизу
- распределительная камера SL — RR 450: вход сверху и 6 выходов снизу на одном уровне
- смотровой колодец системы ливневых вод SL — REP 450: вход сверху через пробку и 3 возможных выхода
- выступающие оголовки колодцев SL — REH R 250 и SL — REH R 500
- камера распределения сточных вод на поле орошения SL — RBOU 450: вход снизу и 2 возможных нижних боковых выхода
- сборник для вертикального песочного фильтра SL — RCOL V 1190: 5 возможных верхних входов и 1 нижний выход с задней стороны
- сборник для горизонтального песочного фильтра SL — RCOL H 600: 2 боковых верхних входа и 1 нижний выход в задней стороны
- Цилиндрический выступающий оголовок Этот съемный оголовок предназначен для отверстий диаметром 380 мм цилиндрических септиков на 3000 л, 4000 л, 5000 л, 7500 л и 10 000 л, а также цилиндрических септиков EPURBLOC на 3000 л, 4000 л и 5000 л. Оголовок обеспечивает видимость пробок канализационной прочистки аппаратов и возможность проверки и техобслуживания. Допускает засыпку слоем почвы толщиной максимум 20 см.
Насосная станция (очищенная вода)
- Цельноблочный резервуар емкостью 500 л с входным, выходным и аэрационным отверстиями
- Насос
- Выключатель поплавкового типа, защита двигателя с помощью термореле, электрический кабель длиной 3 м
- ERPUR, система устранения неприятного запаха (изобретение фирмы SOTRALENTZ)
- Сменный индикатор засорения для септика EPURBLOC

Биофильтры для очистки воды

Дата публикации: 2015-12-07
Дата изменения: 2019-07-23
В Москве, Ростове-на-Дону: фильтрация
Чтобы организовать полноценную и правильную систему отведения бытовых стоков в условиях затрудненного доступа или его полного отсутствия к централизованным коллекторам, используют фильтрационные установки. Основными ее компонентами являются биофильтры для очистки воды, которые функционируют за счет деятельность аэробных микроорганизмов. Производственно-торговая компания «РостИнпром» внедряет биотехнологии, которые позволяют:

Биофильтры для очистки сточных вод
- Снизить негативное воздействие на экологию;
- Сократить объемы работ по обслуживанию очистных сооружений локального характера.
Продажа фирменного оборудования и расходных материалов
Все для обеспечения оперативной и максимально безопасной переработки стоков вы найдете в нашем каталоге. Благодаря собственному производственному комплексу мы самостоятельно изготавливает систем биоочистки, которые отличаются своей эффективностью, надежностью и длительным служебным сроком. Кроме продукции собственного выпуска мы реализуем современные биотуалеты и оснащение известных марок:
- EPURBLOC;
- PLASTEPUR;
- SOTRALENTZ;
- Свирь и Тверь.
На сайте вам представлен широкий ассортимент активаторов, которыми вы сможете заполнить биофильтры для очистки воды, чтобы обеспечить их эффективную работу. Данная категория представлена европейской продукцией «Bio 7» и отечественным аналогом «Bioforce».
Квалифицированное содействие на всех этапах

Биофильтры для очистки сточных вод
Компания «РостИнпром» - ответственный поставщик современного оборудования, которое помогает решать задачи по утилизации и переработке стоков в домах, кооперативах, на спортивных и туристических объектах. Наш большой научный и практический опыт позволяет:
- Быстро решать инженерные задачи;
- Создавать проекты очистных систем любой сложности;
- Предоставлять консультацию по техническим вопросам;
- Предлагать заказчикам экономичные варианты.
Если вы хотите купить долговечный и надежный биофильтр для сточных вод в Ростове-на-Дону или в Москве, обратитесь к сотрудникам «РостИнпром» за помощью.
