6 примеров на умножение десятичных дробей. Действия с десятичными дробями. Умножение десятичных дробей

§ 1 Применение правило умножения десятичных дробей

В этом уроке Вы познакомитесь и научитесь применять правило умножения десятичных дробей и правило умножения десятичной дроби на разрядную единицу, такую как 0,1, 0,01 и т.д. Кроме того, мы рассмотрим свойства умножения при нахождении значений выражений, содержащих десятичные дроби.

Решим задачу:

Скорость движения автомобиля составляет 59,8 км/ч.

Какой путь преодолеет автомобиль за 1,3 часа?

Как известно, чтобы найти путь, необходимо скорость умножить на время, т.е. 59,8 умножить на 1,3.

Давайте запишем числа в столбик и начнем их перемножать, не замечая запятых: 8 умножить на 3, будет 24, 4 пишем 2 в уме, 3 умножить на 9 это 27, да еще плюс 2, получаем 29, 9 пишем, 2 в уме. Теперь 3 умножаем на 5, будет 15 и еще прибавляем 2, получаем 17.

Переходим ко второй строке: 1 умножить на 8, будет 8, 1 умножить на 9, получаем 9, 1 умножить на 5, получаем 5, складываем эти две строчки, получаем 4, 9+8 равно 17, 7 пишем 1 в уме, 7+9 это 16 да еще 1, будет 17, 7 пишем 1 в уме, 1+5 да еще 1 получаем 7.

А теперь посмотрим, сколько знаков после запятых стоит в обеих десятичных дробях! В первой дроби одна цифра после запятой и во второй дроби одна цифра после запятой, всего два знака. Значит, справа в полученном результате нужно отсчитать две цифры и поставить запятую, т.е. будет 77,74. Итак, при умножении 59,8 на 1,3 получили 77,74. Значит ответ в задаче 77,74 км.

Таким образом, чтобы перемножить две десятичные дроби надо:

Первое: выполнить умножение, не обращая внимания на запятые

Второе: в полученном произведении отделить запятой столько цифр справа, сколько их стоит после запятой в обоих множителях вместе.

Если же цифр в полученном произведении меньше, чем надо отделить запятой, то тогда впереди необходимо приписать один или несколько нулей.

Например: 0,145 умножить на 0,03 у нас в произведении получается 435, а запятой необходимо отделить 5 цифр справа, поэтому мы приписываем перед цифрой 4 еще 2 нуля, ставим запятую и приписываем еще один нуль. Получаем ответ 0,00435.

§ 2 Свойства умножения десятичных дробей

При умножении десятичных дробей сохраняются все те же свойства умножения, что действуют для натуральных чисел. Давайте выполним несколько заданий.

Задание №1:

Решим данный пример, применив распределительное свойство умноженияотносительно сложения.

5,7 (общий множитель) вынесем за скобку, в скобках останется 3,4 плюс 0,6. Значение этой суммы равно 4, и теперь 4 надо умножить на 5,7, получаем 22,8.

Задание № 2:

Применим переместительное свойство умножения.

2,5 сначала умножим на 4, получим 10 целых, а теперь нужно 10 умножить на 32,9 и получаем 329.

Кроме этого, при умножении десятичных дробей можно заметить следующее:

При умножении числа на неправильную десятичную дробь, т.е. большую или равную 1, оно увеличивается или не изменяется, например:

При умножении числа на правильную десятичную дробь, т.е. меньшую 1, оно уменьшается, например:

Давайте решим пример:

23,45 умножить на 0,1.

Мы должны 2 345 умножить на 1 и отделить три знака запятой справа, получим 2,345.

Теперь давайте решим другой пример: 23,45 разделить на 10, мы должны перенести запятую влево на один знак, потому что 1 ноль в разрядной единице, получим 2,345.

Из этих двух примеров можно сделать вывод, что умножить десятичную дробь на 0,1, 0,01, 0,001 и т. д. это значит разделить число на 10, 100, 1000 и т.д., т.е. надо в десятичной дроби перенести запятую влево на столько знаков, сколько нулей стоит перед 1 во множителе.

Используя полученное правило, найдем значения произведений:

13,45 умножить на 0,01

перед цифрой 1 стоит 2 нуля, поэтому перенесем запятую влево на 2 знака, получим 0,1345.

0,02 умножить на 0,001

перед цифрой 1 стоит 3 нуля, значит переносим запятую на три знака влево, получаем 0,00002.

Таким образом, в этом уроке Вы научились перемножать десятичные дроби. Для этого нужно всего лишь выполнить умножение, не обращая внимания на запятые, и в полученном произведении отделить запятой столько цифр справа, сколько их стоит после запятой в обоих множителях вместе. Кроме того, познакомились с правилом умножения десятичной дроби на 0,1, 0,01 и т.д., а также рассмотрели свойства умножения десятичных дробей.

Список использованной литературы:

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И. и др. 31-е изд., стер. - М: 2013.
  2. Дидактические материалы по математике 5 класс. Автор - Попов М.А. - 2013 год
  3. Вычисляем без ошибок. Работы с самопроверкой по математике 5-6 классы. Автор - Минаева С.С. - 2014 год
  4. Дидактические материалы по математике 5 класс. Авторы: Дорофеев Г.В., Кузнецова Л.В. - 2010 год
  5. Контрольные и самостоятельные работы по математике 5 класс. Авторы - Попов М.А. - 2012 год
  6. Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / И. И. Зубарева, А. Г. Мордкович. - 9-е изд., стер. - М.: Мнемозина, 2009

Как обычные числа.

2. Считаем число знаков после запятой у 1-ой десятичной дроби и у 2-ой. Их число складываем.

3. В итоговом результате отсчитываем справа налево такое число цифр, сколько получилось их в пункте выше, и ставим запятую.

Правила умножения десятичных дробей.

1. Умножить, не обращая внимания на запятую.

2. В произведении отделяем после запятой такое количество цифр, сколько их после запятых в обоих множителях вместе.

Умножая десятичную дробь на натуральное число, необходимо:

1. Умножить числа, не обращая внимания на запятую;

2. В результате ставим запятую так, чтобы справа от нее было столько цифр, сколько в десятичной дроби.

Умножение десятичных дробей столбиком.

Рассмотрим на примере:

Записываем десятичные дроби в столбик и умножаем их как натуральные числа , не обращая внимания на запятые. Т.е. 3,11 мы рассматриваем как 311, а 0,01 как 1.

Результатом является 311. Далее считаем число знаков (цифр) после запятой у обеих дробей. В 1-ой десятичной дроби 2 знака и во 2-рой - 2. Общее число цифр после запятых:

2 + 2 = 4

Отсчитываем справа налево четыре знака у результата. В итоговом результате цифр меньше, чем нужно отделить запятой. В этом случае необходимо слева дописать не хватающее количество нулей.

В нашем случае не достает 1-ой цифры, поэтому дописываем слева 1 ноль.

Обратите внимание:

Умножая любую десятичную дробь на 10, 100, 1000 и так далее, запятая в десятичной дроби переносится вправо на столько знаков, сколько нулей после единицы.

Например :

70,1 . 10 = 701

0,023 . 100 = 2,3

5,6 . 1 000 = 5 600

Обратите внимание:

Для умножения десятичной дроби на 0,1; 0,01; 0,001; и так далее, нужно в этой дроби перенести запятую влево на столько знаков, сколько нулей перед единицей.

Считаем и ноль целых!

Например:

12 . 0,1 = 1,2

0,05 . 0,1 = 0,005

1,256 . 0,01 = 0,012 56

На прошлом уроке мы научились складывать и вычитать десятичные дроби (см. урок «Сложение и вычитание десятичных дробей »). Заодно оценили, насколько упрощаются вычисления по сравнению с обычными «двухэтажными» дробями.

К сожалению, с умножением и делением десятичных дробей подобного эффекта не возникает. В некоторых случаях десятичная запись числа даже усложняет эти операции.

Для начала введем новое определение. Мы будем встречаться с ним довольно часто, и не только на этом уроке.

Значащая часть числа - это все, что находится между первой и последней ненулевой цифрой, включая концы. Речь идет только о цифрах, десятичная точка не учитывается.

Цифры, входящие в значащую часть числа, называются значащими цифрами. Они могут повторяться и даже быть равными нулю.

Например, рассмотрим несколько десятичных дробей и выпишем соответствующие им значащие части:

  1. 91,25 → 9125 (значащие цифры: 9; 1; 2; 5);
  2. 0,008241 → 8241 (значащие цифры: 8; 2; 4; 1);
  3. 15,0075 → 150075 (значащие цифры: 1; 5; 0; 0; 7; 5);
  4. 0,0304 → 304 (значащие цифры: 3; 0; 4);
  5. 3000 → 3 (значащая цифра всего одна: 3).

Обратите внимание: нули, стоящие внутри значащей части числа, никуда не деваются. Мы уже сталкивались с чем-то подобным, когда учились переводить десятичные дроби в обычные (см. урок «Десятичные дроби »).

Этот момент настолько важен, а ошибки здесь допускают так часто, что в ближайшее время я опубликую тест на эту тему. Обязательно потренируйтесь! А мы, вооружившись понятием значащей части, приступим, собственно, к теме урока.

Умножение десятичных дробей

Операция умножения состоит из трех последовательных шагов:

  1. Для каждой дроби выписать значащую часть. Получатся два обычных целых числа - без всяких знаменателей и десятичных точек;
  2. Умножить эти числа любым удобным способом. Напрямую, если числа невелики, или столбиком. Получим значащую часть искомой дроби;
  3. Выяснить, куда и на сколько разрядов сдвигается десятичная точка в исходных дробях для получения соответствующей значащей части. Выполнить обратные сдвиги для значащей части, полученной на предыдущем шаге.

Еще раз напомню, что нули, стоящие по бокам от значащей части, никогда не учитываются. Игнорирование этого правила приводит к ошибкам.

  1. 0,28 · 12,5;
  2. 6,3 · 1,08;
  3. 132,5 · 0,0034;
  4. 0,0108 · 1600,5;
  5. 5,25 · 10 000.

Работаем с первым выражением: 0,28 · 12,5.

  1. Выпишем значащие части для чисел из этого выражения: 28 и 125;
  2. Их произведение: 28 · 125 = 3500;
  3. В первом множителе десятичная точка сдвинута на 2 цифры вправо (0,28 → 28), а во второй - еще на 1 цифру. Итого нужен сдвиг влево на три цифры: 3500 → 3,500 = 3,5.

Теперь разберемся с выражением 6,3 · 1,08.

  1. Выпишем значащие части: 63 и 108;
  2. Их произведение: 63 · 108 = 6804;
  3. Снова два сдвига вправо: на 2 и 1 цифру соответственно. Всего - снова 3 цифры вправо, поэтому обратный сдвиг будет на 3 цифры влево: 6804 → 6,804. В этот раз нулей на конце нет.

Добрались до третьего выражения: 132,5 · 0,0034.

  1. Значащие части: 1325 и 34;
  2. Их произведение: 1325 · 34 = 45 050;
  3. В первой дроби десятичная точка уходит вправо на 1 цифру, а во второй - на целых 4. Итого: 5 вправо. Выполняем сдвиг на 5 влево: 45 050 → ,45050 = 0,4505. В конце убрали ноль, а спереди - дописали, чтобы не оставлять «голую» десятичную точку.

Следующее выражение: 0,0108 · 1600,5.

  1. Пишем значащие части: 108 и 16 005;
  2. Умножаем их: 108 · 16 005 = 1 728 540;
  3. Считаем цифры после десятичной точки: в первом числе их 4, во втором - 1. Всего - снова 5. Имеем: 1 728 540 → 17,28540 = 17,2854. В конце убрали «лишний» ноль.

Наконец, последнее выражение: 5,25 · 10 000.

  1. Значащие части: 525 и 1;
  2. Умножаем их: 525 · 1 = 525;
  3. В первой дроби выполнен сдвиг на 2 цифры вправо, а во второй - на 4 цифры влево (10 000 → 1,0000 = 1). Итого 4 − 2 = 2 цифры влево. Выполняем обратный сдвиг на 2 цифры вправо: 525, → 52 500 (пришлось дописать нули).

Обратите внимание на последний пример: поскольку десятичная точка перемещается в разных направлениях, суммарный сдвиг находится через разность. Это очень важный момент! Вот еще пример:

Рассмотрим числа 1,5 и 12 500. Имеем: 1,5 → 15 (сдвиг на 1 вправо); 12 500 → 125 (сдвиг на 2 влево). Мы «шагаем» на 1 разряд вправо, а затем - на 2 влево. В итоге, мы шагнули на 2 − 1 = 1 разряд влево.

Деление десятичных дробей

Деление - это, пожалуй, самая сложная операция. Конечно, здесь можно действовать по аналогии с умножением: делить значащие части, а затем «двигать» десятичную точку. Но в этом случае возникает много тонкостей, которые сводят на нет потенциальную экономию.

Поэтому давайте рассмотрим универсальный алгоритм, который чуть-чуть длиннее, но намного надежнее:

  1. Перевести все десятичные дроби в обычные. Если немного потренироваться, на этот шаг у вас будут уходить считанные секунды;
  2. Разделить полученные дроби классическим способом. Другими словами, умножить первую дробь на «перевернутую» вторую (см. урок «Умножение и деление числовых дробей »);
  3. Если возможно, результат снова представить в виде десятичной дроби. Этот шаг тоже выполняется быстро, поскольку зачастую в знаменателе уже стоит степень десятки.

Задача. Найдите значение выражения:

  1. 3,51: 3,9;
  2. 1,47: 2,1;
  3. 6,4: 25,6:
  4. 0,0425: 2,5;
  5. 0,25: 0,002.

Считаем первое выражение. Для начала переведем оби дроби в десятичные:

Аналогично поступим со вторым выражением. Числитель первой дроби снова разложится на множители:

В третьем и четвертом примерах есть важный момент: после избавления от десятичной записи возникают сократимые дроби. Однако мы не будем выполнять это сокращение.

Последний пример интересен тем, что в числителе второй дроби стоит простое число. Здесь просто нечего разлагать на множители, поэтому считаем «напролом»:

Иногда в результате деления получается целое число (это я про последний пример). В таком случае третий шаг вообще не выполняется.

Кроме того, при делении часто возникают «некрасивые» дроби, которые нельзя перевести в десятичные. Этим деление отличается от умножения, где результаты всегда представимы в десятичной форме. Разумеется, в таком случае последний шаг опять же не выполняется.

Обратите также внимание на 3-й и 4-й примеры. В них мы намеренно не сокращаем обычные дроби, полученные из десятичных. Иначе это усложнит обратную задачу - представление конечного ответа снова в десятичном виде.

Запомните: основное свойство дроби (как и любое другое правило в математике) само по себе еще не означает, что его надо применять везде и всегда, при каждом удобном случае.

В этой статье мы рассмотрим такое действие, как умножение десятичных дробей. Начнем с формулировки общих принципов, далее покажем, как умножить одну десятичную дробь на другую и рассмотрим метод умножения столбиком. Все определения будут проиллюстрированы примерами. Потом мы разберем, как правильно умножить десятичные дроби на обыкновенные, а также на смешанные и натуральные числа (в том числе 100 , 10 и др.)

В рамках этого материала мы коснемся только правил умножения положительных дробей. Случаи с отрицательными разобраны отдельно в статьях об умножении рациональных и действительных чисел.

Сформулируем общие принципы, которых надо придерживаться при решении задач на умножение десятичных дробей.

Вспомним для начала, что десятичные дроби есть не что иное, как особая форма записи обыкновенных дробей, следовательно, процесс их умножения можно свести к аналогичному для дробей обыкновенных. Это правило работает и для конечных, и для бесконечных дробей: после их перевода в обыкновенные с ними легко выполнять умножение по уже изученным нами правилам.

Посмотрим, как решаются такие задачи.

Пример 1

Вычислите произведение 1 , 5 и 0 , 75 .

Решение: для начала заменим десятичные дроби на обыкновенные. Мы знаем, что 0 , 75 – это 75 / 100 , а 1 , 5 – это 15 10 . Мы можем сократить дробь и произвести выделение целой части. Полученный результат 125 1000 мы запишем как 1 , 125 .

Ответ: 1 , 125 .

Мы можем использовать метод подсчета столбиком, как и для натуральных чисел.

Пример 2

Умножьте одну периодическую дробь 0 , (3) на другую 2 , (36) .

Для начала приведем исходные дроби к обыкновенным. У нас получится:

0 , (3) = 0 , 3 + 0 , 03 + 0 , 003 + 0 , 003 + . . . = 0 , 3 1 - 0 , 1 = 0 , 3 9 = 3 9 = 1 3 2 , (36) = 2 + 0 , 36 + 0 , 0036 + . . . = 2 + 0 , 36 1 - 0 , 01 = 2 + 36 99 = 2 + 4 11 = 2 4 11 = 26 11

Следовательно, 0 , (3) · 2 , (36) = 1 3 · 26 11 = 26 33 .

Полученную в итоге обыкновенную дробь можно привести к десятичному виду, разделив числитель на знаменатель в столбик:

Ответ: 0 , (3) · 2 , (36) = 0 , (78) .

Если у нас в условии задачи стоят бесконечные непериодические дроби, то нужно выполнить их предварительное округление (см. статью об округлении чисел, если вы забыли, как это делается). После этого можно производить действие умножения с уже округленными десятичными дробями. Приведем пример.

Пример 3

Вычислите произведение 5 , 382 … и 0 , 2 .

Решение

У нас в задаче есть бесконечная дробь, которую нужно предварительно округлить до сотых. Получится, что 5 , 382 … ≈ 5 , 38 . Второй множитель округлять до сотых смысла не имеет. Теперь можно подсчитать нужное произведение и записать ответ: 5 , 38 · 0 , 2 = 538 100 · 2 10 = 1 076 1000 = 1 , 076 .

Ответ: 5 , 382 … · 0 , 2 ≈ 1 , 076 .

Метод подсчета столбиком можно применять не только для натуральных чисел. Если у нас есть десятичные дроби, мы можем умножить их точно таким же образом. Выведем правило:

Определение 1

Умножение десятичных дробей столбиком выполняется в 2 шага:

1. Выполняем умножение столбиком, не обращая внимание на запятые.

2. Ставим в итоговом числе десятичную запятую, отделяя ей столько цифр с правой стороны, сколько оба множителя содержат десятичных знаков вместе. Если в результате не хватает для этого цифр, дописываем слева нули.

Разберем примеры таких расчетов на практике.

Пример 4

Умножьте десятичные дроби 63 , 37 и 0 , 12 столбиком.

Решение

Первым делом выполним умножение чисел, игнорируя десятичные запятые.

Теперь нам надо поставить запятую на нужное место. Она будет отделять четыре цифры с правой стороны, поскольку сумма десятичных знаков в обоих множителях равна 4 . Дописывать нули не придется, т.к. знаков достаточно:

Ответ: 3 , 37 · 0 , 12 = 7 , 6044 .

Пример 5

Подсчитайте, сколько будет 3 , 2601 умножить на 0 , 0254 .

Решение

Считаем без учета запятых. Получаем следующее число:

Мы будем ставить запятую, отделяющую 8 цифр с правой стороны, ведь исходные дроби вместе имеют 8 знаков после запятой. Но в нашем результате всего семь цифр, и нам не обойтись без дополнительных нулей:

Ответ: 3 , 2601 · 0 , 0254 = 0 , 08280654 .

Как умножить десятичную дробь на 0,001, 0,01, 01, и т.д

Умножать десятичные дроби на такие числа приходится часто, поэтому важно уметь делать это быстро и точно. Запишем особое правило, которым мы будем пользоваться при таком умножении:

Определение 2

Если мы умножим десятичную дробь на 0 , 1 , 0 , 01 и т.д., в итоге получится число, похожее на исходную дробь, запятая которого перенесена влево на нужное количество знаков. При нехватке цифр для переноса нужно дописывать нули слева.

Так, для умножения 45 , 34 на 0 , 1 надо перенести в исходной десятичной дроби запятую на один знак. У нас получится в итоге 4 , 534 .

Пример 6

Умножьте 9 , 4 на 0 , 0001 .

Решение

Нам придется переносить запятую на четыре знака по количеству нулей во втором множителе, но цифр в первом для этого не хватит. Приписываем необходимые нули и получаем, что 9 , 4 · 0 , 0001 = 0 , 00094 .

Ответ: 0 , 00094 .

Для бесконечных десятичных дробей мы пользуемся тем же правилом. Так, к примеру, 0 , (18) · 0 , 01 = 0 , 00 (18) или 94 , 938 … · 0 , 1 = 9 , 4938 … . и др.

Процесс такого умножения ничем не отличается то действия умножения двух десятичных дробей. Удобно пользоваться методом умножения в столбик, если в условии задачи стоит конечная десятичная дробь. При этом надо учитывать все те правила, о которых мы рассказывали в предыдущем пункте.

Пример 7

Подсчитайте, сколько будет 15 · 2 , 27 .

Решение

Умножим столбиком исходные числа и отделим два знака запятой.

Ответ: 15 · 2 , 27 = 34 , 05 .

Если мы выполняем умножение периодической десятичной дроби на натуральное число, надо сначала поменять десятичную дробь на обыкновенную.

Пример 8

Вычислите произведение 0 , (42) и 22 .

Приведем периодическую дробь к виду обыкновенной.

0 , (42) = 0 , 42 + 0 , 0042 + 0 , 000042 + . . . = 0 , 42 1 - 0 , 01 = 0 , 42 0 , 99 = 42 99 = 14 33

0 , 42 · 22 = 14 33 · 22 = 14 · 22 3 = 28 3 = 9 1 3

Итоговый результат можем записать в виде периодической десятичной дроби как 9 , (3) .

Ответ: 0 , (42) · 22 = 9 , (3) .

Бесконечные дроби перед подсчетами надо предварительно округлить.

Пример 9

Вычислите, сколько будет 4 · 2 , 145 … .

Решение

Округлим до сотых исходную бесконечную десятичную дробь. После этого мы придем к умножению натурального числа и конечной десятичной дроби:

4 · 2 , 145 … ≈ 4 · 2 , 15 = 8 , 60 .

Ответ: 4 · 2 , 145 … ≈ 8 , 60 .

Как умножить десятичную дробь на 1000, 100, 10 и др

Умножение десятичной дроби на 10 , 100 и др. часто встречается в задачах, поэтому мы разберем этот случай отдельно. Основное правило умножения звучит так:

Определение 3

Чтобы умножить десятичную дробь на 1000 , 100 , 10 и др., нужно перенести ее запятую на 3 , 2 , 1 цифры в зависимости от множителя и отбросить слева лишние нули. Если цифр для переноса запятой недостаточно, дописываем справа столько нулей, сколько нам нужно.

Покажем на примере, как именно это делать.

Пример 10

Выполните умножение 100 и 0 , 0783 .

Решение

Для этого нам надо перенести в десятичной дроби запятую на 2 цифры в правую сторону. Мы получим в итоге 007 , 83 ​​​​​Нули, стоящие слева, можно отбросить и записать результат как 7 , 38 .

Ответ: 0 , 0783 · 100 = 7 , 83 .

Пример 11

Умножьте 0 , 02 на 10 тысяч.

Решение: мы будем переносить запятую на четыре цифры вправо. В исходной десятичной дроби нам не хватит для этого знаков, поэтому придется дописывать нули. В этом случае будет достаточно трех 0 . В итоге получилось 0 , 02000 ,перенесем запятую и получим 00200 , 0 . Игнорируя нули слева, можем записать ответ как 200 .

Ответ: 0 , 02 · 10 000 = 200 .

Приведенное нами правило будет работать так же и в случае с бесконечными десятичными дробями, но здесь следует быть очень внимательным к периоду итоговой дроби, так как в нем легко допустить ошибку.

Пример 12

Вычислите произведение 5 , 32 (672) на 1 000 .

Решение: первым делом мы запишем периодическую дробь как 5 , 32672672672 … , так вероятность ошибиться будет меньше. После этого можем переносить запятую на нужное количество знаков (на три). В итоге получится 5326 , 726726 … Заключим период в скобки и запишем ответ как 5 326 , (726) .

Ответ: 5 , 32 (672) · 1 000 = 5 326 , (726) .

Если в условиях задачи стоят бесконечные непериодические дроби, которые надо умножать на десять, сто, тысячу и др., не забываем округлить их перед умножением.

Чтобы выполнить умножение такого типа, нужно представить десятичную дробь в виде обыкновенной и далее действовать по уже знакомым правилам.

Пример 13

Умножьте 0 , 4 на 3 5 6

Решение

​Cначала переведем десятичную дробь в обыкновенную. Имеем: 0 , 4 = 4 10 = 2 5 .

Мы получили ответ в виде смешанного числа. Можно записать его как периодическую дробь 1 , 5 (3) .

Ответ: 1 , 5 (3) .

Если в расчете участвует бесконечная непериодическая дробь, нужно округлить ее до некоторой цифры и уже потом умножать.

Пример 14

Вычислите произведение 3 , 5678 . . . · 2 3

Решение

Второй множитель мы можем представить как 2 3 = 0 , 6666 …. Далее округлим до тысячного разряда оба множителя. После этого нам будет нужно вычислить произведение двух конечных десятичных дробей 3 , 568 и 0 , 667 . Посчитаем столбиком и получим ответ:

Итоговый результат нужно округлить до тысячных долей, так как именно до этого разряда мы округляли исходные числа. У нас получается, что 2 , 379856 ≈ 2 , 380 .

Ответ: 3 , 5678 . . . · 2 3 ≈ 2 , 380

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вы уже знаете, что a * 10 = a + a + a + a + a + a + a + a + a + a. Например, 0,2 * 10 = 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 + 0,2 . Несложно догадаться, что эта сумма равна 2, т.е. 0,2 * 10 = 2 .

Аналогично можно убедиться, что:

5,2 * 10 = 52 ;

0,27 * 10 = 2,7 ;

1,253 * 10 = 12,53 ;

64,95 * 10 = 649,5 .

Вы, наверное, догадались, что при умножении десятичной дроби на 10 надо в этой дроби перенести запятую вправо на одну цифру.

А как умножить десятичную дробь на 100 ?

Имеем: a * 100 = a * 10 * 10 . Тогда:

2,375 * 100 = 2,375 * 10 * 10 = 23,75 * 10 = 237,5 .

Рассуждая аналогично, получаем, что:

3,2 * 100 = 320 ;

28,431 * 100 = 2843,1 ;

0,57964 * 100 = 57,964 .

Умножим дробь 7,1212 на число 1 000 .

Имеем: 7,1212 * 1 000 = 7,1212 * 100 * 10 = 712,12 * 10 = 7121,2 .

Эти примеры иллюстрируют следующее правило.

Чтобы умножить десятичную дробь на 10, 100, 1 000 и т.д., надо в этой дроби перенести запятую вправо соответственно на 1, 2, 3 и т.д. цифры .

Итак, если запятую перенести вправо на 1, 2, 3 и т.д. цифры, то дробь увеличится соответственно в 10, 100, 1 000 и т.д. раз.

Следовательно, если запятую перенести влево на 1, 2, 3 и т.д. цифры, то дробь уменьшится соответственно в 10, 100, 1 000 и т.д. раз .

Покажем, что десятичная форма записи дробей дет возможность умножать их, руководствуясь правилом умножения натуральных чисел.

Найдем, например, произведение 3,4 * 1,23 . Увеличим первый множитель в 10 раз, а второй − в 100 раз. Это означает, что мы увеличили произведение в 1 000 раз.

Следовательно, произведение натуральных чисел 34 и 123 в 1 000 раз больше искомого произведения.

Имеем: 34 * 123 = 4182 . Тогда для получения ответа надо число 4 182 уменьшить в 1 000 раз. Запишем: 4 182 = 4 182,0 . Перенося запятую в числе 4 182,0 на три цифры влево, получим число 4,182 , которое в 1 000 раз меньше числа 4 182 . Поэтому 3,4 * 1,23 = 4,182 .

Этот же результат можно получить, руководствуясь следующим правилом.

Чтобы перемножить две десятичные дроби, надо:

1 ) умножить их как натуральные числа, не обращая внимания на запятые;

2 ) в полученном произведении отделить запятой справа столько цифр, сколько их стоит после запятых в обоих множителях вместе.

В тех случаях, когда произведение содержит меньше цифр, чем требуется отделить запятой, слева перед этим произведение дописывают необходимое количество нулей, а затем переносят запятую влево на нужное количество цифр.

Например, 2 * 3 = 6, тогда 0,2 * 3 = 0,006 ; 25 * 33 = 825, тогда 0,025 * 0,33 = 0,00825 .

В тех случаях, когда один из множителей равен 0,1 ; 0,01 ; 0,001 и т.д., удобно пользоваться следующим правилом.

Чтобы умножить десятичную дробь на 0,1 ; 0,01 ; 0,001 и т.д., надо в этой дроби перенести запятую влево соответственно на 1, 2, 3 и т.д. цифры .

Например, 1,58 * 0,1 = 0,158 ; 324,7 * 0,01 = 3,247 .

Свойства умножения натуральных чисел выполняются и для дробных чисел:

ab = ba − переместительное свойство умножения,

(ab) с = a(b с) − сочетательное свойство умножения,

a(b + с) = ab + ac − распределительное свойство умножения относительно сложения.



2024 stdpro.ru. Сайт о правильном строительстве.