Решением системы уравнений. Решить систему значит найти все ее решения или доказать, что решений нет. Системы уравнений – начальные сведения

Статья знакомит с таким понятием, как определение системы уравнений и ее решением. Будут рассмотрены часто встречающиеся случаи решений систем. Приведенные примеры помогут подробно пояснить решение.

Yandex.RTB R-A-339285-1

Определение системы уравнений

Чтобы перейти к определению системы уравнений, необходимо обратить внимание на два момента: вид записи и ее смысл. Чтобы понять это, нужно подробно остановиться на каждом из видов, тогда сможем прийти к определению систем уравнений.

Например, возьмем два уравнения 2 · x + y = − 3 и x = 5 , после чего объединим фигурной скобкой такого плана:

2 · x + y = - 3 , x = 5 .

Уравнения, объединенные фигурной скобкой, считаются записями систем уравнений. Они задают множества решений уравнений данной системы. Каждое решение должно являться решением всех заданных уравнений.

Другими словами это означает, что любые решения первого уравнения будут решениями всех уравнений, объединенных системой.

Определение 1

Системы уравнений – это некоторое количество уравнений, объединенных фигурной скобкой, имеющих множество решений уравнений, которые одновременно являются решениями для всей системы.

Основные виды систем уравнений

Видов уравнений достаточно много, как систем уравнений. Для того, чтобы было удобно решать и изучать их, подразделяют на группы по определенным характеристикам. Это поможет в рассмотрении систем уравнений отдельных видов.

Для начала уравнения классифицируются по количеству уравнений. Если уравнение одно, то оно является обычным уравнением, если их более, тогда имеем дело с системой, состоящей из двух или более уравнений.

Другая классификация затрагивает число переменных. Когда количество переменных 1 , говорят, что имеем дело с системой уравнений с одной неизвестной, когда 2 – с двумя переменными. Рассмотрим пример

x + y = 5 , 2 · x - 3 · y = 1

Очевидно, что система уравнений включает в себя две переменные х и у.

При записи таких уравнений считается число всех переменных, имеющихся в записи. Их наличие в каждом уравнении необязательно. Хотя бы одно уравнение должно иметь одну переменную. Рассмотрим пример системы уравнений

2 x = 11 , x - 3 · z 2 = 0 , 2 7 · x + y - z = - 3

Данная система имеет 3 переменные х, у, z . Первое уравнение имеет явный х и неявные у и z . Неявные переменные – это переменные, имеющие 0 в коэффициенте. Второе уравнение имеет х и z , а у неявная переменная. Иначе это можно записать таким образом

2 x + 0 · y + 0 · z = 11

А другое уравнение x + 0 · y − 3 · z = 0 .

Третья классификация уравнений – это вид. В школе проходят простые уравнения и системы уравнений, начиная с систем двух линейных уравнений с двумя переменными. Имеется в виду, что система включает в себя 2 линейных уравнения. Для примера рассмотрим

2 · x - y = 1 , x + 2 · y = - 1 и - 3 · x + y = 0 . 5 , x + 2 2 3 · y = 0

Это основные простейшие линейные уравнения. Далее можно столкнуться с системами, содержащими 3 и более неизвестных.

В 9 классе решают уравнения с двумя переменными и нелинейные. В целых уравнениях повышается степень для увеличения сложности. Такие системы называют системами нелинейных уравнений с определенным количеством уравнений и неизвестных. Рассмотрим примеры таких систем

x 2 - 4 · x · y = 1 , x - y = 2 и x = y 3 x · y = - 5

Обе системы с двумя переменными и обе являются нелинейными.

При решении можно встретить дробно-рациональные уравнения. Например

x + y = 3 , 1 x + 1 y = 2 5

Могут называть просто системой уравнений без уточнения, каких именно. Редко уточняют сам вид системы.

Старшие классы переходят к изучению иррациональных, тригонометрических и показательных уравнений. Например,

x + y - x · y = 5 , 2 · x · y = 3 , x + y = 5 · π 2 , sin x + cos 2 y = - 1 , y - log 3 x = 1 , x y = 3 12 .

Высшие учебные заведения изучают и исследуют решения систем линейных алгебраических уравнений (СЛАУ). Левая часть таких уравнений содержит многочлены с первой степенью, а правая – некоторые числа. Отличие от школьных в том, что количество переменных и количество уравнений может быть произвольным, чаще всего несовпадающим.

Решение систем уравнений

Определение 2

Решение системы уравнений с двумя переменными – это пара переменных, которая при подстановке обращает каждое уравнение в верное числовое неравенство, то есть является решением для каждого уравнения данной системы.

К примеру, пара значений х = 5 и у = 2 являются решением системы уравнений x + y = 7 , x - y = 3 . Потому как при подстановке уравнения обращаются в верные числовые неравенства 5 + 2 = 7 и 5 − 2 = 3 . Если подставить пару х = 3 и у = 0 , тогда система не будет решена, так как подстановка не даст верное уравнение, а именно, мы получим 3 + 0 = 7 .

Сформулируем определение для систем, содержащих одну и более переменных.

Определение 3

Решение системы уравнений с одной переменной – это значение переменной, которая является корнем уравнений системы, значит, все уравнения будут обращены в верные числовые равенства.

Рассмотрим на примере системы уравнений с одной переменной t

t 2 = 4 , 5 · (t + 2) = 0

Число - 2 – решение уравнения, так как (− 2) · 2 = 4 , и 5 · (− 2 + 2) = 0 являются верными числовыми равенствами. При t = 1 система не решена, так как при подстановке получим два неверных равенства 12 = 4 и 5 · (1 + 2) = 0 .

Определение 4

Решение системы с тремя и более переменными называют тройку, четверку и далее значений соответственно, которые обращают все уравнения системы в верные равенства.

Если имеем значения переменных х = 1 , у = 2 , z = 0 , то подставив их в систему уравнений 2 · x = 2 , 5 · y = 10 , x + y + z = 3 , получим 2 · 1 = 2 , 5 · 2 = 10 и 1 + 2 + 0 = 3 . Значит, эти числовые неравенства верные. А значения (1 , 0 , 5) не будут решением, так как, подставив значения, второе из них будет неверное, как и третье: 5 · 0 = 10 , 1 + 0 + 5 = 3 .

Системы уравнений могут не иметь решений вовсе или иметь бесконечное множество. В этом можно убедиться при углубленном изучении данной тематики. Можно прийти к выводу, что системы уравнений – это пересечение множеств решений всех ее уравнений. Раскроем несколько определений:

Определение 5

Несовместной называют систему уравнений, когда она не имеет решений, в противном случае ее называют совместной .

Определение 6

Неопределенной называют систему, когда она имеет бесконечное множество решений, а определенной при конечном числе решений либо при их отсутствии.

Такие термины редко применяются в школе, так как рассчитаны для программ высших учебных заведений. Знакомство с равносильными системами углубит имеющиеся знания по решению систем уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Урок и презентация на тему: "Системы уравнений. Метод подстановки, метод сложения, метод введения новой переменной"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Тренажер к учебникам Атанасяна Л.С. Тренажер к учебникам Погорелова А.В.

Способы решения систем неравенств

Ребята, мы с вами изучили системы уравнений и научились решать их с помощью графиков. Теперь давайте посмотрим, какие еще существуют способы решения систем?
Практически все способы их решения не отличаются от тех, что мы изучали в 7 классе. Сейчас нам нужно внести некоторые корректировки согласно тем уравнениям, что мы научились решать.
Суть всех методов, описанных в данном уроке, это замена системы равносильной системой с более простым видом и способом решения. Ребята, вспомните, что такое равносильная система.

Метод подстановки

Первый способ решения систем уравнений с двумя переменными нам хорошо известен - это метод подстановки. С помощью этого метода мы решали линейные уравнения. Теперь давайте посмотрим, как решать уравнения в общем случае?

Как же нужно действовать при решении?
1. Выразить одну из переменных через другую. Чаще всего в уравнениях используют переменные x и y. В одном из уравнений выражаем одну переменную через другую. Совет: внимательно посмотрите на оба уравнения, прежде чем начать решать, и выберете то, где будет легче выразить переменную.
2. Полученное выражение подставить во второе уравнение, вместо той переменной, которую выражали.
3. Решить уравнение, которое у нас получилось.
4. Подставить получившееся решение во второе уравнение. Если решений несколько, то подставлять надо последовательно, чтобы не потерять пару решений.
5. В результате вы получите пару чисел $(x;y)$, которые надо записать в ответ.

Пример.
Решить систему с двумя переменными методом подстановки: $\begin{cases}x+y=5, \\xy=6\end{cases}$.

Решение.
Внимательно посмотрим на наши уравнения. Очевидно, что выразить y через x в первом уравнении гораздо проще.
$\begin{cases}y=5-x, \\xy=6\end{cases}$.
Подставим первое выражение во второе уравнение $\begin{cases}y=5-x, \\x(5-2x)=6\end{cases}$.
Решим второе уравнение отдельно:
$x(5-x)=6$.
$-x^2+5x-6=0$.
$x^2-5x+6=0$.
$(x-2)(x-3)=0$.
Получили два решения второго уравнения $x_1=2$ и $x_2=3$.
Последовательно подставим во второе уравнение.
Если $x=2$, то $y=3$. Если $x=3$, то $y=2$.
Ответом будет две пары чисел.
Ответ: $(2;3)$ и $(3;2)$.

Метод алгебраического сложения

Этот метод мы также изучали в 7 классе.
Известно, что рациональное уравнение от двух переменных мы можем умножить на любое число, не забывая умножить обе части уравнения. Мы умножали одно из уравнений на некое число так, чтобы при сложении получившегося уравнения со вторым уравнением системы, одна из переменных уничтожалась. Потом решали уравнение относительно оставшейся переменной.
Этот метод работает и сейчас, правда не всегда возможно уничтожить одну из переменных. Но позволяет значительно упростить вид одного из уравнений.

Пример.
Решить систему: $\begin{cases}2x+xy-1=0, \\4y+2xy+6=0\end{cases}$.

Решение.
Умножим первое уравнение на 2.
$\begin{cases}4x+2xy-2=0, \\4y+2xy+6=0\end{cases}$.
Вычтем из первого уравнения второе.
$4x+2xy-2-4y-2xy-6=4x-4y-8$.
Как видим, вид получившегося уравнения гораздо проще исходного. Теперь мы можем воспользоваться методом подстановки.
$\begin{cases}4x-4y-8=0, \\4y+2xy+6=0\end{cases}$.
Выразим x через y в получившемся уравнении.
$\begin{cases}4x=4y+8, \\4y+2xy+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2(y+2)y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2y^2+4y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\2y^2+8y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\y^2+4y+3=0\end{cases}$.
$\begin{cases}x=y+2, \\(y+3)(y+1)=0\end{cases}$.
Получили $y=-1$ и $y=-3$.
Подставим эти значения последовательно в первое уравнение. Получим две пары чисел: $(1;-1)$ и $(-1;-3)$.
Ответ: $(1;-1)$ и $(-1;-3)$.

Метод введения новой переменной

Этот метод мы также изучали, но давайте посмотрим на него еще раз.

Пример.
Решить систему: $\begin{cases}\frac{x}{y}+\frac{2y}{x}=3, \\2x^2-y^2=1\end{cases}$.

Решение.
Введем замену $t=\frac{x}{y}$.
Перепишем первое уравнение с новой переменной: $t+\frac{2}{t}=3$.
Решим получившееся уравнение:
$\frac{t^2-3t+2}{t}=0$.
$\frac{(t-2)(t-1)}{t}=0$.
Получили $t=2$ или $t=1$. Введем обратную замену $t=\frac{x}{y}$.
Получили: $x=2y$ и $x=y$.

Для каждого из выражений исходную систему надо решить отдельно:
$\begin{cases}x=2y, \\2x^2-y^2=1\end{cases}$.   $\begin{cases}x=y, \\2x^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\8y^2-y^2=1\end{cases}$.    $\begin{cases}x=y, \\2y^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\7y^2=1\end{cases}$.       $\begin{cases}x=2y, \\y^2=1\end{cases}$.
$\begin{cases}x=2y, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.      $\begin{cases}x=y, \\y=±1\end{cases}$.
$\begin{cases}x=±\frac{2}{\sqrt{7}}, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.     $\begin{cases}x=±1, \\y=±1\end{cases}$.
Получили четыре пары решений.
Ответ: $(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}})$; $(-\frac{2}{\sqrt{7}};-\frac{1}{\sqrt{7}})$; $(1;1)$; $(-1;-1)$.

Пример.
Решить систему: $\begin{cases}\frac{2}{x-3y}+\frac{3}{2x+y}=2, \\\frac{8}{x-3y}-\frac{9}{2x+y}=1\end{cases}$.

Решение.
Введем замену: $z=\frac{2}{x-3y}$ и $t=\frac{3}{2x+y}$.
Перепишем исходные уравнения с новыми переменными:
$\begin{cases}z+t=2, \\4z-3t=1\end{cases}$.
Воспользуемся методом алгебраического сложения:
$\begin{cases}3z+3t=6, \\4z-3t=1\end{cases}$.
$\begin{cases}3z+3t+4z-3t=6+1, \\4z-3t=1\end{cases}$.
$\begin{cases}7z=7, \\4z-3t=1\end{cases}$.
$\begin{cases}z=1, \\-3t=1-4\end{cases}$.
$\begin{cases}z=1, \\t=1\end{cases}$.
Введем обратную замену:
$\begin{cases}\frac{2}{x-3y}=1, \\\frac{3}{2x+y}=1\end{cases}$.
$\begin{cases}x-3y=2, \\2x+y=3\end{cases}$.
Воспользуемся методом подстановки:
$\begin{cases}x=2+3y, \\4+6y+y=3\end{cases}$.
$\begin{cases}x=2+3y, \\7y=-1\end{cases}$.
$\begin{cases}x=2+3(\frac{-1}{7}), \\y=\frac{-1}{7}\end{cases}$.
$\begin{cases}x=\frac{11}{7}, \\x=-\frac{11}{7}\end{cases}$.
Ответ: $(\frac{11}{7};-\frac{1}{7})$.

Задачи на системы уравнений для самостоятельного решения

Решите системы:
1. $\begin{cases}2x-2y=6, \\xy =-2\end{cases}$.
2. $\begin{cases}x+y^2=3, \\xy^2=4\end{cases}$.
3. $\begin{cases}xy+y^2=3, \\y^2-xy=5\end{cases}$.
4. $\begin{cases}\frac{2}{x}+\frac{1}{y}=4, \\\frac{1}{x}+\frac{3}{y}=9\end{cases}$.
5. $\begin{cases}\frac{5}{x^2-xy}+\frac{4}{y^2-xy}=-\frac{1}{6}, \\\frac{7}{x^2-xy}-\frac{3}{y^2-xy}=\frac{6}{5}\end{cases}$.

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

1. Метод подстановки : из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.


Задача. Решить систему уравнений:


Решение. Из первого уравнения системы выражаем у через х и подставляем во второе уравнение системы. Получим систему равносильную исходной.


После приведения подобных членов система примет вид:


Из второго уравнения находим: . Подставив это значение в уравнение у = 2 - 2х , получим у = 3. Следовательно, решением данной системы является пара чисел .


2. Метод алгебраического сложения : путем сложения двух уравнений получить уравнение с одной переменной.


Задача. Решить систему уравнение:



Решение. Умножив обе части второго уравнения на 2, получим систему равносильную исходной. Сложив два уравнения этой системы, придем к системе


После приведения подобных членов данная система примет вид: Из второго уравнения находим . Подставив это значение в уравнение 3х + 4у = 5, получим , откуда . Следовательно, решением данной системы является пара чисел .


3. Метод введения новых переменных : ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.


Задача. Решить систему уравнений:



Решение. Запишем данную систему иначе:


Пусть х + у = u, ху = v. Тогда получим систему


Решим ее методом подстановки. Из первого уравнения системы выразим u через v и подставим во второе уравнение системы. Получим систему т.е.


Из второго уравнение системы находим v 1 = 2, v 2 = 3.


Подставив эти значения в уравнение u = 5 - v , получим u 1 = 3,
u 2 = 2. Тогда имеем две системы


Решая первую систему, получим две пары чисел (1; 2), (2; 1). Вторая система решений не имеет.


Упражнения для самостоятельной работы


1. Решить системы уравнений методом подстановки.




2025 stdpro.ru. Сайт о правильном строительстве.