Изменение числа хромосом. Хромосомные мутации: примеры. Виды хромосомных мутаций

Все мутации, связанные с изменением числа и структуры хромосом, можно разделить на три группы:

· хромосомные аберрации, обусловленные изменением структуры хромосом,

· геномные мутации, обусловленные изменением числа хромосом,

· миксоплоидии- мутации, обусловленные наличием разных по хромосомным наборам клонов клеток.

Хромосомные аберрации. Хромосомные аберрации (хромосомные мутации) - это изменения в структуре хромосом. Являются, как правило, следствием неравного кроссинговера при мейозе. К хромосомным аберрациям приводят также разрывы хромосом, вызванные ионизирующей радиацией, некоторыми химическими мутагенами, вирусами и др. мутагенными факторами. Хромосомные аберрации могут быть несбалансированными и сбалансированными.

При несбалансированных мутациях происходит потеря или увеличение генетического материала, изменяется число генов или их активность. Это приводит к изменению фенотипа.

Хромосомные перестройки, которые не приводят к изменению генов или их активности и не изменяют фенотип, называются сбалансированными. Однако, хромосомная аберрация нарушает конъюгацию хромосом и кроссинговер при мейозе, что приводит к появлению гамет с несбалансированными хромосомными мутациями. У носителей сбалансированных хромосомных аберраций может быть бесплодие, высокая частота спонтанных абортов, высокий риск рождения детей с хромосомными болезнями.

Выделяют следующие типы хромосомных мутаций

1. Делеция, или нехватка, - потеря участка хромосомы.

2. Дупликация – удвоение участка хромосомы.

3. Инверсия – поворот участка хромосомы на 180 0 (в одном из участков хромосомы гены расположены в последовательности, обратной по сравнению с нормальной). Если в результате инверсии не изменяется количество хромосомного материала и нет эффекта положения, то индивиды фенотипически здоровы. Часто встречается перицентрическая инверсия 9 хромосомы, которая не приводит к изменению фенотипа. При других инверсиях могут нарушаться конъюгация и кроссинговер, что приводит к разрывам хромосом и образованию несбалансированных гамет.

4. Кольцевая хромосома - возникает при утрате двух теломерных фрагментов. «Липкие» концы хромосомы соединяются, образуя кольцо.

Эта мутация может быть как сбалансированной, так и несбалансированной (в зависимости от объема хромосомного материала, который теряется).

5. Изохромосомы– потеря одного плеча хромосомы и дупликация другого. В результате образуется метацентрическая хромосома, имеющая два одинаковых плеча. Чаще встречается изохромосома по длинному плечу Х – хромосомы. Кариотип записывают: 46,Х,i(Xq). Изохромосома Х наблюдается в 15% всех случаев синдрома Шерешевского-Тернера.

6. Транслокация - перенос участка хромосомы на негомологичную хромосому, в другую группу сцепления. Выделяют несколько типов транслокаций:

а) Реципрокные транслокации - взаимный обмен участками между двумя негомологичными хромосомами.

В популяциях частота реципрокных транслокаций 1:500. По невыясненным причинам чаще встречается реципрокная транслокация, вовлекающая длинные плечи 11 и 22 хромосом. У носителей сбалансированных реципрокных транслокаций часто наблюдаются спонтанные аборты или рождение детей с множественными врожденными пороками развития. Генетический риск у носитедей таких транслокаций колеблется от 1 до 10%.

б) Нереципрокные транслокации (транспозиции) – перемещение участка хромосомы либо внутри той же хромосомы либо в другую хромосому без взаимного обмена.

в) Особый вид транслокаций - робертсоновские транслокации (или центрические слияния).

Наблюдается между любыми двумя акроцентрическими хромосомами из группы Д (13,14 и 15 пары) и G (21 и 22 пары). При центрическом слиянии две гомологичные или негомологичные хромосомы теряют короткие плечи и одну центромеру, длинные плечи соединяются. Вместо двух хромосом образуется одна, содержащая генетический материал длинных плеч двух хромосом. Таким образом, носители робертсоновских транслокаций здоровы, но у них повышена частота спонтанных абортов и высокий риск рождения детей с хромосомными болезнями. Частота робертсоновских транслокаций в популяции составляет 1:1000.

Иногда один из родителей является носителем сбалансированной транслокации, при которой наблюдается центрическое слияние двух гомологичных хромосом группы D или G. У таких людей образуется два типа гамет. Например, при транслокации 21q21q образуются гаметы:

2) 0 - т.е. гамета без хромосомы 21

После оплодотворения нормальной гаметой образуется два типа зигот: 1)21, 21q21q - транслокационная форма синдрома Дауна, 2)21,0 - моносомия 21хромосомы, летальная мутация. Вероятность рождения больного ребенка составляет 100%.

Р 21q21q х 21,21

здоровый носитель норма

сбалансированной


Гаметы 21/21; 0 21

F 1 21,21q21q 21,0

синдром Дауна летальная

7. Центрическое разделение - явление, обратное центрическому слиянию. Одна хромосома делится на две.



Делеции и дупликации изменяют число генов в организме. Инверсии, транслокации, транспозиции изменяют расположение генов в хромосомах.

9. Маркерная хромосома – это добавочная хромосома (вернее фрагмент какой-либо хромосомы с центромерой). Обычно имеет вид очень короткой акроцентрической хромосомы, реже – кольцевидной. Если маркерная хромосома содержит только гетерохроматин, то фенотип не меняется. Если же она содержит эухроматин (экспрессирующиеся гены), то это сопряжено с развитием хромосомной болезни (аналогично дупликации какого-либо участка хромосомы).

Значение хромосомных мутаций в эволюции. Хромосомные мутации играют большую роль в эволюции. В процессе эволюции происходит активная перестройка хромосомного набора посредством инверсий, робертсоновских транслокаций и других. Чем дальше друг от друга отстоят организмы, тем сильнее отличается их хромосомный набор.

Геномные мутации. Геномные мутации - это изменение числа хромосом. Различают два вида геномных мутаций:

1) полиплоидию,

2) гетероплоидию (анеуплоидию).

Полиплоидия – увеличение числа хромосом на величину, кратную гаплоидному набору (3n, 4n...). У человека описана триплоидия (3n=69 хромосом) и тетраплоидия (4n = 92 хромосомы).

Возможные причины формирования полиплоидии.

1) Полиплоидия может быть следствием нерасхождения всех хромосом при мейозе у одного из родителей В результате образуется диплоидная половая клетка (2n). После оплодотворения нормальной гаметой сформируется триплоид (3n).

2) Оплодотворение яйцеклетки двумя сперматозоидами (диспермия).

3) Возможно также слияние диплоидной зиготы с направительным тельцем, что приводит к формированию триплоидной зиготы

4) Может наблюдаться соматическая мутация - нерасхождение всех хромосом при делении клеток эмбриона (нарушение митоза). Это приводит к появлению тетраплоида (4 n) - полного или мозаичной формы.

Триплоидия (рис.___) является частой причиной спонтанных абортов. У новорожденных это чрезвычайно редкое явление. Большинство триплоидов погибают вскоре после рожения.

Триплоиды, имеющие два хромосомных набора отца и один хромосомный набор матери, как правило, формируют пузырный занос. Это эмбрион, у которого формируются внезародышевые органы (хорион, плацента, амнион), а эмбриобласт практически не развивается. Пузырные заносы абортируются, Возможно формирование злокачественной опухоли хориона – хориокарциномы. В редких случаях эмбриобласт формируется и беременность заканчивается рождением нежизнеспособного триплоида с множественными врожденными пороками развития. Характерно в таких случаях увеличение массы плаценты и кистозное перерождение ворсин хориона.

У триплоидов, имеющих два хромосомных набора матери и один хромосомный набор отца, развивается преимущественно эмбриобласт. Развитие внезародышевых органов нарушено. Поэтому такие триплоиды рано абортируются.

На примере триплоидов наблюдается разная функциональная активность отцовского и материнского геномов в эмбриональном периоде развития. Такое явление получило названием геномного импринтинга . В целом, следует отметить, что для нормального эмбрионального развития человека абсолютно необходим геном матери и геном отца. Партеногенетическое развитие человека (и других млекопитающих) невозможно.

Тетраплоидия (4n) – чрезвычайно редкое явление у человека. В основном обнаружено в материалах спонтанных абортов.

Гетероплоидия (или анеуплоидия ) - увеличение или уменьшение числа хромосом на 1,2 или большее число. Виды гетероплоидии: моносомия, нулисомия, полисомии (три-, тетра-, пентасомии).

а) Моносомия - отсутствие одной хромосомы (2n-1)

б) Нулисомия - отсутствие одной пары хромосом (2n-2)

в)Трисомия - одна лишняя хромосома (2n+1)

г)Тетрасомия - две лишнее хромосомы (2n+2)

д) Пентасомия – три лишние хромосомы (2n+3)

Введение

Хромосомные аномалии вызывают обычно целый комплекс нарушений в строении и функциях различных органов, а также поведенческие и психические расстройства. Среди последних нередко обнаруживается ряд типичных особенностей, таких как умственная отсталость той или иной степени, аутистические черты, неразвитость навыков социального взаимодействия, ведущие асоциальности и антисоциальности.

Причины изменения числа хромосом

Изменения числа хромосом возникают в результате нарушения клеточного деления, что может коснуться как сперматозоида, так и яйцеклетки. Иногда это приводит к хромосомным аномалиям

Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х - и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом:

47, XYY - XYY-синдром;

47, XXY - синдром Клайнфельтера;

45, X - синдром Тернера;

47, XXX - трисомия.

хромосомная аномалия антисоциальность характерологический

Лишняя хромосома Y как причина антисоциальности

Кариотип 47, XYY проявляется только у мужчин. Характерные признаки людей, обладающих дополнительной Y - хромосомой высокий рост. При этом ускорение роста начинается в достаточно раннем возрасте и продолжается весьма долго.

Частота данного заболевания 0, 75 - 1 на 1000 человек. Цитогенетическое обследование, проведенное в 1965 г. в Америке выявило, что из 197 психических больных, содержащихся в качестве особо опасных в условиях строгого надзора, 7 из них имеют хромосомный набор XYY. По английским данным, среди преступников выше 184 см. примерно каждый четвертый имеет именно этот набор хромосом.

Большинство страдающих синдромом ХУУ не вступают в конфликт с законом; однако некоторая часть их легко поддается импульсам, приводящим к агрессии, к гомосексуализму, педофилии, воровству, поджогам; любое понуждение вызывает у них вспышки злобной ярости, очень слабо контролируемые задерживающими нервами. Вследствие двойной Y хромосомы, хромосома X становится "ломкой" и из носителя данного набора, получается, так сказать, своеобразный "сверх-мужчина".

Рассмотрим один из более нашумевших примеров данного явления в мире преступности.

В 1966 г. общественность была взбудоражена происшествием в Чикаго, когда человек по имени Ричард Спек жестоко убил восемь девушек, студенток медицинского колледжа.14 июля 1966 года его занесло на окраину Чикаго, где он постучался в дом, где жили девять студенток медицинского колледжа. Открывшей ему студентке он пообещал не причинять никому вреда, сказав, что ему просто нужны деньги для покупки билета до Нового Орлеана. Проникнув в дом, он собрал всех студенток в одной комнате, связав их. Узнав, где деньги он не успокоился и, выбрав одну из студенток увел ее из комнаты. Позже он пришел еще за одной. В это время одна из девушек, даже будучи связанной, умудрилась спрятаться под кроватью. Все остальные были убиты. Одну из девушек он изнасиловал. После этого он отправился в ближайший кабак "кутить" на вырученные 50 долларов. Через несколько дней он был пойман. В процессе следствия пытался покончить жизнь самоубийством. У Ричарда Спека, убийцы восьмерых студенток, при анализе крови была обнаружена лишняя хромосома Y - " хромосома преступления"

Вопрос о необходимости раннего выделения хромосомных аберрантов с кариотипом ХУУ, о необходимости особых мер ограждения от них и обычного населения, и преступников с меньшим потенциалом агрессивности уже широко обсуждается в зарубежной генетической и юридической литературе.

Взрослый мужчина, у которого впервые выявлен кариотип 47, XYY, нуждается в психологической поддержке; могут потребоваться медико-генетические консультации.

Поскольку поставленное на очередь кариологическое выделение лиц с синдромом XYY среди высокорослых преступников представляет собой технически трудоемкую задачу, появились экспресс-методы выявления лишней Y-хромосомы, а именно окрашивание мазков слизистой рта акрихинипритом и флуоресцентное микроскопирование (YY выделяется в виде двух светящихся точек).

Изменение числа хромосом в клетке означает изменение генома. (Поэтому такие изменения часто называют геномными мутациями.) Известны различные цитогенетические феномены, связанные с изменением числа хромосом.

Автополиплоидия

Автополиплоидия представляет собой многократное повторение одного и того же генома, или основного числа хромосом (х).

Этот тип полиплоидии характерен для низших эукариот и покрытосеменных растений. У многоклеточных животных автополиплоидия встречается крайне редко: у дождевых червей, некоторых насекомых, некоторых рыб и земноводных. Автополиплоиды у человека и других высших позвоночных погибают на ранних стадиях внутриутробного развития.

У большинства эукариотических организмов основное число хромосом (x) совпадает с гаплоидным набором хромосом (n); при этом гаплоидное число хромосом – это число хромосом в клетках, образовавшихся в хорде мейоза. Тогда в диплоидных (2n) содержится два генома x, и 2n=2x. Однако у многих низших эукариот, многих споровых и покрытосеменных растений в диплоидных клетках содержится не 2 генома, а некоторое иное число. Число геномов в диплоидных клетках называется геномным числом (Ω). Последовательность геномных чисел называется полиплоидным рядом.

Различают сбалансированные и несбалансированные автополиплоиды. Сбалансированными полиплоидами называются полиплоиды с чётным числом хромосомных наборов, а несбалансированными – полиплоиды с нечетным числом хромосомных наборов, например:

несбалансированные полиплоиды

гаплоиды

триплоиды

пентаплоиды

гектаплоиды

эннеаплоиды

сбалансированные полиплоиды

диплоиды

тетраплоиды

гексаплоиды

октоплоиды

декаплоиды

Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов, повышенным содержанием сахаров и витаминов. Например, триплоидная осина (3х = 57) достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (ряд сортов земляники, яблони, арбузов, бананов, чая, сахарной свеклы), так и тетраплоиды (ряд сортов ржи, клевера, винограда). В природных условиях автополиплоидные растения обычно встречаются в экстремальных условиях (в высоких широтах, в высокогорьях); более того, здесь они могут вытеснять нормальные диплоидные формы.

Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Однако в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Однако автополиплоиды (особенно несбалансированные) характеризуются сниженной плодовитостью или полным бесплодием, что связано с нарушениями мейоза. Поэтому многие из них способны только к размножению вегетативным путем.

Аллополиплоидия

Аллополиплоидия представляет собой многократное повторение двух и более разных гаплоидных хромосомных наборов, которые обозначаются разными символами. Полиплоиды, полученные в результате отдаленной гибридизации, то есть от скрещивания организмов, принадлежащих к различным видам, и содержащие два и более набора разных хромосом, называются аллополиплоиды.

Аллополиплоиды широко распространены среди культурных растений. Однако, если в соматических клетках содержится по одному геному от разных видов (например, один геном А и один – В), то такой аллополиплоид – бесплоден. Бесплодие простых межвидовых гибридов связано с тем, что каждая хромосома представлена одним гомологом, и образование бивалентов в мейозе оказывается невозможным. Таким образом, при отдаленной гибридизации возникает мейотический фильтр, препятствующий передаче наследственных задатков в последующие поколения половым путем.

Поэтому у плодовитых полиплоидов каждый геном должен быть удвоен. Например, у разных видов пшеницы гаплоидное число хромосом (n) равно 7. Дикая пшеница (однозернянка) содержит в соматических клетках 14 хромосом лишь одного удвоенного генома А и имеет геномную формулу 2n = 14 (14А). Многие аллотетраплоидные твердые пшеницы содержат в соматических клетках 28 хромосом удвоенных геномов А и В; их геномная формула 2n = 28 (14А + 14В). Мягкие аллогексаплоидные пшеницы содержат в соматических клетках 42 хромосомы удвоенных геномов А, В, и D; их геномная формула 2n = 42 (14A + 14B + 14D).

Плодовитые аллополиплоиды можно получать искусственным путем. Например, редечно-капустный гибрид, синтезированный Георгием Дмитриевичем Карпеченко, был получен путем скрещиванием редьки и капусты. Геном редьки обозначается символом R (2n = 18 R, n = 9 R), а геном капусты – символом B (2n = 18 B, n = 9 B). Первоначально полученный гибрид имел геномную формулу 9 R + 9 B. Этот организм (амфигаплоид) был бесплодным, поскольку в мейозе образовывалось 18 одиночных хромосом (унивалентов) и ни одного бивалента. Однако у этого гибрида некоторые гаметы оказались нередуцированными. При слиянии таких гамет был получен плодовитый амфидиплоид: (9 R + 9 B) + (9 R + 9 B) → 18 R + 18 B. У этого организма каждая хромосома была представлена парой гомологов, что обеспечило нормальное образование бивалентов и нормальное расхождение хромосом в мейозе: 18 R + 18 B → (9 R + 9 B) и (9 R + 9 B).

В настоящее время ведется работа по созданию искусственных амфидиплоидов у растений (например, пшенично-ржаных гибридов (тритикале), пшенично-пырейных гибридов) и животных (например, гибридных шелкопрядов).

Тутовый шелкопряд – объект интенсивной селекционный работы. Нужно учесть, что у этого вида (как и у большинства бабочек) самки – гетерогаметный пол (XY), а самцы – гомогаметный (XX). Для быстрого размножения новых пород шелкопряда используют индуцированный партеногенез – из самок извлекают неоплодотворенные яйца еще до мейоза и нагревают их до 46 °С. Из таких диплоидных яиц развиваются только самки. Кроме того, у шелкопряда известен андрогенез – если яйцеклетку нагреть до 46 °С, убить ядро рентгеновскими лучами, а затем осеменить, то в яйцеклетку могут проникнуть два мужских ядра. Эти ядра сливаются между собой, и образуется диплоидная зигота (ХХ), из которой развивается самец.

Для тутового шелкопряда известна автополиплоидия. Кроме того, Борис Львович Астауров скрещивал тутового шелкопряда с дикой форой мандаринового шелкопряда, и в результате были получены плодовитые аллополиплоиды (точнее, аллотетраплоиды).

У тутового шелкопряда выход шелка из коконов мужского пола на 20-30 % выше, чем из коконов женского пола. В.А. Струнников с помощью индуцированного мутагенеза вывел породу, у которой самцы в Х–хромосомах несут разные летальные мутации (система сбалансированных леталей) – их генотип l1+/+l2. При скрещивании таких самцов с нормальными самками (++/Y) из яиц выходят только будущие самцы (их генотип l1+/++ или l2/++), а самки погибают на эмбриональной стадии развития, поскольку их генотип или l1+/Y, или +l2/Y. Для разведения самцов с летальными мутациями используются специальные самки (их генотип +l2/++·Y). Тогда при скрещивании таких самок и самцов с двумя летальными аллелями в их потомстве половина самцов погибает, а половина – несет два летальных аллеля.

Существуют породы тутового шелкопряда, у которых в Y–хромосоме имеется аллель темной окраски яиц. Тогда темные яйца (XY, из которых должны вывестись самки), отбраковываются, а оставляются только светлые (ХХ), которые в дальнейшем дают коконы самцов.

Анеуплоидия

Анеуплоидия (гетерополиплоидия) – это изменение числа хромосом в клетках, некратное основному хромосомному числу. Различают несколько типов анеуплоидии. При моносомии утрачивается одна из хромосом диплоидного набора (2n – 1). При полисомии к кариотипу добавляется одна или несколько хромосом. Частным случаем полисомии является трисомия (2n + 1), когда вместо двух гомологов их становится три. При нуллисомии отсутствуют оба гомолога какой-либо пары хромосом (2n – 2).

У человека анеуплоидия приводит к развитию тяжелых наследственных заболеваний. Часть из них связана с изменением числа половых хромосом (см. главу 17). Однако существуют и другие заболевания:

– Трисомия по 21-ой хромосоме (генотип 47, +21); синдром Дауна; частота среди новорожденных – 1:700. Замедленное физическое и умственное развитие, широкое расстояние между ноздрями, широкая переносица, развитие складки века (эпикант), полуоткрытый рот. В половине случаев встречаются нарушения в строении сердца и кровеносных сосудов. Обычно понижен иммунитет. Средняя продолжительность жизни – 9-15 лет.

– Трисомия по 13-ой хромосоме (генотип 47, +13); синдром Патау. Частота среди новорожденных – 1:5.000.

– Трисомия по 18-ой хромосоме (генотип 47, +18); синдром Эдвардса. Частота среди новорожденных – 1:10.000.

Гаплоидия

Уменьшение числа хромосом в соматических клетках до основного числа называется гаплоидия. Существуют организмы–гаплобионты, для которых гаплоидия – это нормальное состояние (многие низшие эукариоты, гаметофиты высших растений, самцы перепончатокрылых насекомых). Гаплоидия как аномальное явление встречается среди спорофитов высших растений: у томата, табака, льна, дурмана, некоторых злаков. Гаплоидные растения отличаются пониженной жизнеспособностью; они практически бесплодны.

Псевдополиплоидия (ложная полиплоидия)

В некоторых случаях изменение числа хромосом может произойти без изменения объема генетического материала. Образно выражаясь, изменяется число томов, но не изменяется число фраз. Такое явление называется псевдополиплоидия. Различают две основные формы псевдополиплоидии:

1. Агматополиплоидия. Наблюдается в том случае, если крупные хромосомы распадаются на множество мелких. Встречается у некоторых растений и насекомых. У некоторых организмов (например, у круглых червей) происходит фрагментация хромосом в соматических клетках, но в половых клетках сохраняются исходные крупные хромосомы.

2. Слияние хромосом. Наблюдается в том случае, если мелкие хромосомы объединяются в крупные. Встречается у грызунов.

Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х- и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Хромосомные аномалии

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Развитие пола ребенка

В обычных условиях наличие Y-хромосомы приводит к развитию плода мужского пола вне зависимости от количества Х-хромосом, а отсутствие Y-хромосомы - к развитию плода женского пола. Аномалии половых хромосом оказывают менее деструктивное влияние на физические характеристики индивида (фенотип), нежели аномалии аутосомных. Y-хромосома содержит малое количество генов, поэтому ее лишние копии оказывают минимальное влияние. Как у мужчин, так и у женщин требуется наличие только одной активной Х-хромосомы. Лишние Х-хромосомы почти всегда являются полностью неактивными. Этот механизм минимизирует эффект аномальных Х-хромосом, поскольку лишние и структурно аномальные копии инактивируются, оставляя «рабочей» только одну нормальную Х-хромосому. Однако существуют на Х-хромосоме некоторые гены, которым удается избежать инактивации. Считается, что наличие одной или более двух копий таких генов является причиной аномальных фенотипов, ассоциированных с дисбалансом половых хромосом. В лаборатории анализ хромосом проводится под световым микроскопом при 1000-кратном увеличении. Хромосомы становятся видны только при делении клетки на две генетически идентичные дочерние клетки. Для получения хромосом используют клетки крови, которые культивируют в специальной среде, богатой питательными веществами. На определенной стадии деления клетки обрабатывают раствором, который вызывает их набухание, что сопровождается «распутыванием» и разделением хромосом. Затем клетки помещают на предметное стекло микроскопа. По мере их высыхания происходит разрыв клеточной мембраны с выходом хромосом во внешнюю среду. Хромосомы окрашивают таким образом, чтобы на каждой из них появились светлые и темные диски (полоски), порядок которых специфичен для каждой пары. Форму хромосом и характер дисков тщательно изучают с целью идентификации каждой хромосомы и выявления возможных аномалий. Количественные аномалии имеют место при недостатке или избытке хромосом. Некоторые синдромы, развивающиеся в результате таких дефектов, имеют очевидные признаки; другие бывают почти незаметны.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом: 45, X - синдром Тернера. 45, X, или отсутствие второй половой хромосомы, - самый распространенный кариотип при синдроме Тернера. Индивиды с этим синдромом имеют женский пол; часто заболевание диагностируют при рождении благодаря таким характерным признакам, как кожные складки на задней поверхности шеи, отечность кистей рук и стоп и низкая масса тела. К другим симптомам относятся низкорослость, короткая шея с крыловидными складками, широкая грудная клетка с широко расположенными сосками, пороки сердца и патологическое отклонение предплечий. Большинство женщин с синдромом Тернера бесплодны, у них отсутствуют менструации и не развиты вторичные половые признаки, в частности молочные железы. Практически все пациентки, однако, имеют нормальный уровень умственного развития. Частота встречаемости синдрома Тернера составляет от 1:5000 до 1:10 000 женщин.

■ 47, XXX - трисомия Х-хромосомы.

Приблизительно 1 из 1000 женщин имеет кариотип 47, XXX. Женщины с этим синдромом обычно высокие и худые, без каких-либо явных физических отклонений. Однако нередко у них отмечается снижение коэффициента интеллекта с определенными проблемами в обучении и поведении. Большинство женщин с трисомией Х-хромосомы фертильны и способны иметь детей с нормальным набором хромосом. Синдром редко выявляется благодаря нерезкой выраженности фенотипических признаков.

■ 47, XXY - синдром Клайнфельтера. Приблизительно 1 из 1000 мужчин имеет синдром Клайнфельтера. Мужчины с кариотипом 47, XXY выглядят нормальными при рождении и в раннем детстве, за исключением небольших проблем в обучении и поведении. Характерные признаки становятся заметными в период полового созревания и включают высокий рост, маленький размер яичек, отсутствие сперматозоидов, а иногда и недостаточное развитие вторичных половых признаков с увеличением грудных желез.

■ 47, XYY - XYY-синдром. Дополнительная Y-хромосома присутствует примерно у 1 из 1000 мужчин. Большинство мужчин с XYY-синдромом внешне выглядят нормально, но при этом имеют очень высокий рост и сниженный уровень интеллекта. Хромосомы по форме отдаленно напоминают букву X и имеют два коротких и два длинных плеча. Для синдрома Тернера типичны следующие аномалии: изохромосома по длинному плечу. В ходе образования яйцеклеток или сперматозоидов происходит разделение хромосом, при нарушении расхождения которых может появиться хромосома с двумя длинными плечами и полным отсутствием коротких; кольцевая хромосома. Образуется вследствие утраты концов коротких и длинных плеч Х-хромосомы и соединения оставшихся участков в кольцо; делеция (утрата) части короткого плеча одной из Х-хромосом. Аномалии длинного плеча Х-хромосомы обычно вызывают дисфункцию репродуктивной системы, например преждевременную менопаузу.

Y-хромосома

Ген, отвечающий за развитие зародыша по мужскому типу, находится на коротком плече Y-хромосомы. Делеция короткого плеча приводит к формированию женского фенотипа, часто с некоторыми признаками синдрома Тернера. Гены на длинном плече ответственны за фертильность, поэтому любые делеции здесь могут сопровождаться мужским бесплодием.

Изменения структуры хромосом включают делеции, транслокации, инверсии, дупликации, инсерции.

Делеции это изменения структуры хромосом в виде отсутствия ее участка. При этом возможно развитие простой делеции или делеции с дупликацией участка дру­гой хромосомы.

В последнем случае причиной изменения структуры хромосомы, как правило, служит кроссинговер в мейозе у носителя транслокации, что приводит к появлению несба­лансированной реципрокной хромосомной транс­локации. Делеции могут локализоваться на конце или во внутренних участках хромосо­мы и обычно ассоциируются с умственной отста­лостью и пороками развития. Небольшие делеции в области теломеры относительно часто обнаружи­ваются при неспецифической умственной отста­лости в сочетании с микроаномалиями развития. Делеции можно выявить при рутинном получении хромосом, однако микроделеции полу­чается идентифицировать только при микроскопи­ческом исследовании в профазе. В случа­ях субмикроскопических делеций отсутствующий участок можно обнаружить только с помощью мо­лекулярных зондов или анализа ДНК.

Микроделеции определяются как мелкие хромо­сомные делеции, различимые только в препаратах высокого качества в метафазе. Эти делеции чаще встречаются в нескольких генах, диагноз у больного предполагается на основании необычных фенотипических проявлений, которые, казалось бы, связаны с единственной мутацией. Синдро­мы Вильямса, Лангера-Гидиона, Прадера-Вилли, Рубинстайна-Тейби, Смит-Мадженис, Миллера-Дикера, Алагилля, Ди Джорджи обусловлены микроделециями. Субмикроскопические делеции невидимы при микроскопическом ис­следовании и обнаруживаются только при приме­нении специфических методов исследования ДНК. Делеции распознаются по отсутствию окрашива­ния или флюоресценции.

Транслокации представляют собой изменение структуры хромосом в виде переноса хромосомного материала из одной на другую. Выделяют робертсоновские и реципрокные транслокации. Частота 1:500 новорожденных. Транслокации могут пере­даваться по наследству от родителей или возникают de novo при отсутствии патологии у других членов семьи.

Робертсоновские транслокации вовлекают две акроцентрические хромосомы, сращение которых наблюдается близко к области центромеры с по­следующей потерей нефункциональных и очень усеченных коротких плеч. После транслокации хромосома состоит из длинных плеч, которые скла­дываются из двух сращенных хромосом. Таким об­разом, кариотип насчитывает всего 45 хромосом. Негативные последствия потери коротких плеч неизвестны. Хотя но­сители робертсоновской транслокации, как прави­ло, имеют нормальный фенотип, у них повышен риск выкидышей и рождения потомства с анома­лиями.

Реципрокные транслокации возникают в ре­зультате поломок негомологичных хромосом в сочетании с реципрокным обменом потерянными сегментами. Носители реципрокной транслокации обычно имеют нормальный фенотип, однако у них также повышен риск рождения потомства с хромо­сомными аномалиями и выкидышей в связи с ано­малиями сегрегации хромосом в половых клетках.

Инверсии – изменения структуры хромосом, возникающие при ее разрыве в двух точках. Отломанный участок переворачивается и присоединяется к месту разрыва. Инверсии встречаются у 1:100 новорожденных и могут быть пери- или парацен­трическими. При перицентрических инверсиях раз­рывы возникают на двух противоположных плечах, происходит поворот части хромосомы, содержащей центромеру. Такие инверсии обычно выявляются в связи с изменением положения цен­тромеры. Напротив, при парацентрических инвер­сиях вовлекается только участок, расположенный на одном плече. Носители инверсий обычно имеют нормальный фенотип, од­нако у них может быть повышен риск спонтанных выкидышей и рождения потомства с хромосомны­ми аномалиями.

Кольцевые хромосомы встречаются редко, од­нако их образование возмож­но из любой хромосомы человека. Формированию кольца предшествуют делеции на каждом конце. Затем концы «склеива­ются» с формированием кольца. Фенотипические проявления при кольцевых хромосомах варьируют от умственной отсталости и множественных анома­лий развития до нормы или минимально выражен­ных изменений в зависимости от количества «по­терянного» хромосомного материала. Если кольцо замещает нормальную хромосому, это приводит к развитию частичной моносомии. Фенотипиче­ские проявления в этих случаях часто аналогичны изменениям, наблюдаемых при делециях. Если кольцо добавляется к нормальным хромосомам, возникают фенотипические проявле­ния частичной трисомии.

Дупликацией называют избыточное количе­ство генетического материала, принадлежащего одной хромосоме. Дупликации могут возникать в результате патологической сегрегации у носителей транслокаций или инверсий.

Инсерции (вставки) – это изменения структуры хромосом, возникающие при поломке в двух точках, при этом отломанный участок встраивается в зону разрыва на другой части хромосомы. Для формирования инсерции необходимы три точки разрыва. В этом процессе может участвовать одна или две хромосомы.

Теломерические, субтеломерические деле­ции. Поскольку хромосомы тесно переплетаются в процессе мейоза, мелкие делеции и дупликации в области, расположенной ближе к концам, встречаются относительно часто. Субте­ломерические хромосомные перестановки чаще (5-10 %) обнаруживаются у детей с умеренной или тяжелой умственной отсталостью неясной этиоло­гии без выраженных дизморфических признаков.

Субмикроскопические субтеломерические делеции (меньше 2-3 Мб) - вторая по частоте встречае­мости причина умственной отсталости после три­сомии 21. Клинические проявления этого изменения структуры хромосом у некоторых из этих детей включают пренатальную задержку роста (около 40 % случаев) и умственную отста­лость в семейном анамнезе (50% случаев). Другие симптомы выявляются примерно у 30% пациен­тов и включают микроцефалию, гипертелоризм, дефекты носа, ушей или кистей рук, крипторхизм и короткий рост. После исключения других при­чин задержки развития рекомендуется метод FISH с использованием множества теломерических зон­дов в метафазе.

Статью подготовил и отредактировал: врач-хирург

2024 stdpro.ru. Сайт о правильном строительстве.