Деление целых чисел: правила, примеры. Примеры на деление. Правило деления целых чисел с разными знаками, примеры

В этой статье мы разберем такое важное действие с десятичными дробями, как деление. Сначала сформулируем общие принципы, затем разберем, как правильно выполнять деление десятичных дробей столбиком как на другие дроби, так и на натуральные числа. Далее мы разберем деление обыкновенных дробей на десятичные и наоборот, а в конце посмотрим, как правильно выполнять деление дробей, заканчивающихся на 0 , 1 , 0 , 01 , 100 , 10 и др.

Здесь мы возьмем только случаи с положительными дробями. Если же перед дробью стоит минус, то для действия с ней нужно изучить материал о делении рациональных и действительных чисел.

Yandex.RTB R-A-339285-1

Все десятичные дроби, как конечные, так и периодические, представляют из себя всего лишь особую форму записи обыкновенных дробей. Следовательно, на них распространяются те же принципы, что и на соответствующие им обыкновенные дроби. Таким образом, весь процесс деления десятичных дробей мы сводим к замене их на обыкновенные с последующим вычислением уже известными нам способами. Возьмем конкретный пример.

Пример 1

Разделите 1 , 2 на 0 , 48 .

Решение

Запишем десятичные дроби в виде обыкновенных. У нас получится:

1 , 2 = 12 10 = 6 5

0 , 48 = 48 100 = 12 25 .

Таким образом, нам надо разделить 6 5 на 12 25 . Считаем:

1 , 2: 0 , 48 = 6 2: 12 25 = 6 5 · 25 12 = 6 · 25 5 · 12 = 5 2

Из получившейся в итоге неправильной дроби можно выделить целую часть и получить смешанное число 2 1 2 , а можно представить ее в виде десятичной дроби, чтобы она соответствовала исходным цифрам: 5 2 = 2 , 5 . О том, как это сделать, мы уже писали ранее.

Ответ: 1 , 2: 0 , 48 = 2 , 5 .

Пример 2

Посчитайте, сколько будет 0 , (504) 0 , 56 .

Решение

Для начала нам нужно перевести периодическую десятичную дробь в обыкновенную.

0 , (504) = 0 , 504 1 - 0 , 001 = 0 , 504 0 , 999 = 504 999 = 56 111

После этого конечную десятичную дробь также переведем в другой вид: 0 , 56 = 56 100 . Теперь у нас есть два числа, с которыми нам будет легко провести необходимые вычисления:

0 , (504) : 1 , 11 = 56 111: 56 100 = 56 111 · 100 56 = 100 111

У нас получился результат, который мы также можем перевести в десятичный вид. Для этого разделим числитель на знаменатель, используя метод столбика:

Ответ: 0 , (504) : 0 , 56 = 0 , (900) .

Если же в примере на деление нам встретились непериодические десятичные дроби, то мы будем действовать немного иначе. Мы не можем их привести к привычным обыкновенным дробям, поэтому при делении приходится предварительно округлять их до определенного разряда. Это действие должно быть выполнено как с делимым, так и с делителем: имеющуюся конечную или периодическую дробь в интересах точности мы тоже будем округлять.

Пример 3

Найдите, сколько будет 0 , 779 … / 1 , 5602 .

Решение

Первым делом мы округляем обе дроби до сотых. Так мы переходим от бесконечных непериодических дробей к конечным десятичным:

0 , 779 … ≈ 0 , 78

1 , 5602 ≈ 1 , 56

Можем продолжить подсчеты и получить примерный результат: 0 , 779 … : 1 , 5602 ≈ 0 , 78: 1 , 56 = 78 100: 156 100 = 78 100 · 100 156 = 78 156 = 1 2 = 0 , 5 .

Точность результата будет зависеть от степени округления.

Ответ: 0 , 779 … : 1 , 5602 ≈ 0 , 5 .

Как разделить натуральное число на десятичную дробь и наоборот

Подход к делению в этом случае практически аналогичен: конечные и периодические дроби заменяем обыкновенными, а бесконечные непериодические округляем. Возьмем для начала пример деления с натуральным числом и десятичной дробью.

Пример 4

Разделите 2 , 5 на 45 .

Решение

Приведем 2 , 5 к виду обыкновенной дроби: 255 10 = 51 2 . Далее нам надо просто разделить ее на натуральное число. Делать это мы уже умеем:

25 , 5: 45 = 51 2: 45 = 51 2 · 1 45 = 17 30

Если перевести результат в десятичную запись, то мы получим 0 , 5 (6) .

Ответ: 25 , 5: 45 = 0 , 5 (6) .

Метод деления столбиком хорош не только для натуральных чисел. По аналогии мы можем использовать его и для дробей. Ниже мы укажем последовательность действий, которую нужно для этого осуществить.

Определение 1

Для деления столбиком десятичных дробей на натуральные числа необходимо:

1. Добавить к десятичной дроби справа несколько нулей (для деления мы можем добавлять любое их количество, которое нам необходимо).

2. Разделить столбиком десятичную дробь на натуральное число, используя алгоритм. Когда деление целой части дроби подойдет к концу, мы ставим запятую в получившемся частном и считаем дальше.

Результатом такого деления может стать как конечная, так и бесконечная периодическая десятичная дробь. Это зависит от остатка: если он нулевой, то результат окажется конечным, а если остатки начнут повторяться, то ответом будет периодическая дробь.

Возьмем для примера несколько задач и попробуем выполнить эти шаги уже с конкретными числами.

Пример 5

Вычислите, сколько будет 65 , 14 4 .

Решение

Используем метод столбика. Для этого допишем к дроби два нуля и получим десятичную дробь 65 , 1400 , которая будет равна исходной. Теперь пишем столбик для деления на 4:

Полученное число и будет нужным нам результатом деления целой части. Ставим запятую, отделяя ее, и продолжаем:

Мы добрались до нулевого остатка, следовательно, процесс деления завершен.

Ответ: 65 , 14: 4 = 16 , 285 .

Пример 6

Разделите 164 , 5 на 27 .

Решение

Делим сначала дробную часть и получаем:

Отделяем полученную цифру запятой и продолжаем делить:

Мы видим, что остатки стали периодически повторяться, и в частном стали чередоваться цифры девять, два и пять. На этом мы остановимся и запишем ответ в виде периодической дроби 6 , 0 (925) .

Ответ: 164 , 5: 27 = 6 , 0 (925) .

Такое деление можно свести к уже описанному выше процессу нахождения частного десятичной дроби и натурального числа. Для этого нам потребуется умножить делимое и делитель на 10 , 100 и др. так, чтобы делитель превратился в натуральное число. Дальше выполняем описанную выше последовательность действий. Такой подход возможен благодаря свойствам деления и умножения. В буквенном виде мы записывали их так:

a: b = (a · 10) : (b · 10) , a: b = (a · 100) : (b · 100) и так далее.

Сформулируем правило:

Определение 2

Для деления одной конечной десятичной дроби на другую необходимо:

1. Перенести запятую в делимом и делителе вправо на то количество знаков, которое необходимо для превращения делителя в натуральное число. Если в делимом не хватит знаков, допишем в него нули с правой стороны.

2. После этого делим дробь столбиком на получившееся натуральное число.

Разберем конкретную задачу.

Пример 7

Разделите 7 , 287 на 2 , 1 .

Решение: Чтобы делитель стал натуральным числом, нам надо перенести запятую на один знак вправо. Так мы перешли к делению десятичной дроби 72 , 87 на 21 . Запишем полученные числа столбиком и вычислим

Ответ: 7 , 287: 2 , 1 = 3 , 47

Пример 8

Вычислите 16 , 3 0 , 021 .

Решение

Нам придется переносить запятую на три знака. В делителе для этого не хватит цифр, значит, нужно воспользоваться дополнительными нулями. Считаем, что получится в итоге:

Видим периодическое повторение остатков 4 , 19 , 1 , 10 , 16 , 13 . В частном повторяются 1 , 9 , 0 , 4 , 7 и 5 . Тогда наш результат является периодической десятичной дробью 776 , (190476) .

Ответ: 16 , 3: 0 , 021 = 776 , (190476) ​​​​​​

Описанный нами метод позволяет делать и наоборот, то есть делить натуральное число на конечную десятичную дробь. Посмотрим, как это делается.

Пример 9

Подсчитайте, сколько будет 3 5 , 4 .

Решение

Очевидно, что нам придется перенести запятую вправо на один знак. После этого мы можем приступить к делению 30 , 0 на 54 . Запишем данные столбиком и вычислим результат:

Повторение остатка дает нам в итоге число 0 , (5) , которое является периодической десятичной дробью.

Ответ: 3: 5 , 4 = 0 , (5) .

Как разделить десятичные дроби на 1000, 100, 10 и др.

Согласно уже изученным правилам деления обыкновенных дробей, деление дроби на десятки, сотни, тысячи аналогично ее умножению на 1 / 1000 , 1 / 100 , 1 / 10 и др. Получается, чтобы выполнить деление, в данном случае достаточно просто перенести запятую на нужное количество цифр. Если значений в числе не хватит для переноса, нужно дописать нужное количество нулей.

Пример 10

Так, 56 , 21: 10 = 5 , 621 , а 0 , 32: 100 000 = 0 , 0000032 .

В случае с бесконечными десятичными дробями мы поступаем таким же образом.

Пример 11

Например, 3 , (56) : 1 000 = 0 , 003 (56) и 593 , 374 … : 100 = 5 , 93374 … .

Как разделить десятичные дроби на 0,001, 0,01, 0,1 и др.

Воспользовавшись тем же правилом, мы можем так же разделить дроби на указанные значения. Это действие будет аналогично умножению на 1000 , 100 , 10 соответственно. Для этого мы переносим запятую на одну, две или три цифры в зависимости от условий задачи и дописываем нули, если цифр в числе окажется недостаточно.

Пример 12

К примеру, 5 , 739: 0 , 1 = 57 , 39 и 0 , 21: 0 , 00001 = 21 000 .

Это правило действует и в случае с бесконечными десятичными дробями. Советуем только быть внимательными с периодом дроби, которая получается в ответе.

Так, 7 , 5 (716) : 0 , 01 = 757 , (167) , поскольку после того, как мы перенесли запятую в записи десятичной дроби 7 , 5716716716 … на два знака вправо, у нас получилось 757 , 167167 … .

Если же у нас в примере непериодические дроби, то все обстоит проще: 394 , 38283 … : 0 , 001 = 394382 , 83 … .

Как разделить смешанное число или обыкновенную дробь на десятичную и наоборот

Это действие мы также сводим к операциям с обыкновенными дробями. Для этого надо заменить десятичные числа соответствующими обыкновенными дробями, а смешанное число записать в виде неправильной дроби.

Если мы делим непериодическую дробь на обыкновенную либо на смешанное число, нужно поступить наоборот, заменив обыкновенную дробь или смешанное число соответствующей им десятичной дробью.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Деление столбиком (также можно встретить название деление уголком) — стандартная процедура в арифметике, предназначенная для деления простых или сложных многозначных чисел за счёт разбивания деления на ряд более простых шагов. Как и во всех задачах на деление, одно число, называемое делимым , делится на другое, называемое делителем , производя результат, называемый частным .

Столбиком можно проводить как деление натуральных чисел без остатка, так и деление натуральных чисел с остатком.

Правила записи при делении столбиком.

Начнем с изучения правил записи делимого, делителя, всех промежуточных выкладок и результатов при делении натуральных чисел столбиком. Сразу скажем, что письменно выполнять деление столбиком удобнее всего на бумаге с клетчатой разлиновкой - так меньше шансов сбиться с нужной строки и столбца.

Сначала в одной строке слева направо записываются делимое и делитель, после чего между записанными числами изображается символ вида .

Например , если делимым является число 6105, а делителем 55, то их правильная запись при делении в столбик будет такой:

Посмотрите на следующую схему, иллюстрирующую места для записи делимого, делителя, частного, остатка и промежуточных вычислений при делении столбиком:

Из приведенной схемы видно, что искомое частное (или неполное частное при делении с остатком) будет записано ниже делителя под горизонтальной чертой. А промежуточные вычисления будут вестись ниже делимого, и нужно заранее позаботиться о наличии места на странице. При этом следует руководствоваться правилом: чем больше разница в количестве знаков в записях делимого и делителя, тем больше потребуется места.

Деление столбиком натурального числа на однозначное натуральное число, алгоритм деления столбиком.

Как делить в столбик лучше всего объяснить на примере. Вычислить :

512:8=?

Для начала запишем делимое и делитель в столбик. Выглядеть это будет так:

Их частное (результат) будем записывать под делителем. У нас это цифра 8.

1. Определяем неполное частное. Сначала мы смотрим на первую слева цифру в записи делимого. Если число, определяемое этой цифрой, больше делителя, то в следующем пункте нам предстоит работать с этим числом. Если же это число меньше, чем делитель, то нам нужно добавить к рассмотрению следующую слева цифру в записи делимого, и работать дальше с числом, определяемым двумя рассматриваемыми цифрами. Для удобства выделим в нашей записи число, с которым мы будем работать.

2. Берём 5. Цифра 5 меньше 8, значит нужно взять еще одну цифру из делимого. 51 больше 8. Значит. это неполное частное. Ставим точку в частном (под уголком делителя).

После 51 стоит только одно цифра 2. Значит и добавляем в результат ещё одну точку.

3. Теперь, вспоминая таблицу умножения на 8, находим ближайшее к 51 произведение → 6 х 8 = 48 → записываем цифру 6 в частное:

Записываем 48 под 51 (если умножить 6 из частного на 8 из делителя, получим 48).

Внимание! При записи под неполным частным самая правая цифра неполного частного должна стоять над самой правой цифрой произведения .

4. Между 51 и 48 слева поставим «-» (минус). Вычтем по правилам вычитания в столбик 48 и под чертой запишем результат.

Однако, если результатом вычитания является нуль, то его не нужно записывать (если только вычитание в этом пункте не является самым последним действием, полностью завершающим процесс деления столбиком).

В остатке получилось 3. Сравним остаток с делителем. 3 меньше 8.

Внимание! Если остаток получился больше делителя, значит мы ошиблись в расчете и есть произведение более близкое, чем то, которое взяли мы.

5. Теперь под горизонтальной чертой справа от находящихся там цифр (или справа от места, где мы не стали записывать нуль) записываем цифру, расположенную в том же столбце в записи делимого. Если же в записи делимого в этом столбце нет цифр, то деление столбиком на этом заканчивается.

Число 32 больше 8. И опять по таблице умножения на 8, найдем ближайшее произведение → 8 x 4 = 32:

В остатке получился ноль. Значит, числа разделились нацело (без остатка). Если после последнего вычитания получается ноль, а цифр больше не осталось, то это остаток. Его дописываем к частному в скобках (например, 64(2)).

Деление столбиком многозначных натуральных чисел.

Деление на натуральное многозначное число производится аналогично. При этом, в первое «промежуточное» делимое включается столько старших разрядов, чтобы оно получилось больше делителя.

Например , 1976 разделим на 26.

  • Число 1 в старшем разряде меньше 26, поэтому рассмотрим число, составленное из цифр двух старших разрядов - 19.
  • Число 19 также меньше 26, поэтому рассмотрим число, составленное из цифр трех старших разрядов - 197.
  • Число 197 больше 26, делим 197 десятков на 26: 197: 26 = 7 (15 десятков осталось).
  • Переводим 15 десятков в единицы, добавляем 6 единиц из разряда единиц, получаем 156.
  • 156 делим на 26, получаем 6.

Значит, 1976: 26 = 76.

Если на каком-то шаге деления «промежуточное» делимое оказалось меньше делителя, то в частном записывается 0, а число из данного разряда переводится в следующий, более младший разряд.

Деление с десятичной дробью в частном.

Десятичные дроби онлайн. Перевод десятичных дробей в обычные и обычных дробей в десятичные.

Если натуральное число не делится нацело на однозначное натуральное число, можно продолжить поразрядное деление и получить в частном десятичную дробь.

Например , 64 разделим на 5.

  • 6 десятков делим на 5, получаем 1 десяток и 1 десяток в остатке.
  • Оставшийся десяток переводим в единицы, добавляем 4 из разряда единиц, получаем 14.
  • 14 единиц делим на 5, получаем 2 единицы и 4 единицы в остатке.
  • 4 единицы переводим в десятые, получаем 40 десятых.
  • 40 десятых делим на 5, получаем 8 десятых.

Значит, 64: 5 = 12,8

Таким образом, если при делении натурального числа на натуральное однозначное или многозначное число получается остаток, то можно поставить в частном запятую, остаток перевести в единицы следующего, меньшего разряда и продолжать деление.

Несмотря на то что математика кажется большинству людей наукой сложной, это далеко не так. Многие математические операции довольно легко понять, особенно если знать правила и формулы. Так, зная таблицу умножения, можно быстро перемножать в уме Главное - постоянно тренироваться и не забывать правил умножения. То же самое можно сказать и о делении.

Давайте же разберем деление целых чисел, дробных и отрицательных. Вспомним об основных правилах, приемах и методах.

Операция деления

Начнем, пожалуй, с самого определения и названия чисел, которые участвуют в данной операции. Это значительно облегчит дальнейшее изложение и восприятие информации.

Деление - одна из четырех основных математических операций. Изучение ее начинается еще в начальной школе. Именно тогда детям показывают первый пример деления числа на число, объясняют правила.

В операции участвуют два числа: делимое и делитель. Первое - число, которое делят, второе - на которое делят. Результатом деления является частное.

Имеется несколько обозначений для записи данной операции: «:», «/» и горизонтальная черта - запись в виде дроби, когда вверху находится делимое, а внизу, под чертой - делитель.

Правила

При изучении той или иной математической операции учитель обязан познакомить учеников с основными правилами, которые следует знать. Правда, не всегда они запоминаются так хорошо, как хотелось бы. Именно поэтому мы решили немного освежить в вашей памяти четыре фундаментальных правила.

Основные правила деления чисел, которые стоит помнить всегда:

1. Делить на ноль нельзя. Это правило следует запомнить в первую очередь.

2. Делить ноль можно на любое число, но в итоге всегда будет ноль.

3. Если число поделить на единицу, мы получим то же число.

4. Если число разделить на само себя, мы получим единицу.

Как видите, правила довольно простые и легко запоминаются. Хотя некоторые и могут забывать такое простое правило, как невозможность или же путать с ним деление ноля на число.

на число

Одно из наиболее полезных правил - признак, по которому определяется возможность деления натурального числа на другое без остатка. Так, выделяют признаки делимости на 2, 3, 5, 6, 9, 10. Рассмотрим их подробнее. Они существенно облегчают выполнение операций над числами. Также приведем для каждого правила пример деления числа на число.

Данные правила-признаки довольно широко используются математиками.

Признак делимости на 2

Наиболее простой для запоминания признак. Число, которое оканчивается на четную цифру (2, 4, 6, 8) или 0, всегда делится на два нацело. Довольно просто для запоминания и использования. Так, число 236 оканчивается на четную цифру, а значит, делится на два нацело.

Проверим: 236:2 = 118. Действительно, 236 делится на 2 без остатка.

Данное правило наиболее известно не только взрослым, но и детям.

Признак делимости на 3

Как правильно выполнить деление чисел на 3? Запомнить следующее правило.

Число делится на 3 нацело в том случае, если сумма его цифр кратна трем. Для примера возьмем число 381. Сумма всех цифр будет составлять 12. Данное трем, а значит делится на 3 без остатка.

Также проверим данный пример. 381: 3 = 127, значит все верно.

Признак делимости чисел на 5

Тут также все просто. Разделить на 5 без остатка можно лишь те числа, которые оканчиваются на 5 либо же на 0. Для примера возьмем такие числа, как 705 или же 800. Первое заканчивается на 5, второе - на ноль, следовательно они оба делятся на 5. Это одно из простейших правил, которое позволяет быстро осуществлять деление на однозначное число 5.

Проверим данный признак на таких примерах: 405:5 = 81; 600:5 = 120. Как видите, признак действует.

Делимость на 6

Если вы хотите узнать, делится ли число на 6, то вам сначала нужно выяснить, делится ли оно на 2, а затем - на 3. Если да, то число можно без остатка разделить на 6. К примеру, число 216 делится и на 2, так как заканчивается на четную цифру, и на 3, так как сумма цифр равна 9.

Проверим: 216:6 = 36. Пример показывает, что данный признак действует.

Делимость на 9

Поговорим также и о том, как осуществить деление чисел на 9. На данное число делятся те сумма цифр которых кратна 9. Аналогично правилу деления на 3. Например, число 918. Сложим все цифры и получим 18 - число, кратное 9. Значит, оно делится на 9 без остатка.

Решим данный пример для проверки: 918:9 = 102.

Делимость на 10

Последний признак, который стоит знать. На 10 делятся только те числа, которые оканчиваются на 0. Данную закономерность довольно просто и легко запомнить. Так, 500:10 = 50.

Вот и все основные признаки. Запомнив их, вы сможете облегчить себе жизнь. Конечно, есть и другие числа, для которых существуют признаки делимости, но мы с вами выделили лишь основные из них.

Таблица деления

В математике существует не только таблица умножения, но и таблица деления. Выучив ее, можно с легкостью выполнять операции. По сути, таблица деления представляет собой таблицу умножения наоборот. Составить ее самостоятельно не представляет труда. Для этого следует переписать каждую строку из таблицы умножения таким образом:

1. Ставим произведение числа на первое место.

2. Ставим знак деления и записываем второй множитель из таблицы.

3. После знака равенства записываем первый множитель.

Например, возьмем следующую строку из таблицы умножения: 2*3= 6. Теперь перепишим ее согласно алгоритму и получим: 6 ÷ 3 = 2.

Довольно часто детей просят самостоятельно составить таблицу, таким образом развивая их память и внимание.

Если же у вас нет времени на ее написание, то можете воспользоваться представленной в статье.

Виды деления

Поговорим немного о видах деления.

Начнем с того, что можно выделить деление целых чисел и дробных. При этом в первом случае можно говорить об операциях с целыми числами и десятичными дробями, а во втором - только о дробных числах. При этом дробным может являться как делимое или делитель, так и оба одновременно. связано с тем, что операции над дробями отличаются от операций с целыми числами.

Исходя из чисел, которые участвуют в операции, можно выделить два вида деления: на однозначные числа и на многозначные. Наиболее простым считается деление на однозначное число. Здесь вам не нужно будет проводить громоздкие вычисления. К тому же хорошо может помочь таблица деления. Делить же на другие - двух-, трехзначные числа - тяжелее.

Рассмотрим примеры для данных видов деления:

14:7 = 2 (деление на однозначное число).

240:12 = 20 (деление на двузначное число).

45387: 123 = 369 (деление на трехзначное число).

Последним можно выделить деление, в котором участвуют положительные и отрицательные числа. При работе с последними следует знать правила, по которым происходит присвоение результату положительного или отрицательного значения.

При делении чисел с разными знаками (делимое - число положительное, делитель - отрицательное, или наоборот) мы получаем отрицательное число. При делении чисел с одним знаком (и делимое, и делитель - положительные или же наоборот) - получаем число положительное.

Рассмотрим для наглядности следующие примеры:

Деление дробей

Итак, мы с вами разобрали основные правила, привели пример деления числа на число, теперь поговорим о том, как правильно выполнять эти же операции с дробями.

Несмотря на то что деление дробей поначалу кажется довольно тяжелым делом, в действительности работать с ними не так уж и трудно. Деление дроби выполняется практически так же, как и умножение, но с одним отличием.

Для того чтобы разделить дробь, следует сначала умножить числитель делимого на знаменатель делителя и зафиксировать полученный результат в виде числителя частного. Затем умножить знаменатель делимого на числитель делителя и записать результат как знаменатель частного.

Можно сделать и проще. Переписать дробь делителя, поменяв местами числитель со знаменателем, а затем перемножить полученные числа.

Например, разделим две дроби: 4/5:3/9. Для начала перевернем делитель, получим 9/3. Теперь перемножим дроби: 4/5 * 9/3 = 36/15.

Как видите, все довольно легко и не сложнее, чем деление на однозначное число. Примеры на решаются просто, если не забывать данное правило.

Выводы

Деление - одна из математических операций, которые каждый ребенок изучает еще в начальной школе. Есть определенные правила, которые следует знать, приемы, облегчающие выполнение данной операции. Деление бывает с остатком и без, бывает деление отрицательных и дробных чисел.

Запомнить особенности данной математической операции довольно легко. Мы с вами разобрали наиболее важные моменты, рассмотрели не один пример деления числа на число, даже поговорили о том, как работать с дробными числами.

Если вы хотите улучшить свое знание математики, советуем вам запомнить эти несложные правила. Кроме того, можем посоветовать вам развивать память и навыки счета в уме, выполняя математические диктанты или просто пытаясь высчитать устно частное двух случайных чисел. Поверьте, эти навыки никогда не будут лишними.

Дробь – это одна или более долей целого, за которое обычно принимается единица (1). Как и с натуральными числами, с дробями можно выполнять все основные арифметические действия (сложение, вычитание, деление, умножения), для этого нужно знать особенности работы с дробями и различать их виды. Существует несколько видов дробей: десятичные и обыкновенные, или простые. Своя специфика есть у каждого вида дробей, но, обстоятельно разобравшись один раз, как с ними обращаться, вы сможете решать любые примеры с дробями, поскольку будете знать основные принципы выполнения арифметических вычислений с дробями. Рассмотрим на примерах как разделить дробь на целое число, используя разные виды дробей.

Как разделить простую дробь на натуральное число?
Обыкновенными или простыми называют дроби, записывающиеся в виде такого отношения чисел, при котором вверху дроби указывается делимое (числитель), а внизу – делитель (знаменатель) дроби. Как разделить такую дробь на целое число? Рассмотрим на примере! Допустим, нам нужно разделить 8/12 на 2.


Для этого мы должны выполнить ряд действий:
Таким образом, если перед нами стоит задача разделить дробь на целое число, схема решения будет выглядеть примерно так:


Подобным образом можно разделить любую обыкновенную (простую) дробь на целое число.

Как разделить десятичную дробь на целое число?
Десятичная дробь - это такая дробь, которая получается вследствие деления единицы на десять, тысячу и так далее частей. Арифметические действия с десятичными дробями выполняются довольно просто.

Рассмотрим на примере как разделить дробь на целое число. Допустим, нам нужно поделить десятичную дробь 0,925 на натуральное число 5.


Подводя итоги, остановимся на двух основных моментах, которые важны при выполнении операции деления десятичных дробей на целое число:
  • для разделения десятичной дроби на натуральное число применяют деление в столбик;
  • запятая ставится в частном тогда, когда закончено деление целой части делимого.
Применяя эти простые правила, всегда можно без особого труда разделить любую десятичную или простую дроби на целое число.

В этой статье мы разберем деление целых чисел без остатка. Здесь мы будем говорить лишь о делении таких целых чисел, абсолютные величины которых делятся нацело (смотрите смысл деления натуральных чисел без остатка). Про деление целых чисел с остатком мы побеседуем в отдельной статье.

Сначала мы введем термины и обозначения, которые будем использовать для описания деления целых чисел. Дальше укажем смысл деления целых чисел, который поможет нам получить правила деления целых положительных, целых отрицательных и целых чисел с разными знаками. Здесь же мы рассмотрим примеры применения правил деления целых чисел. Наконец, мы покажем, как выполняется проверка результата деления целых чисел.

Навигация по странице.

Термины и обозначения

Целое число, которое делят, называется делимым . Целое число, на которое проводится деление, называется делителем . Результат деления целых чисел называется частным .

Деление обозначается символом вида:, который располагается между делимым и делителем (иногда встречается символ ÷, который также обозначает деление). Деление целого числа a на целое число b можно записать с использованием символа: как a:b . Если в результате деления целого числа a на целое число b получается число c , то этот факт удобно записывать в виде равенства a:b=c . вида a:b также называют частным, как и значение этого выражения.

Смысл деления целых чисел

Мы знаем о существовании связи между умножением и делением натуральных чисел . Из этой связи мы заключили, что деление – это нахождение неизвестного множителя, когда известен второй множитель и произведение. Делению целых чисел придадим этот же смысл. То есть, деление целых чисел – это нахождение по данному произведению и одному из целых множителей другого целого множителя.

Исходя из смысла деления целых чисел, мы можем сказать, что если произведение двух целых чисел a и b равно c , то частное от деления c на a равно b , и частное от деления c на b равно a . Приведем пример. Допустим нам известно, что произведение двух целых чисел 5 и −7 равно −35 , тогда мы можем сказать, что частное (−35):5 равно −7 , а частное (−35):(−7) равно 5 .

Отметим, что частное от деления целого числа a на целое число b является целым числом (если a делится на b без остатка).

Правила деления целых чисел

Смысл деления целых чисел, указанный в предыдущем пункте, позволяет утверждать, что один из двух множителей является частным от деления их произведения на другой множитель. Но он не дает способа нахождения неизвестного множителя по известному множителю и произведению. Например, равенство 6·(−7)=−42 позволяет нам сказать, что частные (−42):6 и (−42):(−7) равны соответственно −7 и 6 . Однако если нам известно, что произведение двух множителей равно 45 и один из множителей равен −5 , то смысл деления целых чисел нам не дает прямого ответа на вопрос, чему равен другой множитель.

Эти рассуждения приводят нас к следующему выводу: нам нужны правила, позволяющие выполнять деление одного целого числа на другое. Сейчас мы их и получим. Эти правила позволят нам свести деление целых чисел к делению натуральных чисел.

Деление целых положительных чисел

Целые положительные числа – это натуральные числа , поэтому деление целых положительных чисел проводится по всем правилам деления натуральных чисел . Здесь больше нечего добавить, стоит лишь рассмотреть решение пары примеров, в которых проводится деление целых положительных чисел.

Пример.

Выполните деление целого положительного числа 104 на целое положительное число 8 .

Решение.

Делимое 104 в данном случае можно представить в виде суммы 80+24 , после чего воспользоваться правилом деления суммы на данное число . Получаем 104:8=(80+24):8=80:8+24:8=10+3=13 .

Ответ:

104:8=13 .

Правило деления целых отрицательных чисел, примеры

Сформулировать правило деления целых отрицательных чисел нам помогут следующие рассуждения.

Пусть нам нужно разделить целое отрицательное число a на целое отрицательное число b . Обозначим буквой c искомое частное от деления a на b , то есть, a:b=c . Выясним сначала, чему равна c .

В силу смысла деления целых чисел должно быть справедливо равенство b·c=a . Тогда . позволяют нам записать равенство , следовательно, . Из полученного равенства следует, что , то есть, абсолютная величина частного от деления равна частному от деления модулей делимого и делителя .

Осталось определить знак числа c . Другими словами выясним, положительным или отрицательным целым числом является результат деления целых отрицательных чисел.

По смыслу деления целых чисел справедливо равенство b·c=a . Тогда из правил умножения целых чисел следует , что число c должно быть положительным. В противном случае b·c будет являться произведением целых отрицательных чисел, которое по правилу умножения будет равно произведению модулей множителей, следовательно, будет положительным числом, а у нас число a – целое отрицательное. Таким образом, частное c от деления целых отрицательных целых чисел есть целое положительное число .

Теперь объединим сделанные выводы в правило деления целых отрицательных чисел. Чтобы разделить целое отрицательное число на целое отрицательное число, нужно модуль делимого разделить на модуль делителя . То есть, если a и b – целые отрицательные числа, то .

Рассмотрим применение правила деления целых отрицательных чисел при решении примеров.

Пример.

Разделите целое отрицательное число −92 на целое отрицательное число −4 .

Решение.

По правилу деления целых отрицательных чисел искомый результат равен частному от деления модуля делимого на модуль делителя. Получаем .

Ответ:

(−92):(−4)=23 .

Пример.

Вычислите частное (−512):(−32) .

Решение.

Нам нужно выполнить деление целых отрицательных чисел, воспользуемся соответствующим правилом. Модуль делимого равен 512 , модуль делителя равен 32 . Осталось разделить 512 на 32 . Выполним деление столбиком:

Ответ:

(−512):(−32)=16 .

Правило деления целых чисел с разными знаками, примеры

Получим правило деления целых чисел с разными знаками.

Пусть мы делим целое число a на целое число b (знаки чисел a и b различны, то есть, если a – целое положительное число, то b – отрицательное, а если a – отрицательное, то b – положительное число) и в результате получаем число c .

В предыдущем пункте этой статьи мы выяснили, что модуль частного равен частному от деления модуля делимого на модуль делителя, то есть, . Теперь мы можем вычислить абсолютную величину частного от деления целых чисел с разными знаками. Осталось выяснить знак числа c .

Смысл деления целых чисел нам дает равенство b·c=a . Возможны два варианта: либо a – положительное целое число, b – отрицательное; либо a – отрицательное целое число, b – положительное. В любом из этих случаев, в силу правил умножения целых чисел, число c должно быть отрицательным. Действительно, по правилам умножения целых чисел, если и b и c отрицательные целые числа, то их произведение будет положительным числом, а если b положительное, c – отрицательное, то их произведение есть отрицательное число.

Теперь мы можем сформулировать правило деления целых чисел с разными знаками. Чтобы разделить целые числа с разными знаками, нужно разделить модуль делимого на модуль делителя, и перед полученным числом поставить знак минус . То есть, если a и b – целые числа с разными знаками, то .

Разберем решения примеров, в которых применяется правило деления целых чисел с разными знаками.

Пример.

Разделите целое положительное число 56 на целое отрицательное число −4 .

Решение.

Будем действовать согласно правилу деления целых чисел с разными знаками. Модуль делимого равен 56 , модуль делителя равен 4 . Вычислим частное от деления модуля делимого на модуль делителя: 56:4=14 . Перед полученным числом осталось поставить знак минус, имеем −14 .

Таким образом, при делении целых чисел с разными знаками 56 и −4 мы получили число −14 .

Ответ:

56:(−4)=−14 .

Пример.

Выполните деление целого числа −1 625 на 25 .

Решение.

Нам нужно провести деление целых чисел с разными знаками. Воспользуемся полученным правилом деления: (1 625 можно разделить на 25 в столбик, или представить 1 625 в виде суммы 1 500+125 и воспользоваться правилом деления суммы на данное число).

Ответ:

(−1 625):25=−65 .

Деление нуля на целое число

Отдельно нужно остановиться на делении нуля на целое число, отличное от нуля. В этих случаях правило деления таково: частное от деления нуля на любое целое число, отличное от нуля, равно нулю . То есть, 0:b=0 для любого целого и отличного от нуля числа b .

Приведем пояснения озвученного правила деления нуля на целое число. Предположим, что в результате деления нуля на целое число b (b не равно нулю) получается число c . Тогда по смыслу деления целых чисел должно быть справедливо равенство b·c=0 . Мы знаем, что произведение двух целых чисел равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю (об этом мы упоминали в разделе теории умножение целого числа на нуль). Так как b не равно нулю, значит, нулю должен быть равен множитель c . Следовательно, частное от деления нуля на целое число, отличное от нуля, равно нулю.

Приведем несколько примеров. Частное от деления 0 на целое отрицательное число −908 равно 0 , частное 0:4 также равно нулю.

На нуль делить нельзя

Деление целого числа на нуль не определяется. Другими словами, на нуль делить нельзя.

Почему же так? Давайте предположим, что при делении целого числа a на нуль получается целое число c . Тогда по смыслу деления целых чисел справедливо равенство c·0=a . Из правила умножения целого числа на нуль следует, что c·0=0 , каким бы не было число c . Сопоставляя два полученных равенства, делаем вывод, что если делимое a отлично от нуля, то равенство c·0=a будет неверным, что свидетельствует о том, что на нуль нельзя делить число, отличное от нуля.

А можно ли делить нуль на нуль? Давайте предположим, что при делении нуля на нуль получается целое число c , тогда в силу смысла деления целых чисел должно быть верно равенство c·0=0 . Это равенство действительно верно, но оно верно не только для какого-то конкретного целого числа c , но и вообще для любого числа c . Иными словами, результатом деления нуля на нуль можно принять любое целое число. Так вот чтобы избежать этой многозначности, решили не рассматривать деление на нуль.

Итак, делить на нуль нельзя.

Проверка результата деления целых чисел

Проверка результата деления целых чисел осуществляется при помощи умножения. Чтобы проверить, правильно ли было проведено деление целых чисел, нужно полученное частное умножить на делитель, если в результате получится число, равное делимому, то результат деления правильный .

Рассмотрим решение примера, в котором выполняется проверка результата деления целых чисел.



2024 stdpro.ru. Сайт о правильном строительстве.