Схема работы колпачковой тарелки. Типы ректификационных тарелок Конструкция многослойной тарелки ректификационной колонны

В колонных аппаратах НПЗ в настоящее время используются десятки конструкций контактных устройств, отличающихся по своим характеристикам и технико-экономическим показателям. Наряду с тарелками первого поколения (колпачковые, желобчатые), которые до сих пор эксплуатируются на старых производствах, широкое распространение на установках АВТ получили S-образные, клапанные (пластинчатые, дисковые) и другие типы КУ.

Колпачковые


Ситчатые


Отверстия ситчатой тарелки отличаются по форме: а) круглые; б) щелевидные; в) просеченные треугольные

Решетчатые


С S-образными элементами


Клапанные (дисковые)


Область применения различных типов тарелок

Основные характеристики сравнения

Нередки случаи, когда в одной в разных секциях используются тарелки разных типов. Это объясняется тем, что паровые и жидкостные нагрузки по высоте нефтяных колонн, особенно работающих с боковыми отборами, существенно различаются (иногда на порядок). При сравнении контактных устройств различного типа в качестве основных обычно выступают следующие показатели:

  • Производительность.
  • Гидравлическое сопротивление.
  • Эффективность (коэффициент полезного действия) – характеризует степень приближения реального процесса разделения на тарелке к теоретически достижимому (теоретическая тарелка).
  • Допустимый диапазон варьирования рабочих нагрузок (и по пару, и по жидкости), который определяется отношением максимально допустимой нагрузки к минимально допустимой.
  • Градиент уровня жидкости по ширине полотна тарелки, который определяется тем обстоятельством, что жидкость на тарелку вводится с одного края тарелки (секции), а отводится с другого. При течении жидкости по полотну тарелки она преодолевает определенное гидравлическое сопротивление, поэтому высота слоя жидкости у приемного кармана превышает соответствующий уровень у сливного кармана. Наличие градиента приводит к нарушению равномерности распределения пара по ширине барботажного слоя и в итоге – к снижению эффективности КУ.
  • Высота межтарельчатого расстояния, которая должна обеспечивать нормальную работу гидравлического затвора для обеспечения гарантированного перетока жидкости с верхней тарелки на нижнюю.
  • Обеспечение длительной работоспособности при работе на загрязненных средах и средах, склонных к образованию смолистых или других отложений.
  • Металлоемкость.
  • Стоимость.
  • Удобство монтажа и ремонта, простота конструкции.

Перекрестноточные насадки (ПТН)


Расчет отводимого тепла выносным орошением

Для сложных колонн, работающих с выносными холодными циркуляционными орошениями, к которым относятся и колонны АВТ, весьма важной становится ещё одна специфическая характеристика: величина реализуемого теплосъема от внутреннего парового потока холодным орошением – Q, (кВт/м 3). В этой характеристике величина достигаемого теплосъема отнесена к 1 м 3 барботажного слоя или к 1 м 3 насадки. В отечественной литературе данная характеристика учитывается достаточно редко, хотя она в значительной мере определяет эффективность работы циркуляционных орошений.

Количество тепла, отводимого от циркуляционного орошения во внешнем теплообменнике, определяется:
Q=L(Hн-Hк)

Все это количество тепла затрачивается внутри колонны на конденсацию части парового орошения, а энтальпия жидкого потока достигает при этом значения H н . В процедуре технологического расчета, который, как правило, проводится по «теоретическим тарелкам» процесс теплообмена будет завершен на первом же КУ. Фактически же именно реальная эффективность процесса теплосъема на КУ будет определять, на скольких реальных тарелках будет завершен этот процесс.

Выбор оптимальной конструкции контактных устройств

Конструкции КУ, выигрывающей у всех остальных конструкций по всем показателям, не существует. Каждая из конструкций обладает своими преимуществами и недостатками и своей областью рационального использования. В зависимости от особенностей конкретного процесса наибольшее значение могут приобретать те или иные характеристики из вышеперечисленных. Так, на выбор КУ для колонн атмосферного блока наибольшее влияние оказывают показатели производительности, эффективности и допустимого значения диапазона рабочих нагрузок, в котором обеспечивается высокая эффективность работы тарелок. Для колонн вакуумного блока на первое место выдвигается гидравлическое сопротивление КУ, поскольку оно будет определять интенсивность процесса разложения тяжелых углеводородов в зоне нагрева, а значит, в значительной мере и качество товарных фракций, хотя и в этом случае должны, конечно, учитываться и остальные характеристики. Наиболее распространенные типы КУ приведены на рисунке.

Кстати, прочтите эту статью тоже: Ректификация нефти в колонне

В атмосферных колоннах хорошо зарекомендовали себя различные модификации клапанных КУ с дисковыми, прямоугольными и трапециевидными клапанами, а также комбинированные S-образные тарелки с клапанами. В вакуумных колоннах представляет интерес использование дисковых клапанов эжекционного типа, которые характеризуются наименьшим гидравлическим сопротивлением среди всех типов КУ.

Рис. 3.1. Распространенные типы колпачков и клапанов:

Колпачки: а – круглый; б – шестигранный; в – прямоугольный; г – желобчатый; д – S-образный; клапаны: е – прямоугольный; ж – круглый с нижним ограничителем; з – круглый с верхним ограничителем; и – балластный; к – дисковый эжекционный перекрестноточный; л – пластинчатый перекрестно-прямоточный; м – S-образный колпачок с клапаном.
Обозначения: 1 – диск тарелки; 2 – клапан; 3 – ограничитель; 4 – балласт.

Переливные устройства тарелок

Для организации перелива рабочей жидкости с вышележащей тарелки на нижележащую в КУ используются специальные переливные устройства, включающие в себя сливную перегородку и карман (рис. 3.2). При больших значениях удельных нагрузок по жидкости (измеряется через расход фазы – м 3 /час отнесенный к 1 м 2 сечения колонны или к 1 м длины сливной перегородки), что характерно для многотоннажных колонн установок АТ-АВТ, для снижения градиента уровня жидкости применяются многопоточные конструкции КУ (от 2-х до 4-х потоков). Сливные карманы могут быть использованы также для подвода на КУ промежуточных потоков (холодные орошения) и/или для отвода боковых отборов (рис. 3.3). В последнем случае объемная емкость кармана наращивается за счет увеличения межтарельчатого расстояния, что повышает надежность работы откачивающего насоса.

Рис. 3.2. Устройство узлов перетока жидкости с тарелки на тарелку и ввода орошений для однопоточных (а) и двухпоточных (б) тарелок: 1 – корпус колонны; 2 – секции тарелок; 3, 4 – коллекторы ввода жидкости на верхнюю и промежуточную тарелки; 5, 6 – сливные карманы

Кстати, прочтите эту статью тоже: Вакуумная колонна

Массо – теплообмен между взаимодействующими фазами (пар – жидкость) протекает на КУ в барботажном слое: структуре, которая образуется при истечении парового потока из небольших отверстий или щелей, выполненных в полотне тарелки или в специальных устройствах (колпачках), в слой жидкости под небольшим избыточным давлением. Эта структура представляет собой ансамбль пузырьков, размер которых измеряется миллиметрами. Паровые пузырьки зарождаются при истечении газа, всплывают в слое жидкости за счет разности плотностей жидкой и паровой фаз и разрушаются на верхней границе барботажного слоя. Размер пузырьков определяется свойствами паровой и жидкой фаз (плотность, вязкость, поверхностное натяжение, …), конструкцией КУ и гидродинамическими условиями взаимодействия фаз. Суммарная поверхность массообмена в барботажном слое измеряется десятками и даже сотнями м 2 поверхности, приходящихся на 1 м 3 объема барботажного слоя.

Рис. 3.3. Узлы вывода боковых погонов (жидкость) из колонны: 1 – корпус колонны; 2 – тарелки; 3 – сливной карман увеличенного размера; 4 – сборная (глухая) тарелка; 5, 6 – патрубки для прохода паров и отвода жидкости; 7 – уравнительная труба

Рассмотренные типы контактных устройств относятся к наиболее распространенным для условий работы блоков АТ-АВТ. К настоящему времени разработаны и другие эффективные конструкции КУ , которые могут представлять интерес при решении задач проектирования. Надо при этом отметить, что какой-либо универсальной конструкции, пригодной для любых условий эксплуатации, выделить нельзя. Каждая конкретная задача проектирования должна решаться с учетом технологии производства на основе обобщения опыта работы родственных установок.

ВАМ БУДЕТ ИНТЕРЕСНО:

Типы трубчатых печей Типы и конструкция подшипников Типы и назначение ребойлеров различной конструкции

Цель статьи – разобрать теоретические и некоторые практические аспекты работы домашней ректификационной колонны, нацеленной на получение этилового спирта, а также развеять самые распространенные в Интернете мифы и разъяснить моменты, о которых «умалчивают» продавцы оборудования.

Ректификация спирта – разделение многокомпонентной спиртосодержащей смеси на чистые фракции (этиловый и метиловый спирты, воду, сивушные масла, альдегиды и другие), имеющие разную температуру кипения, путем многократного испарения жидкости и конденсации пара на контактных устройствах (тарелках или насадках) в специальных противоточных башенных аппаратах.

С физической точки зрения ректификация возможна, поскольку изначально концентрация отдельных компонентов смеси в паровой и жидкой фазах отличается, но система стремится к равновесию – одинаковому давлению, температуре и концентрации всех веществ в каждой фазе. При контакте с жидкостью пар обогащается легколетучими (низкокипящими) компонентами, в свою очередь, жидкость – труднолетучими (высококипящими). Одновременно с обогащением происходит обмен теплом.

Принципиальная схема

Момент контакта (взаимодействия потоков) пара и жидкости называется процессом тепломассообмена.

Благодаря разной направленности движений (пар поднимается вверх, а жидкость стекает вниз), после достижения системой равновесия в верхней части ректификационной колонны можно по отдельности отобрать практически чистые компоненты, входившие в состав смеси. Сначала выходят вещества с более низкой температурой кипения (альдегиды, эфиры и спирты), потом – с высокой (сивушные масла).

Состояние равновесия. Появляется на самой границе разделения фаз. Достигается только при одновременном соблюдении двух условий:

  1. Равное давление каждого отдельно взятого компонента смеси.
  2. Температура и концентрация веществ в обеих фазах (паровой и жидкой) одинакова.

Чем чаще система приходит в равновесие, тем эффективнее тепломасообмен и разделение смеси на отдельные составляющие.

Разница между дистилляцией и ректификацией

Как видно на графике, из 10% спиртового раствора (браги) можно получить самогон 40%, а при второй перегонке этой смеси выйдет 60-градусный дистиллят, при третьей – 70%. Возможны следующие интервалы: 10-40; 40-60; 60-70; 70-75 и так далее до максимума – 96%.

Теоретически, чтобы получить чистый спирт, требуется 9-10 последовательных дистилляций на самогонном аппарате. На практике перегонять спиртосодержащие жидкости концентрацией выше 20-30% взрывоопасно, к тому же из-за больших затрат энергии и времени экономически невыгодно.

С этой точки зрения, ректификация спирта – это минимум 9-10 одновременных, ступенчатых дистилляций, которые происходят на разных контактных элементах колонны (насадках или тарелках) по всей высоте.

Отличие Дистилляция Ректификация
Органолептика напитка Сохраняет аромат и вкус исходного сырья. Получается чистый спирт без запаха и вкуса (проблема имеет решение).
Крепость на выходе Зависит от количества перегонок и конструкции аппарата (обычно 40-65%). До 96%.
Степень разделения на фракции Низкая, вещества даже с разной температурой кипения перемешиваются, исправить это невозможно. Высокая, можно выделить чистые вещества (только с разной температурой кипения).
Способность убрать вредные вещества Низкая или средняя. Для повышения качества требуется минимум две перегонки с разделением на фракции хотя бы при одной из них. Высокая, при правильном подходе отсекаются все вредные вещества.
Потери спирта Высокие. Даже при правильном подходе можно извлечь до 80% от всего количества, сохранив приемлемое качество. Низкие. Теоретически, реально извлечь весь этиловый спирт без потери качества. На практике минимум 1-3% потерь.
Сложность технологии для реализации в домашних условиях Низкая и средняя. Подходит даже самый примитивный аппарат со змеевиком. Возможны улучшения оборудования. Технология перегонки проста и понятна. Самогонный аппарат обычно не занимает много места в рабочем состоянии. Высокая. Требуется специальное оборудование, изготовить которое без знаний и опыта невозможно. Процесс сложнее для понимания, нужна предварительная хотя бы теоретическая подготовка. Колонна занимает больше места (особенно по высоте).
Опасность (в сравнении друг с другом), оба процесса пожаро- и взрывоопасны. Благодаря простоте самогонного аппарата дистилляция несколько безопаснее (субъективное мнение автора статьи). Из-за сложного оборудования, при работе с которым существует риск допустить больше ошибок, ректификация опаснее.

Работа ректификационной колонны

Ректификационная колонна – устройство, предназначенное для разделения многокомпонентной жидкой смеси на отдельные фракции по температуре кипения. Представляет собой цилиндр постоянного или переменного сечения, внутри которого находятся контактные элементы – тарелки или насадки.

Также почти каждая колонна имеет вспомогательные узлы для подвода исходной смеси (спирта-сырца), контроля процесса ректификации (термометры, автоматика) и отбора дистиллята – модуль, в котором конденсируется, а затем принимается наружу извлеченный из системы пар определенного вещества.

Одна из самых распространенных домашних конструкции

Спирт-сырец – продукт перегонки браги методом классической дистилляции, который можно «заливать» в ректификационную колонну. Фактически это самогон крепостью 35-45 градусов.

Флегма – сконденсировавшийся в дефлегматоре пар, стекающий по стенкам колонны вниз.

Флегмовое число – отношение количества флегмы к массе отбираемого дистиллята. В спиртовой ректификационной колонне находятся три потока: пар, флегма и дистиллят (конечная цель). В начале процесса дистиллят не отбирают, чтобы в колонне появилась достаточно флегмы для тепломассообмена. Потом часть паров спирта конденсируют и отбирают из колонны, а оставшиеся спиртовые пары и дальше создают поток флегмы, обеспечивая нормальную работу.

Для работы большинства установок флегмовое число должно быть не меньше 3, то есть 25% дистиллята отбирают, остальной – нужен в колонне для орошения контактных элементов. Общее правило: чем медленнее отбирать спирт, тем выше качество.

Контактные устройства ректификационной колонны (тарелки и насадки)

Отвечают за многократное и одновременное разделение смеси на жидкость и пар с последующей конденсацией пара в жидкость – достижение в колонне состояния равновесия. При прочих равных условиях, чем больше в конструкции контактных устройств, тем эффективнее ректификация в плане очистки спирта, поскольку увеличивается поверхность взаимодействия фаз, что интенсифицирует весь тепломасообмен.

Теоретическая тарелка – один цикл выхода из равновесного состояния с повторным его достижением. Для получения качественного спирта требуется минимум 25-30 теоретических тарелок.

Физическая тарелка – реально работающее устройство. Пар проходит сквозь слой жидкости в тарелке в виде множества пузырьков, создающих обширную поверхность контакта. В классической конструкции физическая тарелка обеспечивает примерно половину условий для достижения одного равновесного состояния. Следовательно, для нормальной работы ректификационной колонны требуется в два раза больше физических тарелок, чем теоретических (расчетных) минимум – 50-60 штук.

Насадки. Зачастую тарелки ставят только на промышленные установки. В лабораторных и домашних ректификационных колоннах в качестве контактных элементов используются насадки – скрученная специальным образом медная (либо стальная) проволока или сетки для мытья посуды. В этом случае флегма стекает тонкой струйкой по всей поверхности насадки, обеспечивая максимальную площадь контакта с паром.



Насадки из мочалок самые практичные

Конструкций очень много. Недостаток самодельных проволочных насадок – возможная порча материала (почернение, ржавчина), заводские аналоги лишены подобных проблем.

Свойства ректификационной колонны

Материал и размеры. Цилиндр колонны, насадки, куб и дистилляторы обязательно делают из пищевого, нержавеющего, безопасного при нагревании (равномерно расширяется) сплава. В самодельных конструкциях в качестве куба чаще всего используются бидоны и скороварки.

Минимальная длина трубы домашней ректификационной колонны – 120-150 см, диаметр – 30-40 мм.

Система нагрева. В процессе ректификации очень важно контролировать и быстро регулировать мощность нагрева. Поэтому самым удачным решением является нагрев с помощью ТЭНов, вмонтированных в нижнюю часть куба. Подвод тепла через газовую плиту не рекомендуется, поскольку не позволяет быстро менять температурный диапазон (высокая инертность системы).

Контроль процесса. Во время ректификации важно следовать инструкции производителя колонны, в которой обязательно указываются особенности эксплуатации, мощность нагрева, флегмовое число и производительность модели.



Термометр позволяет точно контролировать процесс отбора фракций

Очень сложно контролировать процесс ректификации без двух простейших приспособлений – термометра (помогает определить правильную степень нагрева) и спиртометра (измеряет крепость полученного спирта).

Производительность. Не зависит от размеров колонны, поскольку, чем выше царга (труба), тем больше физических тарелок находится внутри, следовательно, качественнее очистка. На производительность влияет мощность нагрева, которая определяет скорость движения потоков пара и флегмы. Но при переизбытке подаваемой мощности колонна захлебывается (перестает работать).

Средние значения производительности домашних ректификационных колон – 1 литр в час при мощности нагрева 1 кВт.

Влияние давления. Температура кипения жидкостей зависит от давления. Для успешной ректификации спирта давление вверху колонны должно быть приближено к атмосферному – 720-780 мм.рт.ст. В противном случае при уменьшении давления снизится плотность паров и увеличится скорость испарения, что может стать причиной захлебывания колонны. При слишком высоком давлении падает скорость испарения, делая работу устройства неэффективной (нет разделения смеси на фракции). Для поддержания правильного давления каждая колонна для ректификации спирта оборудована трубкой связи с атмосферой.

О возможности самодельной сборки. Теоретически, ректификационная колонна не является очень сложным устройством. Конструкции успешно реализуются умельцами в домашних условиях.

Но на практике без понимания физических основ процесса ректификации, правильных расчетов параметров оборудования, подбора материалов и качественной сборки узлов, использование самодельной ректификационной колоны превращается опасное занятие. Даже одна ошибка может привести к пожару, взрыву или ожогам.

В плане безопасности прошедшие испытания (имеют подтверждающую документацию) заводские колонны надежнее, к тому же поставляются с инструкцией (должна быть подробной). Риск возникновения критической ситуации сводится только к двум факторам – правильной сборке и эксплуатации согласно инструкции, но это проблема почти всех бытовых приборов, а не только колонн или самогонных аппаратов.

Принцип работы ректификационной колонны

Куб наполняют максимум на 2/3 объема. Перед включением установки обязательно проверяют герметичность соединений и сборки, перекрывают узел отбора дистиллята и подают охлаждающую воду. Только после этого можно начать нагрев куба.

Оптимальная крепость подаваемой в колонну спиртосодержащей смеси – 35-45%. То есть в любом случае перед ректификацией требуется дистилляция браги. Полученный продукт (спирт-сырец) потом перерабатывают на колонне, получая почти чистый спирт.

Это значит, что домашняя ректификационная колонна не является полной заменой классического самогонного аппарата (дистиллятора) и может рассматриваться лишь как дополнительная ступень очистки, более качественно заменяющая повторную дистилляцию (вторую перегонку), но нивелирующая органолептические свойства напитка.

Справедливости ради отмечу, что большинство современных моделей ректификационных колон предполагают работу в режиме самогонного аппарата. Для перехода к дистилляции нужно лишь перекрыть штуцер соединения с атмосферой и открыть узел отбора дистиллята.

Если одновременно перекрыть оба штуцера, то нагретая колонна может взорваться из-за избыточного давления! Не допускайте подобных ошибок!

На промышленных установках непрерывного действия зачастую брагу перегоняют сразу, но это возможно благодаря гигантским размерам и особенностям конструкции. Например, стандартом считается труба 80 метров высоты и 6 метров диаметра, в которой установлено в разы больше контактных элементов, чем на ректификационных колоннах для дома.



Размер имеет значение. Возможности спиртзаводов в плане очистки куба больше, чем при домашней ректификации

После включения жидкость в кубе доводится нагревателем до кипения. Образовавшийся пар поднимается вверх по колонне, затем попадает в дефлегматор, где конденсируется (появляется флегма) и по стенкам трубы возвращается в жидком виде в нижнюю часть колонны, на обратном пути контактируя с поднимающимся паром на тарелках или насадках. Под действием нагревателя флегма снова становится паром, а пар вверху опять конденсируется дефлегматором. Процесс становится циклическим, оба потока непрерывно контактируют друг с другом.

После стабилизации (пара и флегмы достаточно для равновесного состояния) в верхней части колонны скапливаются чистые (разделенные) фракции с самой низкой температурой кипения (метиловый спирт, уксусный альдегид, эфиры, этиловый спирт), внизу – с самой высокой (сивушные масла). По мере отбора нижние фракции постепенно поднимаются вверх по колонне.

В большинстве случаев стабильной (можно начинать отбор) считается колонна, в которой температура не меняется на протяжении 10 минут (общее время прогрева – 20-60 минут). До этого момента устройство работает «само на себя», создавая потоки пара и флегмы, которые стремятся к равновесию. После стабилизации начинается отбор головной фракции, содержащей вредные вещества: эфиры, альдегиды и метиловый спирт.

Ректификационная колонна не избавляет от необходимости разделять выход на фракции. Как и в случае с обычным самогонным аппаратом приходится собирать «голову», «тело» и «хвост». Разница только в чистоте выхода. При ректификации фракции не «смазываются» – вещества с близкой, но хотя бы на десятую долю градуса разной температурой кипения не пересекаются, поэтому при отборе «тела» получается почти чистый спирт. Во время обычной дистилляции разделить выход на фракции, состоящие только из одного вещества, невозможно физически какая бы конструкция не использовалась.

Если колонна выведена на оптимальный режим работы, то при отборе «тела» трудностей не возникает, так как температура всё время стабильна.

Нижние фракции («хвосты») при ректификации отбирают, ориентируясь по температуре или по запаху, но в отличие от дистилляции эти вещества не содержат спирта.

Возвращение спирту органолептических свойств. Зачастую «хвосты» требуются, чтобы вернуть спирту-ректификату «душу» – аромат и вкус исходного сырья, например, яблока или винограда. После завершения процесса в чистый спирт добавляют некоторое количество собранных хвостовых фракций. Концентрацию рассчитывают эмпирическим путем, экспериментируя на небольшом количестве продукта.

Преимущество ректификации в возможности добыть практически весь содержащийся в жидкости спирт без потери его качества. Это значит, что «головы» и «хвосты», полученные на самогонном аппарате, можно переработать на ректификационной колонне и получить безопасный для здоровья этиловый спирт.

Захлебывание ректификационной колонны

Каждая конструкция имеет предельную скорость движения пара, после которой течение флегмы в кубе сначала замедляется, а потом и вовсе прекращается. Жидкость накапливается в ректификационной части колонны и происходит «захлебывание» – прекращение тепломассообменного процесса. Внутри происходит резкий перепад давления, появляется посторонний шум или бульканье.

Причины захлебывания ректификационной колонны:

  • превышение допустимой мощности нагрева (встречается наиболее часто);
  • засорение нижней части устройства и переполнение куба;
  • очень низкое атмосферное давление (характерно для высокогорий);
  • напряжение в сети выше 220В – в результате мощность ТЭНов возрастает;
  • конструктивные ошибки и неисправности.

Ректификация позволяет получить спирт высокой крепости и чистоты. Оба качества зависят от того, насколько хорошо человек, управляющий процессом, понимает его суть. Поэтому знать теорию ректификации надо каждому, кто хочет делать чистые и крепкие спиртные напитки на самогонном аппарате .

История ректификации

Начнем с процесса дистилляции, ведь именно он является предшественником ректификации. Нет точной информации о том, кто первый изобрел дистилляцию. В. Шнайдер, составитель словаря алхимических и фармацевтических терминов, считает, что данная заслуга принадлежит в первую очередь персам, которые использовали дистилляцию, чтобы получить розовую воду (эфир розы). Можно сделать вывод, что история дистилляции насчитывает более 3500 лет. Первоначально дистилляцией называли все процессы разделения смесей на компоненты. По мере их изучения процессы классифицировали и дали им наименование. Таким образом, в сейчас дистилляцией называют разделение веществ, основанное на испарении жидкости и последующей конденсации паров.


Аламбики были первыми аппаратами для дистилляции и конструкционно практически не изменились за несколько тысяч лет. Первоначально использовались, чтобы получать ароматные масла.

Наука не стояла на месте, процесс дистилляции тщательно изучался и совершенствовался. С начала XVI века наблюдалось большое количество работ по подбору испарительных кубов и системы обогрева аппаратов. Для обеспечения непрерывной работы колонны использовались водяные и песочные бани, применялись восковые свечи. Только к 1415 году впервые было предложено применять теплоизоляцию, а именно шерсть животных. В конце XVI века было выявлено преимущество водяного охлаждения конденсатора, до этого времени охлаждение было воздушным.

В период XVI по XIX век стремительно происходила модернизация аппаратурного оснащения. Исходя из инертности материалов по отношению к возгоняемым жидкостям, в перегонных кубах в качестве оптимальных использовались стекло и керамика, в дальнейшем нержавеющая сталь. В 1709 году впервые появились теории о дефлегмации (возвращении части сконденсировавшихся паров в колонну).

Результатом всех исследований и разработок стало изобретение первой ректификационной колонны непрерывного действия французскими инженерами Адамом, Бераром и Перье, получившие на нее патент в 1813 году. Она до сих пор соответствует современным ректификационным колоннам. С этого периода начинается история ректификации в науке и промышленности.

Понятие ректификации

Существуют различные определения ректификации.

Ректификация - это процесс разделения бинарных (двухкомпонентные смеси, например, спирт-вода) или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификация - разделение жидких смесей на практически чистые компоненты, отличающиеся по температуре кипения, путём многократных испарений жидкости и конденсации паров.

Несмотря на столь сложные формулировки, в процессе ректификации нет ничего трудного. Имея необходимое оборудование и базовые знания, ее с легкостью можно провести у себя на кухне.

Процесс ректификации

Э. Крель в своих трудах «Руководство по лабораторной перегонке» изложил основной принцип ректификации:

Обмен веществ (массообмен и теплообмен) происходит путем прохождения паровой смеси через наполнитель колонны.

На скорость и качество этого процесса влияют следующие факторы:

  1. Коэффициент диффузии (прохождение паровой смеси через наполнитель колонны);
  2. Концентрация возгоняемого вещества;
  3. Площадь поверхности контакта в колонне;
  4. Разность температур кипения разделяемых компонентов.

Можно сделать вывод, что процесс ректификации спирта будет лучше протекать при следующих условиях: хорошей диффузии, высокой концентрации отделяемого компонента, развитой площади контакта.

Особое внимание Крель уделил важности состояния межфазной поверхности и перечислил факторы, определяющие процесс ректификации:

  1. Свойства разделяемой смеси: летучесть компонентов, состав смеси, взаимная растворимость компонентов.
  2. Характеристика насадки: форма насадочного тела, способ укладки насадки, плотность заполнения колонны.
  3. Косвенные факторы: способ подачи жидкости в колонну, интенсивность и метод обогрева, рабочее давление.

Виды ректификационных колонн

В зависимости от применяемых контактных устройств, колонны делятся на тарельчатые и насадочные.

Тарельчатые ректификационные колонны

В основном распространены в нефтеперерабатывающей отрасли и на крупных производствах. Тарельчатые колонны представляют собой вертикальную трубу, в которой через определенное расстояние устанавливаются тарелки разной конфигурации, где идет контакт между паровой и жидкой фазами.

Недостаток колонн : дороговизна и большие габариты.

Преимущества : тарельчатая ректификационная колонна тоньше разделяет фракции.


Насадочные ректификационные колонны

На сегодняшний день широкое распространение получили насадочные колонны. Это те же вертикальные трубы, только в них устанавливается другое контактное устройство - насадка.

Насадки разделяются на два типа:

Нерегулярная - неупорядоченный слой насыпного или заполняемого инертного материала (например, спирально призматическая насадка СПН).

Преимущества : малый вес, большая площадь контакта.

Недостатки : высокое сопротивление, сложность правильного распределения паров и флегмы.


Регулярная - представляет собой скомпонованные в кассеты перфорированные сетки и листы (к ним относится регулярная проволочная насадка Панченкова (РПН).

Преимущества : высокая эффективность, малый перепад давления.

Недостатки : насадочная ректификационная колонна явных недостатков не показала.

Процессы в ректификационной колонне

Рассмотрим, что происходит в самой колонне на примере оборудования Фабрики «Доктор Губер». Здесь нет никакой магии или секретных технологий, все очень просто.

Ректификационные колонны для частного применения представляют собой вертикальные трубки диаметром от 40 до 50 мм, высотой не более 180 см, заполненные насадками РПН или СПН. Данные колонны оснащены холодильником или дефлегматором, а так же узлом отбора спирта.


Рассмотрим периодическую ректификацию на колонне насадочного типа с регулярной насадкой РПН, которую каждый сможет повторить в домашних условиях.

При нагреве куба с брагой, являющейся многокомпонентной смесью, в состав которой помимо воды и спирта входят побочные продукты брожения (альдегиды, кислоты, эфиры и т.д.), начинается процесс кипения и испарения данных компонентов. Температура начала процесса может быть разной, все зависит от качественного и количественного состава бражки или спирта-сырца. На протяжении процесса пар поднимается по колонне, начинает ее прогревать и частично конденсироваться, при этом образуется «дикую флегму».

Образование дикой флегмы происходит за счет охлаждения корпуса колонны, в связи с потерями тепла в окружающую среду. Возникают качественные и количественные потери по спирту (до 10%).

В стандартных ректификаторах проблема образования дикой флегмы решается с помощью теплоизолирования колонны.

Высококвалифицированные специалисты Фабрики Доктор Губер нашли другой способ решения данной проблемы путем создания колонны Торнадо. Структура колонны позволяет поднимающемуся пару проходить сначала по внешнему контуру колонны, создавая при этом активный подогрев. В результате потери тепла в окружающую среду от рабочей части колонны становятся минимальными. На выходе готовый продукт получается с улучшенными органолептическими и физико-химическими показателями.

После прогрева колонны пары достигают холодильника или дефлегматора, в котором они конденсируются и возвращаются в колонну в виде флегмы.

Поток флегмы направляется навстречу поднимающимся по колонне парам. Происходит массо- и теплообмен. Температура при ректификации спирта имеет ключевое значение: флегма на своем пути из зоны с низкой температурой в зону более высоких температур поглощает из потока паров высококипящие компоненты (сивушные масла) и выделяет легкокипящие компоненты (спирт). Так как процессы эти протекают на границе раздела фаз, то очень важно создать максимально возможную поверхность контакта. Для этого ректификационные колонны Доктор Губер оснащают РПН, который создает максимальную поверхность контакта по всей ее длине.

Качество получаемого спирта зависит от скорости отбора. А именно, чем больше флегмы забирается из колонны, тем хуже идет процесс массообмена, следовательно уменьшается крепость спирта на выходе из колонны. И наоборот, чем меньше забирается флегмы, тем лучше процесс массобмена и повышение крепости конечного продукта.

Для контроля скорости отбора спирта на колонны устанавливаются игольчатые краны для тонкой регулировки и смотровые стекла.

Создать развитую поверхность контакта недостаточно, необходимо ее правильно орошать. В насадочных колоннах имеет место пристеночный эффект. Флегма проходит не через насадку, а стекает по стенкам колонны, в результате чего падает эффективность ее работы. При правильном заполнении колонны этот эффект минимален, он практически отсутствует в колонне Торнадо, где устанавливается колпачковая тарелка с центральным изливом. В итоге флегма направляется ровно на насадку и достигается максимальный КПД данной колонны.

Что касается диаметра и высоты колонны, по данным Стедмана и Мак-Магона диаметр насадочных колонн оказывает незначительное влияние на качество разделяемых смесей.

Высота колонны. Речь идет о ее рабочей части (часть колонны, которая наполнена насадкой) должна быть не более (6-8)хD. Если высота больше данного выражения, то колонны заполняют секционно, чтобы избежать пристеночного эффекта.

Как выбрать ректификационную колонну

При выборе колонны обращайте внимание на следующие пункты:

  1. Материал колонны, в том числе и наполнитель, должны быть инертны по отношению к парам спирта;
  2. Колонна должна быть оснащена регулируемым узлом отбора;
  3. Наличие высокопроизводительного холодильника или дефлегматора;
  4. Обязательное присутствие атмосферного клапана для безопасной работы.

P.S. Ректификация спирта не сложный процесс и при наличии необходимого оборудования ее с легкостью можно провести в домашних условиях. К 2016 году ассортимент ректификационного оборудования безгранично возрастает. Несмотря на небольшие конструктивные отличия всех аппаратов, процесс ректификации остается неизменным и его качество будет в первую очередь зависеть от знаний и опыта человека, контролирующего процесс.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Физико-химические основы процесса

2. Физические свойства веществ, участвующие в процессе

3. Технологический расчёт

4. Материальный баланс

4.1 Условные обозначения

4.2 Расчётная часть

5. Тепловой баланс

5.1 Условные обозначения

5.2 Расчётная часть

6. Конструктивный расчёт

6.1 Условные обозначения

6.2 Расчётная часть

7. Подбор стандартных конструктивных элементов. Расчёт штуцеров

Заключение

Список использованной литературы

Введение

Перегонка и ректификация относятся к числу ведущих процессов химической технологии и составляют основу многих технологических процессов нефтегазопереработки. При этом нельзя не отметить, что из всех процессов ректификации, применяемых в химической технологии, более 80% приходится на нефтегазопереработку.

Перегонка и ректификация основаны на различных температурах кипения фракций, составляющих жидкость. Существуют два принципиально отличных вида перегонки: простая (однократная) перегонка и ректификация.

Простая перегонка - это однократный процесс частичного испарения низкокипящей фракции с последующей конденсацией образовавшихся паров, а ректификация - это процесс многократного (или непрерывного) испарения и конденсации паров исходной смеси. В результате ректификации получают более чистые конечные продукты. Жидкость, полученная в результате этого, называют дистиллятом, или ректификатом. Процессы перегонки и ректификации находят широкое применение в химической и спиртовой промышленности, в производстве лекарственных препаратов, в нефтеперерабатывающей промышленности и т.д.

Принципиальная схема ректификационной колонны выглядит следующим образом:

Рисунок 1 - ректификационная колонна.

Ректификационная колонна? противоточный колонный аппарат, в котором по всей его высоте осуществляется процесс тепломассообмена между стекающей вниз жидкостью (флегмой) и поднимающимся вверх паром. Процесс тепломассообмена заключается в непрерывном "обмене" теплом и отдельными компонентами между жидкой и паровой фазами. Жидкая фаза обогащается более высоко кипящим компонентом, а паровая фаза - более низко кипящим.

Рассмотрим схему ректификационной установки непрерывного действия на рисунке 1. Внутри ректификационной колонны 1 расположены контактные устройства в виде тарелок или насадки. Снизу вверх по колонне движется пар, поступающий из выносного куба-испарителя 2 (куб-испаритель может располагаться непосредственно под колонной). На каждой тарелке происходит частичная конденсация пара труднолетучего компонента и за счёт конденсации - частичное испарение легколетучего компонента. Таким образом, пар, выходящий из куба-испарителя и представляющий собой почти чистый труднолетучий компонент, по мере движения вверх обогащается легколетучим компонентом и покидает колонну в виде почти чистого пара легколетучего компонента. Пар конденсируется в дефлегматоре 3, охлаждаемом водой. Полученный конденсат разделяется на дистиллят (верхний продукт) и флегму, которая направляется на верхнюю тарелку колонны. Флегма, стекая по колонне и взаимодействуя с паром, обогащается труднолетучим компонентом.

Исходную смесь подогревают до температуры кипения в теплообменнике 4 и подают в колонну на ту тарелку, где кипит смесь того же состава, т.е. на верхнюю тарелку нижней исчерпывающей части колонны. Верхняя часть колонны называется укрепляющей по легколетучему компоненту.

Из куба-испарителя отводят нижний продукт или кубовый остаток.

Этот процесс имеет большое значение в химической технике. Достаточно указать на разделение природных углеводородов нефти и синтетических углеводородов с целью получения моторных топлив, на выделение индивидуальных газов из их смесей путём предварительного ожижения и последующей ректификации жилкой смеси.

Поток пара создается за счет подвода тепла в нижнюю часть колонны и испарения находящейся там жидкой смеси. Поток жидкости (орошения, флегмы) организуется за счет отвода тепла из верхней части колонны и конденсации поступающего туда пара. Взаимодействие потоков осуществляется в специальных контактных устройствах, размещенных по высоте колонны.

Суть процесса ректификации заключается в многократном повторяющемся по высоте колонны цикле испарения жидкости и конденсации ее паров (достижение равновесных состояний).

Для проведения процесса ректификации в основном используют два типа колонн:

· тарельчатые, в которых контактные устройства выполнены в виде тарелок, расположенных на определенном расстоянии друг от друга;

· насадочные, в которых контактные устройства заполняют практически весь объем колонны.

Для разделения простых бинарных смесей обычно используется одна простая колонна с небольшим числом тарелок устройств (обычно не более десяти), для разделения многокомпонентных и непрерывных смесей (нефть, широкие бензиновые фракции) требуется система колонн, каждая из которых разделяет поступающую в нее смесь на соответствующие компоненты (фракции). Число тарелок в каждой из таких колонн может достигать нескольких десятков.

Основными рабочими параметрами процесса ректификации являются давление и температура в системе, соотношение потоков жидкости и пара (флегмовое число), число контактных ступеней.

В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой. Назначение такой тарелки, как и любого другого контактного устройства, - обеспечить наиболее тесное соприкосновение жидкой и паровой фаз для максимального достижения состояния равновесия между ними.

Тарелки работают следующим образом. Пар в виде пузырьков с развитой поверхностью проходит через слой флегмы, находящейся на тарелке. В результате такого «пробулькивания», тепломассообмен между жидкой и паровой фазами интенсифицируется.

Конструкции тарелок разнообразны, часть из них стандартизирована. Выбор типа тарелки определяется видом смеси, производительностью колонны, требованиями по степени ректификации, качеству разделяемых компонентов (фракций) и т. п. Тарельчатые колонны используются, как правило, в крупнотоннажных производствах.

Для успешного взаимодействия флегмы, стекающей вниз по колонне, и пара, движущегося вверх, можно использовать любые другие контактные элементы, увеличивающие площадь и эффективность этого взаимодействия.

Для ректификационных колонн сверхмалого диаметра (10-70мм) более эффективным, по сравнению с тарелкой, контактным элементом является насадка. Насадка заполняет собой весь внутренний объем ректификационной части колонны. Существует множество различных типов насадок, например, регулярные насадки -- Спрейпак, Зульцер, Стедман; хаотичные (насыпные) -- керамические кольца Лессинга, Паля, Берля, наиболее распространенная - проволочная спирально-призматическая насадка.

Насадочные колонны приобретают все более широкое распространение в последние годы. Используемые в них насадки также весьма разнообразны по конструкции и применяемому материалу. Насадочные контактные устройства имеют высокую эффективность, хорошие массовые характеристики, однако, как правило, с ростом диаметра колонны их эффективность резко падает, а некоторые типы насадок, например, спирально- призматические, теряют работоспособность уже при диаметре колонны 100 мм. Кроме того, они, как правило, дороже тарельчатых.

Поэтому насадочные колонны обычно используются в малотоннажном производстве (исключение составляют насадки Зульцера, Спрейпак, складчатые сетчатые кубики, сохраняющие конкурентоспособность с тарелками и при больших диаметрах колонн).

В насадочных контактных устройствах, в отличие от тарельчатых контактных устройств, процесс тепломассообмена осуществляется не за счет организации интенсивного перемешивания взаимодействующих фаз, а за счет увеличения поверхности границы раздела фаз. Для этого используются пористые, сетчатые и тому подобные материалы с большой удельной поверхностью.

1. Фи зико-химические основы процесса

В рассмотренных процессах разделения бинарных жидких смесей обогащение достигается ректификацией восходящего потока паровой смеси, а накопление высококипящего компонента (исчерпывание низкокипящего) в кубовой жидкости - простой дистилляцией. Процесс разделения можно осуществить непрерывно, если производить обе операции ректификацией, использовав для этой цели две последовательно соединённые колонны: укрепляющую и исчерпывающую. В первом из этих колонн будет происходить обогащение паров, образующихся при частичном испарении жидкости смеси, низкокипящим компонентом (ректификация паров), а во второй - извлечение (отгонка, исчерпывание) этого компонента из стекающей вниз жидкой фазы (ректификация жидкости). Обе колонны располагаются чаще всего друг над другом, имея общий корпус, но могут также устанавливаться отдельно.

В ректификационной установке непрерывного действия исходная жидкая смесь состава X1 подаётся на нижнюю тарелку укрепляющей колонны, являющуюся одновременно верхней тарелкой исчерпывающей колонны; эта тарелка называется тарелкой питания. Укрепляющая колонна снабжена конденсатором и орошается потоком флегмы, обеспечивающим получение дистиллята требуемого постоянного состава.

С тарелки питания, где флегмы объединяются с исходной смесью, поток жидкости стекает в исчерпывающую колонну навстречу паровому потоку, образующемуся в дистилляционном кубе. Благодаря контакту с паром, обогащённым высококипящим компонентом, жидкость обедняется низкокипящим компонентом и стекает в дистилляционный куб, где часть её испаряется, а остальное количество непрерывно отводится в качестве кубового остатка. При подаче исходной смеси с температурой кипения и отсутствии потерь тепла в окружающую среду поток пара по высоте обеих колонн остаётся практически постоянным (D=const). Потоки жидкости в обеих колоннах различны: в укрепляющей колонне он равен количеству поступающей флегмы (W=const), а исчерпывающей он слагается из W и количества притекающей исходной смеси W1, поэтому W=W+W1.

Мы предполагали до сих пор, что разделяемая смесь поступает на тарелку питания ректификационной колонны при температуре кипения. В практике, однако, встречаются отклонения от этого режима; разделяемая смесь может иметь начальную температуру ниже точки кипения или находиться в парожидкостном и даже в парообразном состояниях. ,

2. Физические свойства веществ, участвующих в процессе

Исходные данные к расчёту.

Рассчитать ректификационную установку непрерывного действия для разделения F (кг/с) бинарной смеси с содержанием легко летучего компонента XF (% мольных), содержание низкокипящего компонента в дистилляте XP (% мольных), в кубовом остатке XW (% мольных). Продолжительность операции ф часов, давление в аппарате атмосферное, температурами охлаждающей воды в дефлегматоре и греющего пара обосновано задаться.

Выпишем необходимые справочные данные для веществ, участвующих в процессе:

Таблица 1 - Задание на курсовой проект.

Таблица 2 - Физические свойства веществ, участвующих в процессе.

3. Технологический расчёт

Таблица 3 - Равновесные составы жидкости (x) и пара (y) в мольных %, температуры кипения (t) в ° С двойных смесей при 760 мм. рт.ст.

По данным о равновесных составах двойных смесей составим графики:

t - x - y диаграмму и x - y диаграмму.

Построение рабочей линии процесса.

XF=40 XP=90 XW=5

R - рабочее флегмовое число. Для вычисления рабочего флегмового числа, минимальное флегмовое число умножают на коэффициент избытка флегмы, который находится в пределах 1.2ч 2.5.

R=Rmin(1.2ч2.5).

Rmin - минимальное флегмовое число соответствует режиму работы колонны, когда весь получаемый конденсат идёт на орошение.

1.2ч2.5 - коэффициент избытка флегмы.

Основными параметрами, определяющими заданное разделение в процессе ректификации, являются флегмовое число (кратность орошения) и число ректификационных тарелок. Флегмовое число представляет собой отношение количества горячего орошения, вводимого в колонну, к количеству вещества. Увеличение флегмового числа позволяет уменьшить количество тарелок и наоборот. При минимальном флегмовом числе Rmin необходимое число тарелок будет бесконечным. Реальные условия работы колонны соответствуют оптимальному флегмовому числу и оптимальному числу тарелок.

Rmin =XP -YF/ YF -XF

max t - min t/10 = 56.2-39.3/10=2

Из графиков находим:

YF=57% tF=40 ° С

YP=78% tP=39.7 ° С

YW=19% tW=85 ° С

4. Материальный баланс

4.1 Условные обозначения

F - выход сходной смеси;

P - продукционный выход дистиллята;

W - выход кубовой жидкости;

aF, aP, aW - массовые доли низкокипящего компонента в потоке;

XF, XP, XW - мольные доли низкокипящего компонента в потоке;

YF, YP, YW - содержание низкокипящего компонента в парах над жидкостью;

Ф - расход флегмы.

4.2 Расчётная часть

1. колонна ректификации, точка водоисходной смеси условно делится на две части: нижняя - исчерпывающая колонна, верхняя - укрепляющая колонна;

Переведём мольные доли низкокипящего компонента в жидкой фазе в массовые.

1) aF=Мн.к.* XF / Мн.к.* XF+Мв.к.(1- XF)

aF=80*0.4/80*0.4+58(1-0.4)=0.48

2) aP= Мн.к.* XP / Мн.к.* XP+Мв.к.(1- XP)

aP=80*0.9/80*0.9+58(1-0.9)=0.93

3) aW= Мн.к.* XW / Мн.к.* XW+Мв.к.(1- XW)

aW=80*0.05/80*0.05+58(1-0.05)=0.068

Переведём массовый расход исходной флегмы в кг/с:

F` = =1.45 кг/с

Выход продукта вычисляем по формуле:

P=F`(aF-aW)/ aP - aW (4.2)

P=1.45(0.48-0.068)/0.93-0.068=0.7 кг/с

Выход кубовой жидкости вычисляем по формуле:

W=1.45-0.7=0.75 кг/с

Выход флегмы вычисляем по формуле:

Ф=0.7*4=2.8 кг/с

Расход паров в верхней части колонны вычисляем по формуле:

G=0.7+2.8=3.5 кг/с

5. Тепловой баланс

5.1 Условные обозначения

Q - количество тепла, отданное греющим паром;

D` - расход пара, поступающего в рубашку колонны;

r - теплота конденсации паров (определяется по температуре греющего пара, который на 15-20 ° С выше температуры tW).

D`` - расход тепла в подогревателе;

rP - теплота конденсации паров;

g - расход охлаждающей воды;

G - выход паров в верхней части колонны;

C - теплоёмкость пара низкокипящего компонента;

tr - температура пара;

t1 - температура флегмы;

CВ - теплоёмкость воды, 4200 Дж/кг*К;

CF - теплоёмкость исходной смеси;

5.2 Расчётная часть

Тепло, пришедшее с исходной смесью:

Q1=F`*CF*tF (5.1)

CF=Cн.к.*aF/ Cн.к.*aF+Cв.к.(1- aF)

CF=946.625*0.48+2300(1-0.48)=1650.38 Дж/кг*К

Q1=1.45*1650.38*40=95722.04 Вт

Количество тепла, поступившее с флегмы:

Q2=Ф*Cф*tф (5.2)

Cф=Cн.к.* aP+ Cв.к.(1- aP)

Cф=946.625*0.93+2300(1-0.93)=1041.36 Дж/кг

tф=tp-15=39.7-15=24.7 К

Q2=2.8*1041.36*24.7=72020.46 Вт

Количество тепла, ушедшее с парами в верхней части колонны:

JP= rp+CP*tP (5.4)

rp=rн.к.*aP+ rв.к.(1-aP)

rp=334750*0.93+516000(1-0.93)=67257.5 Дж/кг

JP=67257.5+1041.36*39.7=108599.5 Дж/кг

Q3=3.5*108599.5=380098.5 Вт

Количество тепла, ушедшее с кубовой жидкости:

Q4=W*CW*tW (5.5)

CW=Cн.к.*aW+Cв.к.(1- aW)

CW=946.625*0.068+2300(1-0.068)=67257.5 Дж/кг

Q4=0.75*2208*51.3=84952.8 Вт

Потеря тепла составляет 3% от тепла, отданного греющим паром.

Qпотерь=0.03*D`*r (5.6)

Qпотерь=0.03*0.13*2321000=9052 Вт

D`==0.13 кг/с

Тепловой баланс дефлегматора.

Q 1 =G*r P =3.5*67257.5=235401.25 Вт (5.8)

Q 2 =G*C P (t P -t Ф)= 3.5*1041.36*(39.7-24.7)=54671.4 Вт (5.9)

Q= Q 1 + Q 2 =235401.25+54671.4=290072.65 Вт

Q=g*C воды (t 2 -t 1), температурами охлаждающей воды обоснованно задаться: t2=32 ° С и t 1 =22 ° С

g=Q/C воды* 10 ° С =290072.65 /4200*10=7 кг/с (5.10)

Q= 7*4200*10=294000 Вт

Определение общего расхода греющего пара на ректификацию.

Так как исходная смесь поступает нагретой до температуры кипения, определим расход пара на подогрев исходной смеси:

Qподогрева=F`*C F (t F -t), где t- температура хранения исходной смеси.

Qподогрева=1.45*1650.38(40-20)=47861.02 Вт

Q подогрева =D``*r пара, отсюда D``= Q под / r пара (5.11)

D``=47861.02 /2273*10 3 =0.021 кг/c

Общий расход пара на реакцию определяется:

D=0.13+0.021=0.151 кг/c

6. Конструктивный расчёт

6 .1 Условные обозначени я

ректификационный тарельчатый пар дистиллят

Д - диаметр колонны;

w - оптимально допустимая скорость паров в колонне;

с - коэффициент, учитывающий конструкцию тарелки;

с P - плотность дистиллята в жидком состоянии;

V - объёмный расход паров;

R - постоянная Больцмана;

Р - давление;

Т - температура дистиллята;

М ср. - средняя молекулярная масса.

6.2 Расчётная часть

Определение диаметра колонны:

1. Находим объёмный расход пара в верхней части колонны.

V=G*R*T/М ср. *Р, где R=8314 Дж/моль*К, P=10 5 Па (6.1)

T=t P +273 ° С (6.2)

М ср =М н.к. *X P +М в.к. (1- X P) (6.3)

T=39.7+273=312.7 К

М ср =80*0.9+58(1-0.9)=80 моль

V=3.5*8314*312.7/80*10 5 =1.14 м 3 /c

2. Определим оптимальную допустимую скорость пара в колонне

w=cv с P -с пара / с P (6.4)

По графику находим значение коофициента c, Выбираем колпачковые тарелки. Принимаем расстояние между тарелками HТ=300 мм, c=0.052 [Павлов, с. 323]

w=0.052v829.68-2.2/2.2=1.0088 м/с

3. Определим внутренний диаметр колонны

Принимаем стандартный диаметр колонны 1200 мм

Гидравлический напор.

Предварительно принимаем расстояние между тарелками HТ=0.3 м и коофициент вспениваемости ц=0.8

Скорость пара в рабочем сечении колонны равна:

w P =ц*w о (6.6)

w P =0.8*1.0088=0.81 м/с

Объёмный расход пара в колонне равен:

VП=G/ с P (6.7)

VП=3.5/2.7=1.3 м 3 /c

Рабочая площадь тарелки составит:

FP= VП/ w P (6.8)

FP=1.3/0.81=1.6 м 2

По данным таблицы выбираем тарелку типа ТСК-Р для колонны диаметром:

Д=1200мм; периметр слива П=0.818 м; площадь слива F сл =0.099 м 2 ; площадь прохода пара F о =0.129 м 2 ; длину пути жидкости по тарелке l ж =0.856 м; зазор под сливным стаканом а=0.06 м; количество колпачков т=43; диаметр колпачка d к =100 мм

В задачу дальнейших гидравлических расчётов основных параметров тарелки входит определение высоты сливного порога h пор. , подпора жидкости над сливным порогом h сл. , высоты прорезей колпачка h пр. и, если это необходимо сопротивление тарелки ДP.

Из исходных данных имеем отношение ==1.25‹2. Следовательно, при определении величины h сл. Можно было бы не учитывать относительный унос жидкости паром. Однако для большей наглядности рассмотрим расчёт h сл. с учётом уноса жидкости.

Для того, чтобы найти величину У по уравнению (6.16), необходимо знать высоту пены на тарелке h пн. , которая рассчитывается по формуле (6.15), включающему, в свою очередь, величину h сл. и высоту h пор. .

Величину h сл рассчитываем предварительно без учёта уноса жидкости, тогда

h сл. =0.68(V ж. /П) 0.67 (6.9)

V ж =Ф/ с P (6.10)

с P =сН.К.* aP+сВ.К.(1-aP) (6.11)

с P =1263*0.93+792(1-0.93)=1230.04 кг/ м 3

V ж =2.8/1230.04=0.0023 м 3 /c

h сл. =0.68 () 0.67 =0.014 м

Для определения высоты сливного порога рассчитаем по уравнению (6.12) высоту прорезей в колпачках.

Примем колпачок с прямоугольными прорезями шириной b=4 мм. Количество прорезей в одном колпачке zКН=26. Общее количество колпачков на тарелке m=43.

h пр =0.46* (V П /mzb) 2 *с П /с ж -с П (6.12)

h пр =0.46* =0.03 м

Принимаем по таблице высоту прорези h пр =30 мм

В этом случае пар будет проходить через полностью открытые прорези и частично через нижнюю кромку колпачка. Для обеспечения этого примем высоту установки колпачка h у =10мм. Глубина барботажа при абсолютном давлении Р=98100Па, согласно уравнению (6.13) составит:

h г.б. =(0.7/с ж)р 0.35

h г.б. =()*(98100) 0.35 =0.028 м (6.13)

Найдём по уравнению (6.14) высоту сливного порога:

h пор. = h г.б -h сл. +h пр. +h у (6.14)

h пор. =0.028-0.014+0.03+0.01=0.054 м

Высота пены, образующейся на тарелке, в соответствии с формулой (6.15), составит:

h пн =К 2 /у 0.33 (К 3 *w р 2 *с П +К 4 *h сл +h пор) (6.15)

К 1 =23.0*10 -5

h пн =0.23/0.02 0.33 (4.4*10 -2 *(0.81) 2 *2.7+4.6*0.014+0.054)=0.2 м

Величина относительного уноса жидкости согласно уравнению (6.16) составит:

У=К 1 /у(w P /H Т -h пн.) n 1 (6.16)

У=23*10 -5 /0.02(0.81/0.3-0.2) 1.16 =0.010.1

Следовательно, расстояние между тарелками выбрано правильно.

Действительную нагрузку сливного устройства по жидкости рассчитываем по уравнению (6.17):

V ж.д. =V ж +G*У/с ж (6.17)

V ж.д. =0.0023+=0.00233 м 3 /c

Действительная величина подпора жидкости над сливным порогом

h сл. =0.68() 0.67 =0.013 м

мало отличается от ранее рассчитанной h сл. =0.014 м

Проверим работоспособность сливного устройства тарелки. Для этого рассчитаем скорость жидкости в сливном устройстве по формуле (6.18):

w ж.сл. =V ж.д. /F сл. <К 5 Н Т n 2 (6.18)

В соответствии с формулой (6.18) и данным таблицы комплекс:

F сл =0.099м 2

w ж.сл. ==0.024 м/с

К 5 Н Т n 2 =0.250(0.3) 0.65 =0.115

Следовательно, условие формулы (6.18) соблюдается и захлёбывания сливного устройства не произойдёт.

Скорость жидкости в зазоре между основанием тарелки и нижней кромкой сливного стакана рассчитываем по формуле (6.19):

w ж.з. =V ж.д. /(Па)<0.45 (6.19)

w ж.з ==0.0466 м/с <0.45

Из приведённых расчётов следует, что выбранная однопоточная тарелка обеспечит нормальную работу сливных устройств.

Сопротивление сухой тарелки определяем по формуле (6.20):

ДP c =ж c *с П *w о 2 /2 (6.20)

где скорость пара в паровых патрубках равна

w о =V П /F о (6.21)

w о ==6.6 м/с

Коэффициент сопротивления для колпачка диаметром D кл =100мм составит:

ж=1.73* D кл -0.25 (6.22)

ж=1.73*0.1 -0.25 =3.1

ДP c =3.1*2.7*(6.6) 2 /2=182.3 Па

Величина перепада уровня жидкости на тарелке в соответствии с формулой (6.23) составит:

Дh=0.1*лЭ*(lж*V ж 2 /П 2 (h пор + h сл.) 3 g (6.23)

Дh=0.1*16*(0.856*(0.0023) 2 /(0.818) 2 *(0.054+0.014) 3 *9.81=0.0023 м

Сопротивление слоя жидкости на тарелке рассчитываем по формуле (6.24):

ДPж=(h г.б + h пр + Дh/2) с ж *g (6.24)

ДPж=(0.028+)1230.04*9.81=532.8 Па

Общее сопротивление тарелки равно:

ДP= ДP c +ДPж (6.25)

ДP=182.3+532.8=715.1 Па

Найдём общую высоту колонны:

H=(n-1)h+Hверх.+Hнижн. (6.26)

H=(9-1)0.3+1+2=5.4 м

7. Подбор стандартных конструктивных элементов. Расчёт штуцеров

Диаметры штуцеров рассчитываются по формуле (7.1)

1. Штуцер для ввода исходной смеси.

сF=сн.к.* aF+св.к.*(1- aF)

сF=1263*0.48+792*(1-0.48)=1018.08 кг/м 3

VF==0.0014 м 3 /c

Примем стандартный диаметр DY1=100 мм

2. Штуцер для выхода паров.

сP= сн.к.* aP+св.к.*(1- aP)

сP=2.7*0.93+2.2*(1-0.93)=2.665 кг/м 3

Vпар==1.3 м 3 /c

Примем стандартный диаметр DY1=400 мм

3. Штуцер для входа флегмы.

VФ=Ф/ сP (7.5)

сP= сн.к.* aP+св.к.*(1- aP)

сP=1263*0.93+792*(1-0.93)=1230.04 кг/м 3

VФ==0.0023 м 3 /c

Примем стандартный диаметр DY3=100 мм

4. Штуцер для выхода кубовой жидкости.

сw= сн.к.* aw+св.к.*(1- aw)

сw=1263*0/068+792(1-0.068)=824.028 кг/м 3

Vw==0.001 м 3 /c

Примем стандартный диаметр DY4=100 мм

5. Штуцер для подачи греющего пара в рубашку аппарата.

V=D`/ сгр.п. (7.8)

сгр.п. берём в табличных данных при температуре на 20 ° С выше, чем температура кубовой жидкости(tW=51.2 ° С); то есть при температуре 71.2 ° С.

сгр.п.=0.198 кг/м 3

Примем стандартный диаметр DY5=200 мм

6. Штуцер для выхода конденсата греющего пара

V=D`/ сконд. (7.9)

сконд.. берём в табличных данных при температуре на 20 ° С ниже, чем температура кубовой жидкости(tW=51.2 ° С); то есть при температуре 31.2 ° С.

сконд.=998 кг/м 3

V==0.0001 м 3 /c

Примем стандартный диаметр DY6=50 мм

Общая масса аппарата:

M=mобеч.+mдн. +mкр. (7.10)

mобеч.=*Дк*S* сст*H (7.11)

Подбираем днище и крышку аппарата:

V=421*10 -3 м 3

mдн.=mкр.=137 кг

Находим массу обечайки:

mобеч.=3.14*1.2*0.01*7850*5.4=1597.3 кг

По формуле (7.10) находим массу аппарата:

M=1597.3+137+137=1871.3 кг

Находим массу загрузки:

mзагр.=(Vкр.+Vдн.+Vк.) сср. (7.12)

сср.= сн.к+ св.к./2 (7.13)

сср.==1027.5 кг/м 3

Vк=*Дк 2 /4*H (7.14)

Vк=*5.4=6.1 м 3

По формуле (7.12) находим массу загрузки:

mзагр.=(0.421+0.421+6.1)1027.5=7133 кг

Масса нагрузки на опору с учётом запаса нагрузки 20 % :

P=(Mап.+ mзагр.)1.2*g/1000000 (7.15)

Заключение

Целью расчёта является расчёт ректификационной колонны тарельчатого типа. В ходе расчёта определили выход продукционного дистиллята и кубовой жидкости, расход флегмы, расход греющего пара, расход охлаждающей воды в дефлегматоре, габариты проектируемого аппарата, диаметр штуцеров, массу аппарата, а также максимальную загрузку на опору.

Список использованной литературы

1. Дытнерский Ю.И. Основные процессы и аппараты химической технологии. Пособие по проектированию, М., Химия, 1991 год.

2. Плановский А.Н., Николаев П.И. Процессы и аппараты химической и нефте-химической технологии, М., Химия, 1987 год.

3. Соколов В.Н. Машины и аппараты химических производств, Л., 1970 год.

Размещено на Allbest.ru

...

Подобные документы

    Описание технологической схемы, эксплуатация и конструкция аппарата ректификационной колонны. Материальный и тепловой баланс установки. Определение высоты и массы аппарата, подбор тарелок и опоры. Гидравлическое сопротивление насадки и диаметр штуцеров.

    курсовая работа , добавлен 30.10.2011

    Общее описание процесса ректификации. Разработка ректификационной колонны для разделения смеси хлороформ-бензол. Технологический, гидравлический и тепловой расчет аппарата. Определение числа тарелок и высоты колонны, скорости пара и диаметра колонны.

    курсовая работа , добавлен 30.10.2011

    Схема ректификационной установки. Определение массовых и объемных расходов пара и жидкости вверху и внизу тарельчатой колонны. Гидравлическое сопротивление тарелок. Расчет теплообменных аппаратов: диаметра, изоляционного слоя и стенки корпуса колонны.

    курсовая работа , добавлен 04.06.2015

    Разработка ректификационной установки для непрерывного разделения смеси: ацетон - уксусная кислота. Расчет диаметра, высоты, гидравлического сопротивления ректификационной колонны. Определение теплового баланса и расхода греющего пара, охлаждающей воды.

    курсовая работа , добавлен 24.10.2011

    Средняя плотность пара в ректификационной колонне. Расход теплоты, отдаваемой охлаждающей воде в дефлегматоре, получаемой в кубе-испарителе, в водяном холодильнике кубового остатка, в водяном холодильнике дистиллята. Расчет удельных диаметров фланцев.

    курсовая работа , добавлен 13.10.2011

    Способы определения расхода поглотительного масла, концентрации бензола в поглотительном масле, выходящем из абсорбера. Расчет диаметра и высоты насадочного абсорбера. Определение требуемой поверхности нагрева в кубе колонны и расхода греющего пара.

    контрольная работа , добавлен 07.06.2011

    Технологическая схема процесса ректификации. Конструкция тарельчатой ректификационной колонны и массообменных тарелок. Равновесные составы жидкости и пара. Материальный баланс процесса ректификации. Молекулярная масса смеси, расходы флегмы и пара.

    курсовая работа , добавлен 19.09.2014

    Теоретические основы процесса выпаривания. Устройство, принцип работы выпарного аппарата с выносной греющей камерой. Определение расхода охлаждающей воды, диаметра и высоты барометрического конденсатора. Расчет вакуумнасоса, теплообменного аппарата.

    курсовая работа , добавлен 19.06.2015

    Непрерывно действующие ректификационные установки для разделения бинарных смесей. Определение средних физических величин пара и жидкости. Высота газожидкостного слоя. Скорость пара в свободном сечении тарелки. Расчет гидравлического сопротивления колонны.

    курсовая работа , добавлен 24.10.2011

    Описание установки непрерывного действия для ректификации. Определение рабочего флегмового числа и диаметра колонны. Вычисление объемов пара и жидкости. Расчет кипятильника. Выбор насоса для выдачи исходной смеси на установку, анализ потерь напора.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения продуктов по температурам кипения в процессе массо- и теплообмена между жидкостью и паром (газом), и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности. Колонна ректификационная включает корпус с технологическими штуцерами, тарелки с паровыми и переливными патрубками, а также регулируемые по высоте барботажные колпачки. Верхний конец каждого переливного патрубка закреплен в тарелке с возможностью осевого перемещения патрубка относительно последней, а его нижний конец снабжен тарельчатым перфорированным диском, а также стаканом, концентричным переливному патрубку и образующим с ним гидрозатвор. Технический результат: повышение качества и производительности колонны по целевым продуктам, повышение эффективности работы ректификационной колонны. 2 ил.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения их по температурам кипения в процессе массообмена между жидкостью и паром, и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности.

Известна ректификационная колонна для разделения трехкомпонентной смеси (патент 2234356), содержащая вертикальный корпус с тарелками и продольную вертикальную перегородку, пересекающую часть тарелок и разделяющую корпус колонны на вертикальные секторы. Колонна содержит регулятор потоков флегмы и регулятор потоков паровой фазы.

Известен аппарат колонный с колпачковыми тарелками (патент 2214852). В этом колонном аппарате с колпачковыми тарелками корпус выполнен из царг, между их основаниями зажаты опорные кольца, на которые опираются тарелки с эластичными уплотнениями. Центральные опоры снабжены фиксаторами. Основание тарелки куполообразное. Все элементы колонны выполнены из фторопласта и предназначены для обработки коррозионно-активных материалов.

Недостаток обеих перечисленных колонн заключается в том, что в них в силу жесткого закрепления всех элементов колпачковой тарелки не представляется возможным изменять такие технологические параметры, как, например, толщину слоя жидкости на тарелке и перепад уровней жидкости под колпачками относительно уровня ее на тарелке, что не позволяет изменять режим работы колонны по высоте в зависимости от изменяющихся свойств отрабатываемых продуктов, т.е. влиять на процесс тепло- и массообмена в колонне.

Известна также колонна ректификационная с колпачковыми тарелками, например, описанная в книге «Процессы и аппараты», Д.А.Баранов, A.M. Кутепов, М., Академия, 2005, с.182, 183, в которой частично устранен недостаток упомянутых выше колонн по патентам, так, по крайней мере, колпачки закреплены с возможностью регулирования их положения по высоте.

Указанная колонна ректификационная с колпачковыми тарелками, как наиболее близкая по технической сущности предлагаемому устройству, принята в качестве прототипа.

Однако прототип не лишен характерного для известных колонн недостатков, а именно нет возможности регулирования толщины слоя жидкости на тарелке, а также нет возможности развивать поверхность межфазового контакта, что в значительной степени определяет эффективность процесса тепло- и массообмена, т.е. эффективность работы колонны в целом.

Целью предлагаемого изобретения является исключение перечисленных недостатков и повышение эффективности работы колонны.

По существу задача решается за счет того, что верхний конец каждого переливного патрубка закреплен в тарелке с возможностью осевого перемещения патрубка относительно последней, и его нижний конец снабжен тарельчатым перфорированным диском, а также стаканом, концентричным переливному патрубку и образующим с ним гидрозатвор.

В результате такого технического решения парожидкостная смесь проходит паровой патрубок и колпачок, барботируя через щели колпачка и контактируя с жидкостью на тарелке. Парогазовая смесь уходит на вышележащую тарелку, а избыточная жидкая (тяжелая) фракция через переливной патрубок сливается в стакан гидрозатвора, откуда попадает на тарельчатый перфорированный диск. Часть жидкости переливается через бортик диска, образуя кольцевую пленку. Другая часть жидкости в форме капель и струй проходит через перфорацию в диске и сливается на нижележащую тарелку. Легко испаряющая жидкость, находящаяся на тарелке в пленке, каплях, струях, испаряется и через паровые патрубки поступает на вышележащую тарелку. Учитывая изменение температуры, вязкости жидкости, состава и агрегатного состояния среды по высоте колонны, можно отрегулировать соотношение и высоту (зазоры) между паровыми патрубками и колпачками, между переливными патрубками и стаканами гидрозатворов с тарельчатыми дисками, а также с помощью переливных патрубков изменить высоту (и, соответственно, сопротивление барботажу) жидкости на тарелке и живое сечение для борботажа паров через щели колпачков.

Это позволяет оптимизировать процесс разделения перерабатываемого продукта на заданные фракции.

На фиг.1 - схематично изображен продольный разрез колонны.

На фиг.2 - вид А, на котором в увеличенном масштабе показаны тарелки с паровыми и переливными патрубками, кронштейнами с фиксаторами и регулировочными шпильками, паровыми копачками, гидрозатворами с тарельчатыми дисками.

Предлагаемая ректификационная колонна состоит из корпуса 1, штуцера 2 для входа парожидкостной смеси, штуцера 3 для выхода жидкости (тяжелой фракции) и штуцера 4 - для выхода паров (легкой фракции). Кроме того, колонна содержит тарелки 5 с паровыми патрубками 6 и переливными патрубками 7, а также колпачки 8 и стаканы гидрозатворов 9, кронштейны 10 с фиксаторами 11, шпильками 12, поперечными планками 13 и тарельчатыми перфорированными дисками 14.

Работает предлагаемая колонна следующим образом. Исходная парожидкостная смесь подается в колонну через штуцер 2. Пары через паровые патрубки 6 поступают в полость колпачков 8, вытесняют из них жидкость через щели колпачков 8, после чего паровая смесь начинает барботировать в слой жидкости за пределами колпачков 8, и более легкая парогазовая смесь поступает на вышележащую тарелку. Тяжелая фракция конденсируется в этой жидкости на тарелке, через переливные патрубки 7 поступает в стакан гидрозатвора 9, переливается через края стакана 9 и попадает на тарельчатые перфорированные диски 14. Далее жидкость стекает с этих дисков через бортики дисков в виде пленки, а также через перфорацию дисков в виде капель и струй.

Оснащение нижних концов переливных патрубков 7 тарельчатыми переливными дисками 14 обеспечило значительное увеличение поверхности за счет истечения жидкости с этих дисков в виде пленки, капель и струй, что в свою очередь повысило эффективность процесса тепло- и массообменника в колонне в целом.

На случай забивания паровых колпачков и переливных патрубков предусмотрена возможность их демонтажа и чистки от загрязнений и последующего монтажа через люки в корпусе колонны, что значительно сокращает время и трудозатраты на чистку и техническое обслуживание колонны.

Таким образом, изменение высоты переливного патрубка (и слоя жидкости) на тарелке, в сочетании с тарельчатым перфорированным диском на переливном патрубке, позволило оптимизировать уровень жидкости на тарелке и значительно увеличить поверхность межфазного контакта на каждой тарелке, совокупную высоту столба жидкости (сопротивление) в колонне, режим работы колонны по высоте, поверхность тепло- и массообмена в зависимости от изменяющихся свойств перерабатываемых продуктов (температуры кипения, вязкости жидкости, состава смеси).

При этом обеспечивается возможность разделения продуктов на более четкие фракции и, соответственно, повышения качества целевых продуктов. Изложенные выше преимущества приводят к существенному повышению эффективности работы колонны.

Колонна ректификационная, включающая корпус с технологическими штуцерами, тарелки с паровыми и переливными патрубками, а также регулируемые по высоте барботажные колпачки, отличающаяся тем, что верхний конец каждого переливного патрубка закреплен в тарелке с возможностью осевого перемещения патрубка относительно последней, а его нижний конец снабжен тарельчатым перфорированным диском, а также стаканом, концентричным переливному патрубку и образующим с ним гидрозатвор.

Похожие патенты:

Изобретение относится к конструкции контактных устройств тарельчатых абсорбционных, ректификационных и других тепломассообменных аппаратов, оснащенных переливными устройствами, и может быть использовано в химической, газовой, нефтехимической, пищевой, энергетической, горнорудной и смежных отраслях промышленности.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения продуктов по температурам кипения в процессе массообмена между жидкостью и паром (газом), и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности. Колонна ректификационная включает корпус с технологическими штуцерами, тарелки с паровыми патрубками и переливными устройствами, а также колпачки с вертикальными прорезями. Горизонтальные кромки прорезей колпачков снабжены лопатками, расположенными с наружной стороны колпачков радиально и в горизонтальной плоскости. Технический результат - повышение эффективности процесса массообмена в ректификационной колонне в целом. 3 ил.

Изобретение относится к улучшенному способу получения пара-трет-бутилфенола путем алкилирования фенола изобутиленом на гетерогенном сульфокатионитном катализаторе, разделения реакционной массы, содержащей фенол, пара-трет-бутилфенол, орто-трет-бутилфенол, 2,4-ди-трет-бутилфенол, высококипящие примеси, методом вакуумной ректификации в двух колоннах с отбором фенола и орто-трет-бутилфенола в виде дистиллята. При этом реакционную массу подвергают роторно-пленочному испарению для отделения от нее высококипящих примесей, выделение товарного продукта осуществляют в дополнительной ректификационной колонне в виде дистиллята, на вакуумной линии осуществляют абсорбционное улавливание несконденсировавшихся паров пара-трет-бутилфенола, кубовый остаток колонны выделения товарного продукта, содержащий 2,4-ди-трет-бутилфенол и пара-трет-бутилфенол, рециркулируют на стадию алкилирования фенола изобутиленом. Изобретение также относится к устройству для осуществления способа получения пара-трет-бутилфенола. Способ позволяет получать продукт с высокой степенью чистоты и высоким выходом. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области технологии радионуклидов и может быть использовано как в технологических процессах, использующих молекулярный тритий и тритийсодержащие соединения, так и для глубокой очистки газовых сбросов от трития предприятий атомной отрасли при решении экологических задач. Способ очистки газов от паров тритированной воды заключается в том, что газовый поток подают снизу противоточной колонны фазового изотопного обмена, заполненной спирально призматической насадкой из нержавеющей стали, а сверху колонны подают поток природной воды, причем процесс проводят при комнатной температуре, а высоту колонны выбирают исходя из требуемой степени детритизации газа. Технический результат изобретения заключается в увеличении степени очистки и переходе на непрерывный режим процесса детритизации газов. 2 ил., 1 табл., 2 пр.

Изобретение относится к устройству для осуществления термодеструктивных процессов переработки тяжелых нефтяных остатков, которое может быть использовано в нефтеперерабатывающей, нефтехимической и газовой отраслях промышленности. Устройство, представляющее собой реакционно-ректификационный аппарат, включает корпус, камеру сгорания, штуцера для подвода сырья, топлива, окисляющего газа, вывода продуктов реакции и газов сгорания. При этом камера сгорания расположена в нижней части аппарата и соединена с корпусом аппарата штуцером герметично; в нижней части камеры сгорания размещен штуцер для подачи воды, а штуцер ввода сырья размещен выше штуцера ввода продуктов сгорания и между ними расположена секция смешения; выше ввода сырья расположены по крайней мере еще две секции: разделения и конденсации паров. Техническим результатом является снижение энергопотребления, металлоемкости и габаритов оборудования, повышение эксплуатационной надежности и безопасности за счет того, что исключается возможность закоксовывания и прогара труб. 5 ил.

Изобретение может быть использовано в коксохимической промышленности. Ректификационная колонна для установки замедленного коксования включает укрепляющую часть (1) с ректификационными тарелками (26) и отгонную часть (2), в которой размещены струйная промывочная камера (27) и наклонная перегородка (33) с карманом (34), оснащенным штуцером (10) для отвода сверхтяжелого газойля коксования, расположенная между штуцерами ввода исходного сырья (6) и ввода паров из камеры коксования (7, 8). Между струйной промывочной камерой (27) и наклонной перегородкой (33) с карманом (34) установлена промежуточная перегородка (28), снабженная патрубками (29) с отбойными пластинами (30) и карманом (31) для отвода загрязненного после промывки тяжелого газойля. Изобретение позволяет снизить энергоемкость процесса замедленного коксования в 1,1-1,3 раза. 1 ил.

Изобретение относится к химической, нефтехимической, металлургической, энергетической, фармацевтической и пищевой промышленности. Тепломассообменный аппарат содержит корпус (1) с патрубками для подвода и отвода жидкости и газа, расположенный в корпусе на валу вращающийся барабан (3) с радиальными лопатками (6), расположенными на внутренней поверхности по всей длине барабана. Барабан (3) имеет сплошную боковую стенку и снабжен торцевыми крышками, в которых вокруг вала выполнены радиальные отверстия для прохождения газа и жидкости. Радиальные лопатки изготовлены из листового материала и представляют собой загнутые на две разные по ширине части листа, а отверстия в торцевых крышках барабана выполнены так, чтобы они не перекрывали торцевую часть лопаток. Изобретение позволяет уменьшить капельный унос жидкости и, как следствие, повысить эффективность тепломассообменных процессов в системе газ-жидкость. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ректификационному устройству для очистки воды от примесей в виде молекул воды, содержащих в своем составе тяжелые изотопы водорода и кислорода. Устройство содержит ректификационную колонну, работающую под вакуумом, испаритель, конденсатор и тепловой насос. При этом ректификационная колонна состоит из двух коаксиальных труб с диаметрами D1 и D2, причем D1>D2 и (D1-D2)/2<300 мм, со слоем насыпной насадки, расположенным в зазоре между ними, при этом распределитель жидкости вверху колонны имеет не менее 800 точек орошения па квадратный метр площади сечения насадочной части колонны. Изобретение обеспечивает повышение производительности и снижение энергетических затрат. 4 з.п. ф-лы, 5 ил., 4 табл., 3 пр.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения продуктов по температурам кипения в процессе массо- и теплообмена между жидкостью и паром, и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности



2024 stdpro.ru. Сайт о правильном строительстве.