Водород порядковый номер. Водород элемент. Свойства водорода. Применение водорода

Водород - это самый лёгкий и самый распространённый химический элемент. В наше время каждый слышал о нём, а ведь совсем недавно он представлял из себя великую тайну даже для лучших учёных. Согласитесь, этого достаточно, чтобы узнать побольше о химическом элементе водород.

Водород: распространение в природе

Как мы уже сказали выше, водород — это самый распространенный элемент. Причем не только на Земле, но и во всей Вселенной! Солнце почти наполовину состоит из этого химического элемента, да и большинство звёзд имеют в своей основе водород. В межзвездных пространствах водород также является самым распространенным элементом. На Земле водород находится в виде соединений. Он входит в состав нефти, газов, даже живых организмов. Мировой Океан содержит около 11% водорода по массе. В атмосфере его совсем немного, всего около 5 десятитысячных процента.

История открытия водорода

О существовании водорода догадывались ещё средневековые алхимики. Так, Парацельс в своих трудах указывал, что при действии кислоты и железа выделяются пузырьки «воздуха». Но что это за «воздух» он понять не мог. В те времена учёные думали, что в каждом горючем веществе есть какая-то мистическая огненная составляющая, которая поддерживает горение. Эта догадка получила название теории «флогистона». Алхимики считали, например, что дерево состоит из пепла, который остается после сжигания, и флогистона, который освобождается при горении.
Впервые же свойства водорода изучили английские химики Генри Кавендиш и Джозеф Пристли в XVIII веке. Но и они полностью не осознали сути своего открытия. Они думали, что легкий газ (а водород легче воздуха в 14 раз) есть ни что иное как мистический флогистон.
И только Антуан Лавуазье доказал, что водород это никакой не флогистон, а самый настоящий химический элемент. Во время своих опытов он сумел получить водород из воды и затем доказал, что обратно вода получается при горении водорода. Поэтому этот химический элемент и получил такое название — «рождающий воду».

Химические свойства водорода

Водород самый первый химический элемент, в таблице Менделеева обозначается символом H. Представляет собой легкий газ без запаха и цвета. Твердый водород – самое легкое твердое вещество, а жидкий — самая лёгкая жидкость. К тому же жидкий водород при попадании на кожу может вызвать сильнейшее обморожение. Атомы и молекулы водорода – самые маленькие. Поэтому то воздушный шарик, надутый этим газом, очень быстро сдувается — водород просачивается через резину. При смешении водорода с кислородом воздуха образуется очень взрывоопасная смесь. Она называется «гремучий газ».
При вдыхании газа частота голоса становится намного выше обычной. Например, мужской грубый бас будет похож на голоса Чипа и Дейла. Однако, подобные химические опыты проводить не стоит, по причине указанной выше. Водород и кислород образуют гремучий газ, который при выдохе может легко взорваться!

Применение водорода

Несмотря на свою горючесть, водород широко используется во многих отраслях промышленности. В основном его используют при производства аммиака для минеральных удобрений и при производстве спирта и пластмассы. Когда-то водородом наполняли дирижабли и воздушные шары, этот легкий газ поднимал их в воздух совершенно без труда. Но сейчас в авиации и космической технике он используется только в качестве топлива для космических ракет. Созданы двигатели для автомобилей, работающие на водороде. Они самые экологически чистые, ведь при сгорании выделяется только вода. Однако на данный момент водородные двигатели имеют ряд существенных недостатков, не отвечаю в полной мере требованиям безопасности, поэтому их применение пока совершенно ничтожно. В пищевой промышленности водород используется при производстве маргарина, а также для упаковки продуктов. Он даже зарегистрирован в качестве пищевой добавки E949. В энергетике водород применяется для охлаждения генераторов и для выработки электроэнергии в водородно-кислородных топливных элементах.

Машина без выхлопных газов. Это Mirai производства Toyota. Автомобиль работает на водородном топливе.

Из выхлопных труб выходят лишь нагретый воздух и водяной пар. Машина будущего уже ездит по дорогам, хоть и испытывает проблемы с дозаправкой.

Хотя, учитывая распространенность водорода во Вселенной, такой загвоздки не должно быть.

Мир состоит из 1-го вещества на три четверти. Так что, свой порядковый номер элемент водород оправдывает. Сегодня, все внимание ему.

Свойства водорода

Будучи первым элементом, водород порождает первое вещество. Это вода. Ее формула, как известно, H 2 O.

На греческом название водорода пишется, как hidrogenium, где hidro – вода, а genium – порождать.

Однако, имя элементу дали не греки, а французский естествоиспытатель Лоран Лавуазье. До него, водород исследовали Генри Кевендишь, Никола Лемери и Теофраст Парацельс.

Последний, собственно, оставил науке первое упоминание о 1-ом веществе. Запись датирована 16-ым веком. К каким же выводам пришли ученые по поводу водорода ?

Характеристика элемента – двойственность. У атома водорода всего 1 электрон. В ряде реакций вещество отдает его.

Это поведение типичного металла из первой группы. Однако, водород способен и достраивать свою оболочку, не отдавая, а принимая 1 электрон.

В этом случае, 1-ый элемент ведет себя, как галогены. Они располагаются в 17-ой группе периодической системы и склонны к образованию .

В каких из них можно найти водород? К примеру, в гидросульфиде . Его формула: — NaHS.

Это соединение элемента водорода основано на . Как видно, атомы водорода вытеснены из нее натрием лишь частично.

Наличие всего одного электрона и способность его отдать превращает атом водорода в протон. В ядре тоже всего одна частица с положительным зарядом.

Относительная масса протона с электроном равна 2-ум. Показатель в 14 раз меньше, чем у воздуха. Без электрона вещество и того легче.

Вывод, что водород – газ, напрашивается сам собой. Но, у элемента есть и жидкая форма. Сжижжение происходит при температуре -252,8 градусов Цельсия.

За счет своих малых размеров химический элемент водород обладает способностью просачиваться сквозь другие вещества.

Так, если надуть воздушный не гелием, или обычным воздухом, а чистым элементом №1, сдуется уже через пару дней.

Частицы газа без труда пройдут в поры . Проходит водород и в некоторые металлы, к примеру, и .

Накапливаясь в их структуре, вещество испаряется при повышении температуры.

Хоть водород входит в состав воды, растворяется он плохо. Не зря в лабораториях элемент выделяют путем вытеснения влаги. А как добывают 1-е вещество промышленники? Этому посвятим следующую главу.

Добыча водорода

Формула водорода позволяет добывать его минимум 6-ю способами. Первый – паровая конверсия метана и природного газа.

Берутся легроиновые фракции . Чистый водород из них извлекается каталитическим путем. Для этого необходимо присутствие паров воды.

Второй путь добычи 1-го вещества – газификация . топливо нагревают до 1500 градусов, преобразуя в горючие газы.

Для этого требуется окислитель. Достаточно обычного атмосферного кислорода.

Третий путь получения водорода – электролиз воды. Через нее пропускают ток. Он помогает выделить на электродах нужный элемент.

Воспользоваться можно и пиролизом. Это термическое разложение соединений. Распасться заставляют, как органику, так и неорганические вещества, к примеру, ту же воду. Процесс происходит под действием высоких температур.

Пятый путь получения водорода – частичное окисление, а шестой – биотехнологии.

Под последними, понимается добыча газа из воды путем ее биохимического расщепления. Помогают специальные водоросли.

Нужен замкнутый фотобиореактор, поэтому, 6-ым способом пользуются редко. Популярен, собственно, лишь метод паровой конверсии.

Он наиболее дешев и прост. Однако, наличие массы альтернатив делает водород желанным сырьем для промышленности, ведь нет зависимости от конкретного источника элемента.

Применение водорода

Водород используют для синтеза . Это соединение является хладагентом в морозильной технике, известно, как составляющая нашатырного спирта, применяется в качестве нейтрализатора кислот.

Водород пускают, так же, на синтез хлороводородной кислоты. Это второе название .

Она нужна, к примеру, для очистки поверхностей металлов, их полировки. В пищевой промышленности хлороводородная – регулятор кислотности Е507.

В качестве пищевой добавки зарегистрирован и сам водород. Его название на упаковках продуктов – Е949.

Применяется, в частности, на производстве маргарина. Система гидрогенезации, собственно, делает маргарин .

В жирных из растительных масел разрывается часть связей. На местах разрыва встают атомы водорода. Это и преобразует текучую субстанцию в относительно .

В роли топливного элемент водород применяется, пока, не столько в , сколько ракетах.

Первое вещество сгорает в кислороде, что и дает энергию для движения космических аппаратах.

Так, одна из самых мощных российских ракет «Энергия» работает именно на водородном топливе. Первый элемент в нем сжижен.

Реакция горения водорода в кислороде пригождается и при сварочных работах. Можно скреплять самые тугоплавкие материалы.

Температура реакции в чистом виде – 3000 градусов Цельсия. С использованием специальных удается достичь 4000 градусов.

«Сдастся» любой , любой металл. Кстати, металлы с помощью 1-го элемента тоже получают. Реакция основана на выделении ценных веществ из их оксидов.

В ядерной промышленности жалуют изотопы водорода . Их всего 3. Один из них – тритий. Он радиоактивен.

Есть еще нерадиоактивные протий и дейтерий. Хоть тритий и излучает опасность, но встречается в естественной среде.

Изотоп образуется в верхних слоях атмосферы, на которые действуют космические лучи. Это приводит к ядерным реакциям.

В реакторах же на поверхности земли тритий – итог нейтронного облучения .

Цена водорода

Чаще всего, промышленники предлагают газообразный водород, естественно, в сжатом состоянии и в специальной таре, которая не пропустит мелкие атомы вещества.

Первый элемент делят на технический и очищенный, то есть, высший сорт. Есть даже марки водорода , к примеру, «А».

Для нее действует ГОСТ 3022-80. Это технический газ. За 40 кубических литров производители просят чуть меньше 1000 . За 50 литров дают 1300.

ГОСТ для чистого водорода – Р 51673-2000. Чистота газа составляет 9,9999%. Технический элемент, правда, немногим уступает.

Его чистота – 9,99%. Однако, за 40 кубических литров чистого вещества дают уже больше 13000 рублей.

По ценнику видно, как непросто дается промышленникам финальная стадия очистки газа. За 50-литровый баллон придется отдать 15000-16000 рублей.

Жидкий водород почти не используется. Слишком затратно, потери велики. Поэтому, и предложений о продаже, или покупке не найти.

Сжиженный водород не только трудно получить, но и хранить. Температура в минус 252 градуса – не шутки.

Поэтому, шутить никто и не собирается, пользуясь эффективным и простым в обращении газом.

Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

Физические свойства водорода

В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

Рис. 1. А. Лавуазье.

У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

Рис. 2. Формула водорода.

В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

Таблица «Физические свойства водорода»

Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

Получение водорода

Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

  • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
  • конверсия метана водяным паром при температуре 900 градусов:

CH 4 +2H 2 O=CO 2 +4H 2

Рис. 3. Паровая конверсия метана.

  • разложение метана в присутствии катализатора (Ni) при температуре 400 градусов:

ВОДОРОД
Н (лат. hydrogenium) ,
самый легкий газообразный химический элемент - член IA подгруппы периодической системы элементов, иногда его относят к VIIA подгруппе. В земной атмосфере водород в несвязанном состоянии существует только доли минуты, его количество составляет 1-2 части на 1 500 000 частей воздуха. Он выделяется обычно с другими газами при извержениях вулканов, из нефтяных скважин и в местах разложения больших количеств органических веществ. Водород соединяется с углеродом и(или) кислородом в органическом веществе типа углеводов, углеводородов, жиров и животных белков. В гидросфере водород входит в состав воды - наиболее распространенного соединения на Земле. В породах, грунтах, почвах и других частях земной коры водород соединяется с кислородом, образуя воду и гидроксид-ион OH-. Водород составляет 16% всех атомов земной коры, но по массе лишь около 1%, так как он в 16 раз легче кислорода. Масса Солнца и звезд на 70% состоит из водородной плазмы: в космосе это самый распространенный элемент. Концентрация водорода в атмосфере Земли возрастает с высотой благодаря его низкой плотности и способности подниматься на большие высоты. Обнаруженные на поверхности Земли метеориты содержат 6-10 атомов водорода на 100 атомов кремния.
Историческая справка. Еще немецкий врач и естествоиспытатель Парацельс в 16 в. установил горючесть водорода. В 1700 Н.Лемери обнаружил, что газ, выделяющийся при действии серной кислоты на железо, взрывается на воздухе. Водород как элемент идентифицировал Г.Кавендиш в 1766 и назвал его "горючим воздухом", а в 1781 он доказал, что вода - это продукт его взаимодействия с кислородом. Латинское hydrogenium, которое происходит от греческого сочетания "рождающий воду", было присвоено этому элементу А.Лавуазье.
Общая характеристика водорода. Водород - это первый элемент в периодической системе элементов; его атом состоит из одного протона и вращающегося вокруг него одного электрона
(см. также ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ).
Один из 5000 атомов водорода отличается наличием в ядре одного нейтрона, увеличивающего массу ядра с 1 до 2. Этот изотоп водорода называют дейтерием 21H или 21D. Другой, более редкий изотоп водорода содержит два нейтрона в ядре и называется тритием 31H или 31T. Тритий радиоактивен и распадается с выделением гелия и электронов. Ядра различных изотопов водорода различаются спинами протонов. Водород может быть получен а) действием активного металла на воду, б) действием кислот на определенные металлы, в) действием оснований на кремний и некоторые амфотерные металлы, г) действием перегретого пара на уголь и метан, а также на железо, д) электролитическим разложением воды и термическим разложением углеводородов. Химическая активность водорода определяется его способностью отдавать электрон другому атому или обобществлять его почти поровну с другим элементами при образовании химической связи либо присоединять электрон другого элемента в химическом соединении, называемом гидридом. Водород, производимый промышленностью, в огромных количествах расходуют на синтез аммиака, азотной кислоты, гидридов металлов. Пищевая промышленность применяет водород для гидрирования (гидрогенизации) жидких растительных масел в твердые жиры (например, маргарин). При гидрировании насыщенные органические масла, содержащие двойные связи между углеродными атомами, превращаются в насыщенные, имеющие одинарные углерод-углеродные связи. Высокочистый (99,9998%) жидкий водород используется в космических ракетах в качестве высокоэффективного горючего.
Физические свойства. Для сжижения и затвердевания водорода требуются очень низкие температуры и высокое давление (см. таблицу свойств). В нормальных условиях водород - бесцветный газ, без запаха и вкуса, очень легкий: 1 л водорода при 0° C и атмосферном давлении имеет массу 0,08987 г (ср. плотность воздуха и гелия 1,2929 и 0,1785 г/л соответственно; поэтому воздушный шар, наполненный гелием и имеющий такую же подъемную силу, как и воздушный шар с водородом, должен иметь на 8% больший объем). В таблице приведены некоторые физические и термодинамические свойства водорода. СВОЙСТВА ОБЫЧНОГО ВОДОРОДА
(при 273,16 К, или 0° С)
Атомный номер 1 Атомная масса 11Н 1,00797 Плотность, г/л

при нормальном давлении 0,08987 при 2,5*10 5 атм 0,66 при 2,7*10 18 атм 1,12*10 7


Ковалентный радиус, 0,74 Температура плавления, ° С -259,14 Температура кипения, ° С -252,5 Критическая температура, ° С -239,92 (33,24 K) Критическое давление, атм 12,8 (12,80 K) Теплоемкость, Дж/(мольЧK) 28,8 (H2) Растворимость

в воде, объем/100 объемов H2O (при стандартных условиях) 2,148 в бензоле, мл/г (35,2° С, 150,2 атм) 11,77 в аммиаке, мл/г (25° С) при 50 атм 4,47 при 1000 атм 79,25


Степени окисления -1, +1
Строение атома. Обычный водородный атом (протий) состоит из двух фундаментальных частиц (протона и электрона) и имеет атомную массу 1. Из-за огромной скорости движения электрона (2,25 км/с или 7*1015 об./с) и его дуалистической корпускулярно-волновой природы невозможно точно установить координату (положение) электрона в любой данный момент времени, но имеются некоторые области высокой вероятности нахождения электрона, и они определяют размеры атома. Большинство химических и физических свойств водорода, особенно относящихся к возбуждению (поглощению энергии), точно предсказываются математически (см. СПЕКТРОСКОПИЯ). Водород сходен со щелочными металлами в том, что все эти элементы способны отдавать электрон атому-акцептору для образования химической связи, которая может изменяться от частично ионной (переход электрона) до ковалентной (общая электронная пара). С сильным акцептором электронов водород образует положительный ион Н+, т.е. протон. На электронной орбите атома водорода могут находиться 2 электрона, поэтому водород способен также принимать электрон, образуя отрицательный ион Н-, гидрид-ион, и это роднит водород с галогенами, для которых характерно принятие электрона с образованием отрицательного галогенид-иона типа Cl-. Дуализм водорода находит отражение в том, что в периодической таблице элементов его располагают в IA подгруппе (щелочные металлы), а иногда - в VIIA подгруппе (галогены) (см. также ХИМИЯ).
Химические свойства. Химические свойства водорода определяются его единственным электроном. Количество энергии, необходимое для отрыва этого электрона, больше, чем может предоставить любой известный химический окислитель. Поэтому химическая связь водорода с другими атомами ближе к ковалентной, чем к ионной. Чисто ковалентная связь возникает при образовании молекулы водорода: H + H H2
При образовании одного моля (т.е. 2 г) H2 выделяется 434 кДж. Даже при 3000 K степень диссоциации водорода очень невелика и равна 9,03%, при 5000 K достигает 94% и лишь при 10000 K диссоциация становится полной. При образовании двух молей (36 г) воды из атомарного водорода и кислорода (4H + O2 -> 2H2O) выделяется более 1250 кДж и температура достигает 3000-4000° C, тогда как при сгорании молекулярного водорода (2H2 + O2 -> 2H2O) выделяется всего 285,8 кДж и температура пламени достигает лишь 2500° C. При комнатной температуре водород менее реакционноспособен. Для инициирования большинства реакций необходимо разорвать или ослабить прочную связь H-H, израсходовав много энергии. Скорость реакций водорода возрастает с использованием катализатора (металлы платиновой группы, оксиды переходных или тяжелых металлов) и методов возбуждения молекулы (свет, электрический разряд, электрическая дуга, высокие температуры). В таких условиях водород реагирует практически с любым элементом, кроме благородных газов. Активные щелочные и щелочноземельные элементы (например, литий и кальций) реагируют с водородом, являясь донорами электронов и образуя соединения, называемые солевыми гидридами (2Li + H2 -> 2LiH; Ca + H2 -> CaH2).
Вообще гидридами называются соединения, содержащие водород. Широкое разнообразие свойств таких соединений (в зависимости от атома, связанного с водородом) объясняется возможностями водорода проявлять заряд от -1 до практически +1. Это отчетливо проявляется в сходстве LiH и CaH2 и солей типа NaCl и CaCl2. Считается, что в гидридах водород заряжен отрицательно (Н-); такой ион является восстановителем в кислой водной среде: 2H- H2 + 2e- + 2,25B. Ион H- способен восстанавливать протон воды H+ до газообразного водорода: H- + H2O (r) H2 + OH-.
Соединения водорода с бором - бороводороды (борогидриды) - представляют необычный класс веществ, называемых боранами. Простейшим представителем их является BH3, существующий только в устойчивой форме диборана B2H6. Соединения с большим количеством атомов бора получают разными способами. Известны, например, тетраборан B4H10, стабильный пентаборан B5H9 и нестабильный пентаборан B5H11, гексаборан B6H10, декаборан B10H14. Диборан может быть получен из H2 и BCl3 через промежуточное соединение B2H5Cl, которое при 0° C диспропорционирует до B2H6, а также взаимодействием LiH или литийалюминийгидрида LiAlH4 c BCl3. В литийалюминийгидриде (комплексном соединении - солевом гидриде) четыре атома водорода образуют ковалентные связи с Al, но имеется ионная связь Li+ с []-. Другим примером водородсодержащего иона является борогидрид-ион BH4-. Ниже приведена приблизительная классификация гидридов по их свойствам в соответствии с положением элементов в периодической системе элементов. Гидриды переходных металлов называются металлическими или промежуточными и часто не образуют стехиометрических соединений, т.е. отношение атомов водорода к металлу не выражается целым числом, например, гидрид ванадия VH0,6 и гидрид тория ThH3,1. Металлы платиновой группы (Ru, Rh, Pd, Os, Ir и Pt) активно поглощают водород и служат эффективными катализаторами реакций гидрирования (например, гидрогенизации жидких масел с образованием жиров, конверсии азота в аммиак, синтеза метанола CH3OH из CO). Гидриды Be, Mg, Al и подгрупп Cu, Zn, Ga - полярные, термически нестабильные.

Неметаллы образуют летучие гидриды общей формулы MHx (х - целое число) с относительно низкой температурой кипения и высоким давлением паров. Эти гидриды существенно отличаются от солевых гидридов, в которых водород имеет более отрицательный заряд. У летучих гидридов (например, углеводородов) преобладает ковалентная связь между неметаллами и водородом. По мере усиления неметаллического характера образуются соединения с частично ионной связью, например H+Cl-, (H2)2+O2-, N3-(H3)3+. Отдельные примеры образования различных гидридов приведены ниже (в скобках указана теплота образования гидрида):


Изомерия и изотопы водорода. Атомы изотопов водорода непохожи. Обычный водород, протий, всегда представляет собой протон, вокруг которого вращается один электрон, находящийся от протона на огромном расстоянии (относительно размеров протона). Обе частицы обладают спином, поэтому атомы водорода могут различаться либо спином электрона, либо спином протона, либо и тем, и другим. Водородные атомы, различающиеся спином протона или электрона, называются изомерами. Комбинация двух атомов с параллельными спинами приводит к образованию молекулы "ортоводорода", а с противоположными спинами протонов - к молекуле "параводорода". Химически обе молекулы идентичны. Ортоводород имеет очень слабый магнитный момент. При комнатной или повышенной температуре оба изомера, ортоводород и параводород, находятся обычно в равновесии в соотношении 3:1. При охлаждении до 20 K (-253° C) содержание параводорода возрастает до 99%, так как он более стабилен. При сжижении методами промышленной очистки ортоформа переходит в параформу с выделением теплоты, что служит причиной потерь водорода от испарения. Скорость конверсии ортоформы в параформу возрастает в присутствии катализатора, например древесного угля, оксида никеля, оксида хрома, нанесенного на глинозем. Протий - необычный элемент, так как в ядре его нет нейтронов. Если в ядре появляется нейтрон, то такой водород называется дейтерий 21D. Элементы с одинаковым количеством протонов и электронов и разным количеством нейтронов называются изотопами. Природный водород содержит небольшую долю HD и D2. Аналогично, природная вода содержит в малой концентрации (менее 0,1%) DOH и D2O. Тяжелая вода D2O, имеющая массу больше, чем у H2O, отличается по физическим и химическим свойствам, например, плотность обычной воды 0,9982 г/мл (20° С), а тяжелой - 1,105 г/мл, температура плавления обычной воды 0,0° С, а тяжелой - 3,82° С, температура кипения - соответственно 100° С и 101,42° С. Реакции с участием D2O протекают с меньшей скоростью (например, электролиз природной воды, содержащей примесь D2O, с добавкой щелочи NaOH). Скорость электролитического разложения оксида протия H2O больше, чем D2O (с учетом постоянного роста доли D2O, подвергающейся электролизу). Благодаря близости свойств протия и дейтерия можно замещать протий на дейтерий. Такие соединения относятся к так называемым меткам. Смешивая соединения дейтерия с обычным водородсодержащим веществом, можно изучать пути, природу и механизм многих реакций. Таким методом пользуются для изучения биологических и биохимических реакций, например процессов пищеварения. Третий изотоп водорода, тритий (31T), присутствует в природе в следовых количествах. В отличие от стабильного дейтерия тритий радиоактивен и имеет период полураспада 12,26 лет. Тритий распадается до гелия (32He) с выделением b-частицы (электрона). Тритий и тритиды металлов используют для получения ядерной энергии; например, в водородной бомбе происходит следующая реакция термоядерного синтеза: 21H + 31H -> 42He + 10n + 17,6 МэВ
Получение водорода. Зачастую дальнейшее применение водорода определяется характером самого производства. В некоторых случаях, например при синтезе аммиака, небольшие количества азота в исходном водороде, конечно, не являются вредной примесью. Примесь оксида углерода(II) также не будет помехой, если водород используют как восстановитель. 1. Самое крупное производство водорода основано на каталитической конверсии углеводородов с водяным паром по схеме CnH2n + 2 + nH2O (r) nCO + (2n + 1)H2 и CnH2n + 2 + 2nH2O (r) nCO2 + (3n + 1)H2. Температура процесса зависит от состава катализатора. Известно, что температуру реакции с пропаном можно снизить до 370° С, используя в качестве катализатора боксит. До 95% производимого при этом CO расходуется при дальнейшей реакции с парами воды: H2O + CO -> CO2 + H2
2. Метод водяного газа дает значительную часть общего производства водорода. Сущность метода заключается в реакции паров воды с коксом с образованием смеси CO и H2. Реакция эндотермична (DH° = 121,8 кДж/моль), и ее проводят при 1000° С. Нагретый кокс обрабатывают паром; выделяющаяся очищенная газовая смесь содержит некоторое количество водорода, большой процент CO и небольшую примесь CO2. Для повышения выхода H2 монооксид CO удаляют дальнейшей паровой обработкой при 370° C, при этом получается больше CO2. Углекислый газ довольно легко удалить, пропуская газовую смесь через скруббер, орошаемый водой противотоком. 3. Электролиз. В электролитическом процессе водород является фактически побочным продуктом производства главных продуктов - хлора и щелочи (NaOH). Электролиз проводят в слабощелочной водной среде при 80° C и напряжении около 2В, используя железный катод и никелевый анод:

4. Железо-паровой метод, по которому пар при 500-1000° C пропускают над железом: 3Fe + 4H2O Fe3O4 + 4H2 + 160,67 кДж. Получаемый этим методом водород обычно используют для гидрогенизации жиров и масел. Состав оксида железа зависит от температуры процесса; при nC + (n + 1)H2
6. Следующим по объему производства является метанол-паровой метод: CH3OH + H2O -> 3H2 + CO2. Реакция эндотермична и ее проводят при ВОДОРОД260° C в обычных стальных реакторах при давлении до 20 атм. 7. Каталитическое разложение аммиака: 2NH3 -> Реакция обратима. При небольших потребностях в водороде этот процесс неэкономичен. Существуют также разнообразные способы получения водорода, которые, хотя и не имеют большого промышленного значения, в некоторых случаях могут оказаться экономически наиболее выгодными. Очень чистый водород получается при гидролизе очищенных гидридов щелочных металлов; при этом из малого количества гидрида образуется много водорода: LiH + H2O -> LiOH + H2
(Этот метод удобен при непосредственном применении получаемого водорода.) При взаимодействии кислот с активными металлами также выделяется водород, однако при этом он обычно загрязнен парами кислоты или другим газообразным продуктом, например фосфином PH3, сероводородом H2S, арсином AsH3. Наиболее активные металлы, реагируя с водой, вытесняют водород и образуют щелочной раствор: 2H2O + 2Na -> H2 + 2NaOH Распространен лабораторный метод получения H2 в аппарате Киппа по реакции цинка с соляной или серной кислотой:
Zn + 2HCl -> ZnCl2 + H2. Гидриды щелочноземельных металлов (например, CaH2), комплексные солевые гидриды (например, LiAlH4 или NaBH4) и некоторые бороводороды (например, B2H6) при реакции с водой или в процессе термической диссоциации выделяют водород. Бурый уголь и пар при высокой температуре также взаимодействуют с выделением водорода.
Очистка водорода. Степень требуемой чистоты водорода определяется его областью применения. Примесь углекислого газа удаляют вымораживанием или сжижением (например, пропуская газообразную смесь через жидкий азот). Эту же примесь можно полностью удалить барботированием через воду. CO может быть удален каталитическим превращением в CH4 или CO2 или сжижением при обработке жидким азотом. Примесь кислорода, образующаяся в процессе электролиза, удаляется в виде воды после искрового разряда.
Применение водорода. Водород применяется главным образом в химической промышленности для производства хлороводорода, аммиака, метанола и других органических соединений. Он используется при гидрогенизации масел, а также угля и нефти (для превращения низкосортных видов топлив в высококачественные). В металлургии с помощью водорода восстанавливают некоторые цветные металлы из их оксидов. Водород используют для охлаждения мощных электрогенераторов. Изотопы водорода находят применение в атомной энергетике. Водородно-кислородное пламя применяется для резки и сварки металлов.
ЛИТЕРАТУРА
Некрасов Б.В. Основы общей химии. М., 1973 Жидкий водород. М., 1980 Водород в металлах. М., 1981

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ВОДОРОД" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Водород 4, 4H Нейтронов 3 Протонов 1 Свойства нуклида Атомная масса 4,027810(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 5, 5H Нейтронов 4 Протонов 1 Свойства нуклида Атомная масса 5,035310(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 6, 6H Нейтронов 5 Протонов 1 Свойства нуклида Атомная масса 6,044940(280) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 7, 7H Нейтронов 6 Протонов 1 Свойства нуклида Атомная масса 7,052750(1080) … Википедия

Водород – первый химический элемент Периодической Системы химических элементов Д.И. Менделеева. Химический элемент водород расположен в первой группе, главной подгруппе, первом периоде Периодической Системы.

Относительная атомная масса водорода = 1.

Водород имеет наиболее простое строение атома, он состоит из единственного электрона, который находится в околоядерном пространстве. Ядро атома водорода состоит из одного протона.

Атом водорода, в химических реакциях может как отдавать, так и присоединять электрон, образуя два вида ионов:

H0 + 1ē → H1− H0 – 1ē → H1+.

Водород – самый распространённый элемент во Вселенной. На его долю приходится около 88,6% всех атомов (около 11,3% составляют атомы гелия, доля всех остальных вместе взятых элементов – порядка 0,1%). Таким образом, водород – основная составная часть звёзд и межзвёздного газа. В межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Массовая доля водорода в земной коре составляет 1%. Это девятый по распространённости элемент. Значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объёму для сухого воздуха).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках.

Физические свойства водорода

Простое вещество, образованное химическим элементом водородом, имеет молекулярное строение. Его состав отвечает формуле Н2. Как и химический элемент, простое вещество также называют водородом.

Водород – бесцветный газ без запаха и вкуса, практически нерастворим в воде. При комнатной температуре и нормальном атмосферном давлении растворимость составляет 18,8 мл газа на 1 л воды.

Водород – самый легкий газ, его плотность составляет 0,08987 г/л. Для сравнения: плотность воздуха равна 1,3 г/л.

Водород способен растворяться в металлах, так например, в одном объеме палладия может раствориться до 850 объемов водорода. Из-за крайне малого размера молекул водород способен к диффузии через многие материалы

Подобно другим газам водород при низких температурах конденсируется в бесцветную прозрачную жидкость, это происходит при температуре –252,8°С. При достижении температуры –259,2°С водород кристаллизуется в виде белых кристаллов, похожих на снег.

В отличие от кислорода, для водорода не характерна аллотропия

Применение водорода

Водород используют в различных отраслях промышленности. Много водорода уходит на производство аммиака (NH3). Из аммиака получают азотные удобрения, синтетические волокна и пластмассы, лекарства.

В пищевой промышленности водород используют при производстве маргарина, в состав которого входят твердые жиры. Чтобы их получить из жидких жиров, через них пропускают водород.

Когда водород горит в кислороде, то температура пламени составляет около 2500°C. При такой температуре можно плавить и сваривать тугоплавкие металлы. Таким образом, водород используется при сварке.

Смесь жидких водорода и кислорода применяют как ракетное топливо.

В настоящее время в ряде стран начаты исследования по замене невозобновляемых источников энергии (нефти, газа, угля) на водород. При сгорании водорода в кислороде образуется экологически чистый продукт – вода, а не углекислый газ, вызывающий парниковый эффект.

Ученые предполагают, что в середине XXI века должно быть начато серийное производство автомобилей на водороде. Широкое применение найдут домашние топливные элементы, работа которых также основана на окислении водорода кислородом.

В конце XIX – начале ХХ веков, на заре эры воздухоплавания, водородом заполняли воздушные шары, дирижабли и аэростаты, так как он намного легче воздуха. Однако эпоха дирижаблей начала стремительно уходить в прошлое после катастрофы, случившейся с дирижаблем Гинденбург. 6 мая 1937 года дирижабль, заполненный водородом, загорелся, что повлекло за собой гибель десятков его пассажиров.

Водород крайне взрывоопасен в определенной пропорции с кислородом. Несоблюдение правил техники безопасности и привело к воспламенению и взрыву дирижабля.

  • Водород – первый химический элемент Периодической Системы химических элементов Д.И. Менделеева
  • Водород расположен в I группе, главной подгруппе, 1 периоде Периодической Системы
  • Валентность водорода в соединениях – I
  • Водород – бесцветный газ без запаха и вкуса, практически нерастворим в воде
  • Водород – самый легкий газ
  • При низких температурах получают жидкий и твердый водород
  • Водород способен растворяться в металлах
  • Сферы применения водорода разнообразны


2024 stdpro.ru. Сайт о правильном строительстве.