Самые быстрые ракеты в мире. Космическая скорость в лаборатории. Продолжение

В борьбе за преодоление «конденсационного порога» ученым-аэродинамикам пришлось отказаться от применения расширяющегося сопла. Были созданы сверхзвуковые аэродинамические трубы принципиально нового типа. На входе в такую трубу ставится баллон высокого давления, который отделяется от нее тонкой пластинкой - диафрагмой. На выходе труба соединяется с вакуумной камерой, в результате чего в трубе создается высокое разрежение.

Если прорвать диафрагму, например резким увеличением давления в баллоне, то поток газа устремится по трубе в разреженное пространство вакуумной камеры, предшествуемый мощной ударной волной. Поэтому установки эти получили название ударных аэродинамических труб.

Как и для трубы баллонного типа, время действия ударных аэродинамических труб очень невелико и составляет всего несколько тысячных долей секунды. Для проведения необходимых измерений за столь короткое время приходится использовать сложные быстродействующие электронные приборы.

Ударная волна перемещается в трубе с очень большой скоростью и без специального сопла. В созданных за рубежом аэродинамических трубах удалось получить скорости воздушного потока до 5200 метров в секунду при температуре самого потока в 20 000 градусов. При таких высоких температурах скорость звука в газе тоже увеличивается, и намного. Поэтому, несмотря на большую скорость воздушного потока, ее превышение над скоростью звука оказывается незначительным. Газ движется с большой абсолютной скоростью и с небольшой скоростью относительно звука.

Чтобы воспроизвести большие сверхзвуковые скорости полета, необходимо было или еще больше увеличить скорость воздушного потока, или же снизить скорость звука в нем, то есть уменьшить температуру воздуха. И тут аэродинамики снова вспомнили о расширяющемся сопле: ведь с его помощью можно сделать и то и другое одновременно - оно разгоняет поток газа и в то же время охлаждает его. Расширяющееся сверхзвуковое сопло в этом случае оказалось тем ружьем, из которого аэродинамики убили сразу двух зайцев. В ударных трубах с таким соплом удалось получить скорости воздушного потока, в 16 раз превышающие скорость звука.

СО СКОРОСТЬЮ СПУТНИКА

Резко увеличить давление в баллоне ударной трубы и тем самым прорвать диафрагму можно различными способами. Например, как это делают в США, где применяется мощный электрический разряд.

В трубе на входе ставится баллон высокого давления, отделенный от остальной части диафрагмой. За баллоном располагается расширяющееся сопло. Перед началом испытаний давление в баллоне увеличилось до 35-140 атмосфер, а в вакуумной камере, на выходе из трубы, понижалось до миллионной доли атмосферного давления. Затем в баллоне производился сверхмощный разряд электрической дуги силой тока в миллион ! Искусственная молния в аэродинамической трубе резко увеличивала давление и температуру газа в баллоне, диафрагма мгновенно испарялась и поток воздуха устремлялся в вакуумную камеру.

В течение одной десятой секунды можно было воспроизвести скорость полета около 52 000 километров в час, или 14,4 километра в секунду! Таким образом, в лабораториях удалось преодолеть и первую и вторую космические скорости.

С этого момента аэродинамические трубы стали надежным подспорьем не только для авиации, но и для ракетной техники. Они позволяют решить целый ряд вопросов современного и будущего космоплавания. С их помощью можно испытать модели ракет, искусственных спутников Земли и космические корабли, воспроизводя тот участок их полета, который они проходят в пределах планетной атмосферы.

Но достигнутые скорости должны находиться лишь в самом начале шкалы воображаемого космического спидометра. Их освоение - это только первый шаг на пути создания новой отрасли науки - космической аэродинамики, которая была вызвана к жизни потребностями бурно развивающейся ракетной техники. И уже имеются новые значительные успехи в деле дальнейшего освоения космических скоростей.

Поскольку при электрическом разряде воздух в некоторой степени ионизируется, то можно попытаться в той же ударной трубе использовать электромагнитные поля для дополнительного ускорения получающейся воздушной плазмы. Эта возможность была осуществлена практически в другой, сконструированной в США ударной гидромагнитной трубе небольшого диаметра, в которой скорость движения ударной волны достигла 44,7 километра в секунду! О такой скорости движения пока что могут только мечтать конструкторы космических аппаратов.

Несомненно, что дальнейшие успехи науки и техники откроют более широкие возможности перед аэродинамикой будущего. Уже сейчас в аэродинамических лабораториях начинают использоваться современные физические установки, например установки с высокоскоростными струями плазмы. Для воспроизведения полета фотонных ракет в межзвездной разреженной среде и для изучения прохождения космических кораблей сквозь скопления межзвездного газа придется использовать достижения техники ускорения ядерных частиц.

И, очевидно, еще задолго до того, как первые звездолеты покинут пределы , их миниатюрные копии уже не один раз испытают в аэродинамических трубах все тяготы далекого пути к звездам.

P. S. О чем еще думают британские ученные: впрочем космическая скорость бывает далеко не только в научных лабораториях. Так, скажем если вас интересует создание сайтов в Саратове — http://galsweb.ru/ , то здесь вам его создадут с поистине космической скоростью.

Сегодня полеты в космос не относятся к фантастическим историям, но, к сожалению, современный космический корабль еще очень сильно отличается от тех, которые показывают в фильмах.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Космические корабли России и

Космические корабли будущего

Космический корабль: какой он

На

Космический корабль, как он работает?

Масса современных космолетов напрямую связана с тем, как высоко они летают. Главная задача пилотируемых космолетов ‒ безопасность.

Спускаемый аппарат СОЮЗ стал первой космической серией Советского Союза. В этот период между СССР и США шла гонка вооружения. Если сравнивать размеры и подход к вопросу строительства, то руководство СССР делало все для скорейшего покорения космоса. Понятно, почему сегодня не строят аналогичные аппараты. Вряд ли кто-то возьмется строить по схеме, в которой отсутствует личное пространство космонавтов. Современные космолеты оборудованы и комнатами для отдыха экипажа, и спускаемой капсулой, главной задачей которой является в тот момент, как осуществляется посадка, сделать ее максимально мягкой.

Первый космический корабль: история создания

Отцом космонавтики справедливо считается Циолковский. На основе его учений Годдрадпостроил ракетный двигатель.

Ученые, которые трудились в Советском Союзе, стали первыми, кто сконструировал и смог запустить искусственный спутник. Также они стали первыми, кто изобрел возможность запуска в космос живого существа. Штаты осознают, что Союз стал первым, кто создал летательный аппарат, способный выйти в космос с человеком. Отцом ракетостроения справедливо называют Королева, который вошел в историю как тот, кто придумал, как преодолеть земное притяжение, и смог создать первый пилотируемый космический корабль. Сегодня даже малыши знают, в каком году запустили первый корабль с человеком на борту, но мало кто помнит о вкладе Королева в этот процесс.

Экипаж и его безопасность во время полета

Главная задача сегодня — безопасность экипажа, ведь он проводит много времени на высоте полета. При строении летательного устройства важно, из какого металла его делают. В ракетостроении используются следующие типы металлов:

  1. Алюминий ‒ позволяет значительно увеличить размеры космолета, поскольку отличается легкостью.
  2. Железо ‒ замечательно справляется со всеми нагрузками на корпус корабля.
  3. Медь ‒ обладает высокойтеплопроводимостью.
  4. Серебро ‒ надежно связывает медь и сталь.
  5. Из титановых сплавов изготавливают баки для жидкого кислорода и водорода.

Современная система жизнеобеспечения позволяет создать привычную для человека атмосферу. Многие мальчишки видят, как они летают в космосе, забывая об очень большой перегрузке космонавта при старте.

Самый большой космический корабль в мире

Среди боевых кораблей большой популярностью пользуются истребители и перехватчики. Современный грузовой корабль имеет следующую классификацию:

  1. Зонд — это исследовательский корабль.
  2. Капсула — грузовой отсек для доставки или спасательных операций экипажа.
  3. Модуль — на орбиту выводится беспилотным носителем. Современные модули делятся на 3 категории.
  4. Ракета. Прототипом для создания послужили военные разработки.
  5. Челнок — многоразовые конструкции для доставки необходимого груза.
  6. Станции — самые большие космические корабли. Сегодня в открытом космосе находятся не только русские, но и французские, китайские и другие.

Буран — космический корабль, вошедший в историю

Первым космическим кораблем, вышедшим в космос, стал Восток. После федерация ракетостроения СССР начала выпуск кораблей Союз. Намного позже стали выпускать Клиперы и Русь. На все эти пилотируемые проекты федерация возлагает огромные надежды.

В 1960 году корабль Восток своим полетом доказал возможность выхода человека в космос. 12 апреля 1961 года Восток 1 совершил виток вокруг Земли. А вот вопрос, кто летал на корабле Восток 1, почему-то вызывает затруднение. Может быть дело в том, что мы просто не знаем, что свой первый полет Гагарин совершил именно на этом корабле? В том же году впервые на орбиту вышел корабль Восток 2, в котором находилось сразу два космонавта, один из которых вышел за пределы корабля в космосе. Это был прогресс. А уже в 1965 году Восход 2 смог выйти в открытый космос. История корабля восход 2 была экранизирована.

Восток 3 установил новый мировой рекорд по времени пребывания корабля в космосе. Последним кораблем серии стал Восток 6.

Американский шатл серии Аполлон открыл новые горизонты. Ведь в 1968 Аполлон 11 смог первым приземлиться на Луну. Сегодня существует несколько проектов по разработке космопланов будущего, такие как Гермес и Колумб.

Салют — серия межорбитальных космических станций Советского Союза. Салют 7 известна тем, что потерпела крушение.

Следующим космолетом, история которого вызывает интерес, стал Буран, кстати, интересно, где он сейчас находится. В 1988 году он совершил свой первый и последний полет. После многоразовых разборов и перевозок путь передвижения Бурана потерялся. Известное последнее местонахождение космического корабля Буранв Сочи, работы по нему законсервированы. Однако буря вокруг этого проекта до сих пор не утихла, и дальнейшая судьба заброшенного проекта Буран вызывает интерес у многих. А в Москве внутри макета космолета Буран на ВДНХ создан интерактивный музейный комплекс.

Джемини — серия кораблей американских конструкторов. Заменили проект Меркурий и смогли сделать спираль на орбите.

Американские корабли с названием Спейсшатл стали своеобразными челноками, совершая более 100 полетов между объектами. Вторым Спейсшатлом стал Челенджер.

Не может не заинтересовать история планеты Нибиру, которая признана кораблем-надзирателем. Нибиру уже дважды приближалась на опасное расстояние к Земле, но оба раза столкновения удалось избежать.

Драгон — космолет, который в 2018 году должен был совершить полет на планету Марс. В 2014 году федерация, ссылаясь на технические характеристики и состояние корабля Дракон, отложила запуск. Не так давно произошло еще одно событие: компания Боинг сделала заявление, что также начала разработки по созданию марсохода.

Первым в истории многоразовым кораблем универсалом должен был стать аппарат под названием Заря. Заря — это первая разработка транспортного корабля многоразового использования, на который федерация полагала очень большие надежды.

Прорывом считается возможность использования ядерных установок в космосе. Для этих целей начались работы по транспортно-энергетическому модулю. Параллельно ведутся разработки по проекту Прометей — компактному ядерному реактору для ракет и космолетов.

Китайский корабль Шэньчжоу 11 стартовал в 2016 году с двумя астронавтами, которые должны были провести в космосе 33 дня.

Скорость космического корабля (км/ч)

Минимальной скоростью, с которой можно выйти на орбиту вокруг Земли считается 8 км/с. Сегодня нет надобности разрабатывать самый быстрый в мире корабль, поскольку мы находимся в самом начале космического пространства. Ведь максимальная высота, которой мы смогли достичь в космосе, всего 500 км. Рекорд самого быстрого передвижения в космосе был установлен в 1969 году, и пока побить его не удалось. На космическом корабле Аполлон 10 трое космонавтов, побывав на орбите Луны, возвращались домой. Капсула, которая должна была доставить их из полета, сумела развить скорость 39,897 км/ч. Для сравнения давайте рассмотрим, с какой скоростью летит космическая станция. Максимально она может развиться до 27 600 км/ч.

Заброшенные космические корабли

Сегодня для космолетов, пришедших в негодность, создали кладбище втихом океане, где могут найти свой последний приют десятки заброшенных космических кораблей. Катастрофы космических кораблей

В космосе случаются катастрофы, часто забирающие жизни. Наиболее частыми, как ни странно, являются аварии, которые происходят из-за столкновения с космическим мусором. При столкновении орбита движения объекта смещается и становится причиной крушения и повреждений, часто становящихся причиной взрыва. Самой известной катастрофой является гибель пилотируемого американского корабля Челленджер.

Ядерный двигатель для космических кораблей 2017

Сегодня ученые работают над проектами по созданию атомного электродвигателя. Эти разработки подразумевают покорение космоса с помощью фотонных двигателей. Российские ученные планируют уже в скором будущем приступить к испытаниям термоядерного двигателя.

Космические корабли России и США

Стремительный интерес к космосу возник в годы Холодной войны между СССР и США. Американские ученые признали в российских коллегах достойных соперников. Советское ракетостроение продолжало развиваться, и после распада государства его приемником стала Россия. Конечно, космолеты, накоторых летают российские космонавты, значительно отличаются от первых кораблей. Более того, сегодня, благодаря успешным разработкам американских ученых, космические корабли стали многоразовыми.

Космические корабли будущего

Сегодня все больший интерес вызывают проекты, в результате которых человечество сможет совершать более длительные путешествия. Современные разработки уже готовят корабли к межзвездным экспедициям.

Место, откуда запускают космические корабли

Увидеть своими глазами запуск космического корабля на старте — мечта многих. Возможно, это связано с тем, что первый запуск не всегда приводит к желаемому результату. Но благодаря Интернету мы можем увидеть, как взлетает корабль. Учитывая тот факт, что наблюдающим за запуском пилотируемого корабля следует находиться достаточно далеко, мы можем представить, что находимся на взлетной площадке.

Космический корабль: какой он внутри?

Сегодня, благодаря музейным экспонатам, мы воочию можем увидеть устройство таких кораблей, как Союз. Конечно, изнутри первые корабли были очень простыми. Интерьер более современных вариантов выдержан в спокойных тонах. Устройство любого космического корабля обязательно пугает нас множеством рычажков и кнопочек. И это добавляет гордости за тех, кто смог запомнить, как устроен корабль, и, тем более, научился управлять им.

На каких космических кораблях летают сейчас?

Новые космические корабли своим внешним видом подтверждают, что фантастика стала действительностью. Сегодня никого уже не удивишь тем, что стыковка космических кораблей — реальность. И мало кто помнит о том, что первая в мире такая стыковка произошла еще в далеком 1967 году...

Чтобы преодолеть силу земного притяжения и вывести космический аппарат на орбиту Земли, ракета должна лететь со скоростью не менее 8 километров в секунду . Это и есть первая космическая скорость. Аппарат, которому сообщается первая космическая скорость, после отрыва от Земли становится искусственным спутником, то есть двигается вокруг планеты по круговой орбите. Если же аппарату сообщить скорость меньше первой космической, то он будет двигаться по траектории, которая пересекается с поверхностью земного шара. Иначе говоря, он упадет на Землю.


Снарядам A и B сообщается скорость ниже первой космической - они упадут на Землю;
снаряду C, которому сообщили первую космическую скорость, выйдет на круговую орбиту

Но для такого полета необходимо очень много топлива. 3а пару минут реактивный, двигатель съедает его целую железнодорожную цистерну, а для того, чтобы придать ракете необходимый разгон, требуется огромный железнодорожный состав топлива.

Заправочных станций в космосе нет, поэтому приходится все горючее брать с собой.

Баки с топливом очень велики и тяжелы. Когда баки опустеют, они становятся лишним грузом для ракеты. Ученые придумали способ избавляться от ненужной тяжести. Ракета собирается как конструктор и состоит из нескольких уровней, или ступеней. Каждая ступень имеет свой двигатель и свой запас топлива.

Первая ступень тяжелее всех. Здесь находится самый мощный двигатель и больше всего топлива. Она должна сдвинуть ракету с места и придать ей необходимый разгон. Когда топливо первой ступени израсходуется, она отсоединяется от ракеты и падает на землю, ракета становится легче, и ей не надо тратить дополнительное топливо на перевозку пустых баков.

Затем включаются двигатели второй ступени, которая меньше первой, так как ей нужно тратить меньше энергии на подъем космического аппарата. Когда баки с горючим опустеют, и эта ступень «отстегнется» от ракеты. Затем вступит в действие третья, четвертая...

После окончания работы последней ступени космический аппарат оказывается на орбите. Он может летать вокруг Земли очень долго, не затрачивая при этом ни капли топлива.

С помощью таких ракет отправляются в полет космонавты, спутники, межпланетные автоматические станции.

А знаете ли вы...

Первая космическая скорость зависит от массы небесного тела. Для Меркурия, масса которого в 20 раз меньше, чем у Земли, она равна 3,5 километров в секунду, а для Юпитера, масса которого больше массы Земли в 318 раз - почти 42 километра в секунду!

11.06.2010 00:10

Американский космический корабль Dawn недавно установил новый рекорд набора скорости — 25,5 тысячи км/час, опередив своего главного конкурента — зонд Deep Space 1. Такое достижение стало возможным благодаря установленному на аппарате сверхмощному ионному двигателю. Однако, по мнению специалистов NASA, это еще далеко не предел его возможностей.

Скорость американского космического аппарата Dawn достигла 5 июня рекордной величины — 25,5 тысячи км/час. Однако, по мнению ученых, в ближайшее время скорость корабля доберется и до отметки в 100 тысяч км/час.

Таким образом, благодаря уникальному двигателю, Dawn обошел своего предшественника — зонд Deep Space 1, экспериментальный автоматический космический аппарат, запущенный 24 октября 1998 года ракетой-носителем. Правда, Deep Space 1 пока сохраняет за собой звание станции, двигатели которой работали дольше всего. Но опередить "конкурента" в этой категории Dawn может уже в августе.

Основной задачей космического корабля, запущенного три года назад, является изучение астероида 4 Веста, к которому аппарат приблизится в 2011 году, и карликовой планеты Церера. Ученые надеются получить максимально точные данные о форме, размерах, массе, минеральном и элементном составе этих объектов, расположенных между орбитами Юпитера и Марса. Общий путь, который предстоит преодолеть аппарату Dawn, составляет 4 миллиарда 800 миллионов километров.

Так как в космическом пространстве нет воздуха, разогнавшись, корабль продолжает двигаться с набранной скоростью. На Земле это невозможно из-за замедления при трении. Использование в условиях безвоздушного пространства ионных двигателей позволило ученым сделать процесс постепенного приращения скорости космического аппарата Dawn максимально эффективным.

Принцип работы инновационного двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей. Таким образом, в двигателе можно достичь очень большого удельного импульса, что позволяет значительно уменьшить расход реактивной массы ионизированного газа (по сравнению с химической реакцией), но требует больших затрат энергии.

Три двигателя аппарата Dawn работают не постоянно, а включаются ненадолго в определенные моменты полета. К настоящему моменту они проработали в общей сложности 620 дней и израсходовали свыше 165 килограммов ксенона. Несложные расчеты показывают, что скорость зонда увеличивалась примерно на 100 км/ч каждые четыре дня. К концу восьмилетней миссии Dawn (хотя специалисты не исключают ее продления) суммарное время работы двигателей составит 2000 дней — почти 5,5 года. Такие показатели сулят, что скорость космического корабля достигнет 38,6 тысячи км/час.

Это может показаться небольшой величиной на фоне хотя бы первой космической скорости, с которой запускаются искусственные спутники Земли, но для межпланетного аппарата без каких-либо внешних ускорителей, не совершающего специальные маневры в гравитационном поле планет, такой результат и в самом деле примечателен.

Однако, в космосе все по-другому, некоторые явления просто необъяснимы и никаким законам не поддаются в принципе. Например, запущенный несколько лет назад спутник, или другие объекты будут вращаться по своей орбите и никогда не упадут. Почему так происходит, с какой скоростью летит ракета в космос ? Физики предполагают, что есть центробежная сила, которая нейтрализует действие гравитации.

Проделав небольшой эксперимент, мы можем сами, не выходя из дома, это понять и ощутить. Для этого нужно взять нитку и привязать к одному концу небольшой груз, далее нить раскрутить по окружности. Мы почувствуем, что чем выше скорость, тем траектория у груза будет четче, а нить больше натягивается, если ослабить силу, скорость вращения объекта уменьшится и риск того, что груз упадет, возрастает в несколько раз. Вот с такого небольшого опыта мы и начнем развивать нашу тему - скорость в космосе .

Становится понятно, что высокая скорость позволяет любому объекту преодолевать силу притяжения. Что касается космических объектов, любых у них у каждого своя скорость, она разная. Определяется четыре основных вида такой скорости и самая маленькая из них первая. Именно на такой скорости летит корабль на орбиту Земля.

Для того чтобы вылететь за ее пределы нужна вторая скорость в космосе . На третьей скорости полностью преодолевается тяготение и можно вылететь за пределы солнечной системы. Четвертая скорость ракеты в космосе позволит покинуть саму галактику, это примерно 550 км/с. Нам всегда было интересна скорость ракеты в космосе км ч, при выходе на орбиту она равняется 8 км/с, за ее пределы - 11 км/с, то есть, развивая свои возможности до 33 000 км/ч. Ракета наращивает постепенно скорость, полноценный разгон начинается с высоты 35 км. Скорость выхода в космос составляет 40000 км/ч.

Скорость в космосе: рекорд

Максимальная скорость в космосе - рекорд, установленный 46 лет назад, до сих пор держится, его совершили астронавты, принимавшие участие в миссии «Аполлон 10». Облетев Луну, обратно они возвращались, когда скорость космического корабля в космосе составляла 39 897 км/час. В ближайшем будущем планируется отправить в пространство невесомости корабль «Орион», который будет выводить космонавтов на низкую околоземную орбиту. Возможно, тогда удастся побить 46-летний рекорд. Скорость света в космосе - 1 млрд км/час. Интересно, сможем ли мы преодолеть такое расстояние со своей максимально доступной скоростью в 40 000 км/час. Вот какая скорость в космосе развивается у света, но мы это не ощущаем здесь.

Теоретически человек может перемещаться со скоростью несколько меньшей скорости света. Однако это повлечет за собой колоссальный вред, особенно для неподготовленного организма. Ведь для начала такую скорость нужно развить, приложить усилие, чтобы безопасно ее снизить. Потому как быстрое ускорение и замедление может стать смертельным для человека.

В древние времена считалось, что Земля неподвижна, никого не интересовал вопрос о скорости ее вращения по орбите, потому как таких понятий в принципе не существовало. Но и сейчас дать однозначный ответ на вопрос сложно, потому что величина неодинаковая в разных географических точках. Ближе к экватору скорость будет выше, в районе юга Европы она равняется 1200 км/час, вот такая средняя скорость Земли в космосе .



2024 stdpro.ru. Сайт о правильном строительстве.