Материалы для изготовления печатных плат. Выбор материала для изготовления печатной платы. Покрытия площадок печатной платы

Качество поставляемых материалов соответствует стандарту IPC4101B, система управления качеством производителей подтверждена международными сертификатами ISO 9001:2000.

FR 4 – стеклотекстолит класса огнестойкости 94V-0 - является наиболее распространенным материалом для производства печатных плат. Наша компания поставляет следующие виды материалов для производства одно-, и двусторонних печатных плат :

  • Стеклотекстолит FR4 с температурой стеклования 135ºС , 140ºС и 170ºС для производства односторонних и двухсторонних печатных плат. Толщиной 0,5 - 3,0 мм с фольгой 12, 18, 35, 70, 105 мкм.
  • Базовый FR4 для внутренних слоев МПП с температурой стеклования 135ºС, 140ºС и 170ºС
  • Препреги FR4 с температурой стеклования 135ºС, 140ºС и 170ºС для прессования МПП
  • Материалы XPC , FR1 , FR2 , CEM-1 , CEM-3 , НА-50
  • Материалы для плат с контролируемым отводом тепла:
    • (алюминий, медь, нержавеющая сталь) с диэлектриком теплопроводностью от 1 Вт/м*К до 3 Вт/м*К производства Totking и Zhejiang Huazheng New Material Co.
    • Материал HA-30 CEM-3 с теплопроводностью 1 Вт/м*К для производства одно- и двухсторонних печатных плат.

Для некоторых целей бывает необходим высококачественный нефольгированный диэлектрик, обладающий всеми достоинствами FR4 (хорошие диэлектрические свойства, стабильность характеристик и размеров, высокая устойчивость к воздействию неблагоприятных климатических условий). Для этих применений мы можем предложить нефольгированный стеклотекстолит FR4 .

Во многих случаях, где требуются достаточно простые печатные платы (при производстве бытовой аппаратуры, различных датчиков, некоторых комплектующих к автомобилям и т.п.) превосходные свойства стеклотекстолита оказываются избыточными, и на первый план выходят показатели технологичности и стоимости. Здесь мы можем предложить следующие материалы:

  • XPC , FR1 , FR2 - фольгированные гетинаксы (основа из целлюлозной бумаги, пропитанной фенольной смолой), широко применяется при изготовлении печатных плат для бытовой электроники, аудио-, видео техники, в автомобилестроении (расположены в порядке возрастания показателей свойств, и, соответственно, цены). Прекрасно штампуются.
  • CEM-1 - ламинат на основе композиции целлюлозной бумаги и стеклоткани с эпоксидной смолой. Прекрасно штампуется.

Также в нашем ассортименте есть электроосажденная медная фольга для прессования МПП производства Kingboard. Фольга поставляется в рулонах различной ширины, толщина фольги 12, 18, 35, 70, 105 мкм, фольга толщиной 18 и 35 мкм практически всегда доступна с нашего склада в России.

Все материалы произведены в соответствии с директивой RoHS, содержание вредных веществ подтверждено соответствующими сертификатами и RoHS тест-репортами. Также все материалы, на многие позиции имеются сертификаты, и др.

Для изготовления печатной платы нам необходимо выбрать следующие материалы: материал для диэлектрического основания печатной платы, материал для печатных проводников и материал защитного покрытия от воздействия влаги. Сначала мы определим материал для диэлектрического основания печатной платы.

Существует большое разнообразие фольгированных медью слоистых пластиков. Их можно разделить на две группы:

– на бумажной основе;

– на основе стеклоткани.

Эти материалы в виде жестких листов формируются из нескольких слоев бумаги или стеклоткани, скрепленных между собой связующим веществом путем горячего прессования. Связующим веществом обычно являются фенольная смола для бумаги или эпоксидная для стеклоткани. В отдельных случаях могут также применяться полиэфирные, силиконовые смолы или фторопласт. Слоистые пластики покрываются с одной или обеих сторон медной фольгой стандартной толщины.

Характеристики готовой печатной платы зависят от конкретного сочетания исходных материалов, а также от технологии, включающей и механическую обработку плат.

В зависимости от основы и пропиточного материала различают несколько типов материалов для диэлектрической основы печатной платы.

Фенольный гетинакс - это бумажная основа, пропитанная фенольной смолой. Гетинаксовые платы предназначены для использования в бытовой аппаратуре, поскольку очень дешевы.

Эпоксидный гетинакс - это материал на такой же бумажной основе, но пропитанный эпоксидной смолой.

Эпоксидный стеклотекстолит - это материал на основе стеклоткани, пропитанный эпоксидной смолой. В этом материале сочетаются высокая механическая прочность и хорошие электрические свойства.

Прочность на изгиб и ударная вязкость печатной платы должны быть достаточно высокими, чтобы плата без повреждений могла быть нагружена установленными на ней элементами с большой массой.

Как правило, слоистые пластики на фенольном, а также эпоксидном гетинаксе не используются в платах с металлизированными отверстиями. В таких платах на стенки отверстий наносится тонкий слой меди. Так как температурный коэффициент расширения меди в 6-12 раз меньше, чем у фенольного гетинакса, имеется определенный риск образования трещин в металлизированном слое на стенках отверстий при термоударе, которому подвергается печатная плата в машине для групповой пайки.

Трещина в металлизированном слое на стенках отверстий резко снижает надежность соединения. В случае применения эпоксидного стеклотекстолита отношение температурных коэффициентов расширения примерно равно трем, и риск образования трещин в отверстиях достаточно мал.

Из сопоставления характеристик оснований следует, что во всех отношениях (за исключением стоимости) основания из эпоксидного стеклотекстолита превосходят основания из гетинакса. Печатные платы из эпоксидного стеклотекстолита характеризуются меньшей деформацией, чем печатные платы из фенольного и эпоксидного гетинакса; последние имеют степень деформации в десять раз больше, чем стеклотекстолит.

Некоторые характеристики различных типов слоистых пластиков представлены в таблице 4.

Таблица 4 – Характеристики различных типов слоистых пластиков

Сравнивая эти характеристики, делаем вывод, что для изготовления двусторонней печатной платы следует применять только эпоксидный стеклотекстолит. В данном курсовом проекте выбран стеклотекстолит марки СФ-2-35-1,5.

В качестве фольги, используемой для фольгирования диэлектрического основания, можно использовать медную, алюминиевую или никелевую фольгу. Однако алюминиевая фольга уступает медной, так как плохо поддаётся пайке, а никелевая имеет высокую стоимость. Поэтому в качестве фольги выбираем медь.

Медная фольга выпускается различной толщины. Стандартные толщины фольги наиболее широкого применения - 17,5; 35; 50; 70; 105 мкм. Во время травления меди по толщине травитель воздействует также на медную фольгу со стороны боковых кромок под фоторезистом, вызывая так называемое «подтравливание». Чтобы его уменьшить обычно применяют более тонкую медную фольгу толщиной 35 и 17,5 мкм. Поэтому выбираем медную фольгу толщиной 35 мкм.

1.7 Выбор метода изготовления печатной платы

Все процессы изготовления печатных плат можно разделить на субтрактивные и полуаддитивные.

Субтрактивный процесс (subtraction -отнимать) получения проводящего рисунка заключается в избирательном удалении участков проводящей фольги путем травления.

Аддитивный процесс (additio -прибавлять) - в избирательном осаждении проводящего материала на не фольгированный материал основания.

Полуаддитивный процесс предусматривает предварительное нанесение тонкого (вспомогательного) проводящего покрытия, впоследствии удаляемого с пробельных мест.

В соответствии с ГОСТ 23751 – 86 конструирование печатных плат следует осуществлять с учетом следующих методов изготовления:

– химического для ГПК

– комбинированного позитивного для ДПП

Металлизации сквозных отверстий для МПП

Таким образом, данная печатная плата, разрабатывае­мая в курсовом проекте, будет изготавливаться на основе двустороннего фольгированного диэлектрика комбинированным позитивным методом. Этот метод дает возможность получать проводники шириной до 0,25 мм. Проводящий рисунок получают субтрактивным методом.



2 РАСЧЁТ ЭЛЕМЕНТОВ ПРОВОДЯЩЕГО РИСУНКА

2.1 Расчет диаметров монтажных отверстий

Конструктивно-технологический расчет печатных плат производится с учетом производственных погрешностей рисунка проводящих элементов, фотошаблона, базирования, сверления и т.п. Граничные значения основных параметров печатного монтажа, которые могут быть обеспечены при конструировании и производстве для пяти классов плотности монтажа, приведены в таблице 4.

Таблица 4 – Граничные значения основных параметров печатного монтажа

Условное обозначение параметра * Номинальные значения основных размеров для класса точности
t, мм 0,75 0,45 0,25 0,15 0,10
S, мм 0,75 0,45 0,25 0,15 0,10
b, мм 0,30 0,20 0,10 0,05 0,025
g 0,40 0,40 0,33 0,25 0,20
∆t, мм +- 0,15 +- 0,10 +- 0,05 +- 0,03 0; -0,03

В таблице указанно:

t – ширина проводника;

S – расстояние между проводниками, контактными площадками, проводником и контактной площадкой или проводником и металлизированным отверстием;

b – расстояние от края просверленного отверстия до края контактной площадки данного отверстия (гарантийный поясок);

g – отношение минимального диаметра металлизированного отверстия к толщине платы.

Выбранные в соответствии с таблицей 1 размеры необходимо согласовать с технологическими возможностями конкретного производства.

Предельные значения технологических параметров конструктивных элементов печатной платы (таблица 5) получены в результате анализа производственных данных и экспериментальных исследовании точности отдельных операций.

Таблица 5 – Предельные значения технологических параметров

Наименование коэффициента Обозначения Величина
Толщина предварительно осажденной меди, мм h пм 0,005 – 0,008
Толщина наращенной гальванической меди, мм h г 0,050 – 0,060
Толщина металлического резиста, мм h р 0,020
Погрешность расположения отверстия относи­тельно координатной сетки, обусловленная точ­ностью сверлильного станка, мм. d o 0,020 – 0,100
Погрешность базирования плат на сверлильном станке, мм d б 0,010 – 0,030
Погрешность расположения относительно координатной сетки на фотошаблоне контактной площадки, мм d ш 0,020 – 0,080
Погрешность расположения относительно координатной сетки на фотошаблоне проводника, мм d ш t 0,030 – 0,080
Погрешность расположения печатных элементов при экспонировании на слое, мм d э 0,010 – 0,030
Погрешность расположения контактной площадки на слое из-за нестабильности его линейных размеров, % от толщины 0 – 0,100
Погрешность расположения базовых отверстий на заготовке, мм 0,010 – 0,030

Продолжение таблицы 5

Минимальный диаметр металлизированного (переходного) отверстия:

d min V H расч ´ g = 1,5 ´ 0,33 =0,495 мм;

где g = 0,33 - плотность печатного монтажа для третьего класса точности.

H расч – толщина фольгированного диэлектрика платы.

Печатная плата

Печатная плата со смонтированными на ней электронными компонентами.

Гибкая печатная плата с установленными деталями объёмного и поверхностного монтажа.

Чертеж платы в CAD-программе и готовая плата

Устройство

Так же основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору .

В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт , армированный стеклотканью (например, ФАФ-4Д) и керамика .

  • ГОСТ 2.123-93 Единая система конструкторской документации. Комплектность конструкторской документации на печатные платы при автоматизированном проектировании.
  • ГОСТ 2.417-91 Единая система конструкторской документации. Платы печатные. Правила выполнения чертежей.

Другие стандарты на печатные платы:

  • ГОСТ Р 53386-2009 Платы печатные. Термины и определения.
  • ГОСТ Р 53429-2009 Платы печатные. Основные параметры конструкции. Этот ГОСТ задает классы точности печатных плат и соответствующие геометрические параметры.

Типовой процесс

Рассмотрим типичный процесс разработки платы из готовой принципиальной электрической схемы:

  • Трансляция принципиальной электрической схемы в базу данных САПР разводки печатной платы. Заранее определяются чертежи каждого компонента, расположение и назначение выводов и др. Обычно используются готовые библиотеки компонентов, поставляемые разработчиками САПР.
  • Уточнение у будущего изготовителя печатной платы его технологических возможностей (имеющиеся материалы, количество слоев, класс точности, допустимые диаметры отверстий, возможность покрытий и т. п.).
  • Определение конструктива печатной платы (габаритов, точек крепления, допустимых высот компонентов).
    • Вычерчивание габаритов (краёв) платы, вырезов и отверстий, областей запрета размещения компонентов.
    • Расположение конструктивно-привязанных деталей: разъёмов, индикаторов, кнопок и др.
    • Выбор материала платы, количества слоев металлизации, толщины материала и толщины фольги (наиболее часто используется стеклотекстолит толщиной 1,5 мм с фольгой толщиной 18 или 35 мкм).
  • Выполнение автоматического или ручного размещения компонентов. Обычно стремятся разместить компоненты на одной стороне платы поскольку двусторонний монтаж деталей заметно дороже в производстве.
  • Запуск трассировщика. При неудовлетворительном результате - перерасположение компонентов. Эти два шага зачастую выполняются десятки или сотни раз подряд. В некоторых случаях трассировка печатных плат (отрисовка дорожек ) производится вручную полностью или частично.
  • Проверка платы на ошибки (DRC, Design Rules Check ): проверка на зазоры, замыкания, наложения компонентов и др.
  • Экспорт файла в формат, принимаемый изготовителем печатных плат, например Gerber .
  • Подготовка сопроводительной записки в которой, как правило, указывают тип фольгированного материала, диаметры сверления всех типов отверстий, вид переходных отверстий (закрытые лаком или открытые, луженые), области гальванических покрытий и их тип, цвет паяльной маски, необходимость маркировки, способ разделения плат (фрезеровка или скрайбирование) и т. п..

Изготовление

Изготовление ПП возможно аддитивным или субтрактивным методом. В аддитивном методе проводящий рисунок формируется на нефольгированном материале путём химического меднения через предварительно нанесённую на материал защитную маску. В субтрактивном методе проводящий рисунок формируется на фольгированном материале, путём удаления ненужных участков фольги. В современной промышленности применяется исключительно субтрактивный метод.

Весь процесс изготовления печатных плат можно разделить на четыре этапа:

  • Изготовление заготовки (фольгированного материала).
  • Обработка заготовки с целью получения нужных электрического и механического вида.
  • Монтаж компонентов.
  • Тестирование.

Часто под изготовлением печатных плат понимают только обработку заготовки (фольгированного материала). Типовой процесс обработки фольгированного материала состоит из нескольких этапов: сверловка переходных отверстий, получение рисунка проводников путем удаления излишков медной фольги, металлизация отверстий, нанесение защитных покрытий и лужение, нанесение маркировки. Для многослойных печатных плат добавляется прессование конечной платы из нескольких заготовок.

Изготовление фольгированного материала

Фольгированный материал - плоский лист диэлектрика с наклеенной на него медной фольгой. Как правило в качестве диэлектрика используют стеклотекстолит . В старой или очень дешевой аппаратуре используют текстолит на тканевой или бумажной основе, иногда именуемый гетинаксом . В СВЧ устройствах используют фторсодержащие полимеры (фторопласты). Толщина диэлектрика определяется требуемой механической и электрической прочностью, наибольшее распространение получила толщина 1,5 мм.

На диэлектрик с одной или двух сторон наклеивают сплошной лист медной фольги. Толщина фольги определяется токами под которые проектируется плата. Наибольшее распространение получила фольга толщиной 18 и 35 мкм. Такие значения исходят из стандартных толщин меди в импортных материалах, в которых толщина слоя медной фольги исчисляется в унциях (oz) на квадратный фут . 18 мкм соответствует ½ oz и 35 мкм - 1 oz.

Алюминиевые печатные платы

Отдельную группу материалов составляют алюминиевые металлические печатные платы. Их можно разделить на две группы.

Первая группа - решения в виде листа алюминия с качественно оксидированной поверхностью, на которую наклеена медная фольга. Такие платы нельзя сверлить, поэтому обычно их делают только односторонними. Обработка таких фольгированных материалов выполняется по традиционным технологиям химического нанесения рисунка.

Вторая группа подразумевает создание токопроводящего рисунка непосредственно в алюминии основы. Для этой цели алюминиевый лист оксидируют не только по поверхности но и на всю глубину основы согласно рисунку токопроводящих областей, заданному фотошаблоном.

Обработка заготовки

Получение рисунка проводников

При изготовлении плат используются химические, электролитические или механические методы воспроизведения требуемого токопроводящего рисунка, а также их комбинации.

Химический способ

Химический способ изготовления печатных плат из готового фольгированного материала состоит из двух основных этапов: нанесение защитного слоя на фольгу и травление незащищенных участков химическими методами.

В промышленности защитный слой наносится фотолитографическим способом с использованием ультрафиолетово -чувствительного фоторезиста , фотошаблона и источника ультрафиолетового света. Фоторезистом сплошь покрывают медь фольги, после чего рисунок дорожек с фотошаблона переносят на фоторезист засветкой. Засвеченный фоторезист смывается, обнажая медную фольгу для травления, незасвеченный фоторезист фиксируется на фольге, защищая её от травления.

Фоторезист бывает жидким или пленочным. Жидкий фоторезист наносят в промышленных условиях так как он чувствителен к несоблюдению технологии нанесения. Пленочный фоторезист популярен при ручном изготовлении плат, однако он дороже. Фотошаблон представляет собой УФ-прозрачный материал с распечатанным на нём рисунком дорожек. После экспозиции фоторезист проявляется и закрепляется как и в обычном фотохимическом процессе.

В любительских условиях защитный слой в виде лака или краски может быть нанесен шелкотрафаретным способом или вручную. Радиолюбители для формирования на фольге травильной маски применяют перенос тонера с изображения, отпечатанного на лазерном принтере («лазерно-утюжная технология»).

Под травлением фольги понимают химический процесс перевода меди в растворимые соединения. Незащищенная фольга травится, чаще всего, в растворе хлорного железа или в растворе других химикатов, например медного купороса , персульфата аммония , аммиачного медно-хлоридного, аммиачного медно-сульфатного, на основе хлоритов , на основе хромового ангидрида . При использовании хлорного железа процесс травления платы идет следующим образом: FeCl 3 +Cu → FeCl 2 +CuCl. Типовая концентрация раствора 400 г/л, температура до 35°С. При использовании персульфата аммония процесс травления платы идет следующим образом: (NH 4) 2 S 2 O 8 +Cu → (NH 4) 2 SO 4 +CuSO 4 .

После травления защитный рисунок с фольги смывается.

Механический способ

Механический способ изготовления предполагает использование фрезерно-гравировальных станков или других инструментов для механического удаления слоя фольги с заданных участков.

Лазерная гравировка

До недавнего времени лазерная гравировка печатных плат была слабо распространена в связи с хорошими отражающими свойствами меди на длине волны наиболее распространенных мощных газовых СО лазеров. В связи с прогрессом в области лазеростроения сейчас начали появляться промышленные установки прототипирования на базе лазеров.

Металлизация отверстий

Переходные и монтажные отверстия могут сверлиться, пробиваться механически (в мягких материалах типа гетинакса) или лазером (очень тонкие переходные отверстия). Металлизация отверстий обычно выполняется химическим или механическим способом.

Механическая металлизация отверстий выполняется специальными заклепками, пропаянными проволочками или заливкой отверстия токопроводящим клеем. Механический способ дорог в производстве и потому применяется крайне редко, обычно в высоконадежных штучных решениях, специальной сильноточной технике или радиолюбительских условиях.

При химической металлизации в фольгированной заготовке сначала сверлятся отверстия, затем они металлизируются и только потом производится травление фольги для получения рисунка печати. Химическая металлизация отверстий - многостадийный сложный процесс, чувствительный к качеству реактивов и соблюдению технологии. Поэтому в радиолюбительских условиях практически не применяется. Упрощенно состоит из таких этапов:

  • Нанесение на диэлектрик стенок отверстия проводящей подложки. Эта подложка очень тонкая, непрочная. Наносится химическим осаждением металла из нестабильных соединений, таких как хлорид палладия .
  • На полученную основу производится электролитическое или химическое осаждение меди.
  • В конце производственного цикла для защиты довольно рыхлой осажденной меди применяется либо горячее лужение либо отверстие защищается лаком (паяльной маской). Нелуженые переходные отверстия низкого качества являются одной из самых частых причин отказа электронной техники.

Прессование многослойных плат

Многослойные платы (с числом слоев металлизации более 2) собираются из стопки тонких двух- или однослойных печатных плат, изготовленных традиционным способом (кроме наружных слоев пакета - их пока оставляют с нетронутой фольгой). Их собирают «бутербродом» со специальными прокладками (препреги). Далее выполняется прессование в печи, сверление и металлизация переходных отверстий. В последнюю очередь делают травление фольги внешних слоев.

Переходные отверстия в таких платах могут также делаться до прессования. Если отверстия делаются до прессования, то можно получать платы с так называемыми глухими отверстиями (когда отверстие есть только в одном слое бутерброда), что позволяет уплотнить компоновку.

Нанесение покрытий

Возможны такие покрытия как:

  • Защитно-декоративные лаковые покрытия («паяльная маска»). Обычно имеет характерный зелёный цвет.
  • Лужение. Защищает поверхность меди, увеличивает толщину проводника, облегчает монтаж компонентов. Обычно выполняется погружением в ванну с припоем или волной припоя.
  • Гальваническое покрытие фольги инертными металлами (золочение, палладирование) и токопроводящими лаками для улучшения контактных свойств разъемов и мембранных клавиатур .
  • Декоративно-информационные покрытия (маркировка). Обычно наносится с помощью шелкографии , реже - струйным методом или лазером.

Механическая обработка

На одном листе заготовки зачастую помещается множество отдельных плат. Весь процесс обработки фольгированной заготовки они проходят как одна плата и только в конце их готовят к разделению. Если платы прямоугольные, то фрезеруют несквозные канавки, облегчающие последующее разламывание плат (скрайбирование, от англ. scribe царапать). Если платы сложной формы, то делают сквозную фрезеровку, оставляя узкие мостики чтобы платы не рассыпались. Для плат без металлизации вместо фрезеровки иногда сверлят ряд отверстий с маленьким шагом. Сверление крепежных (неметаллизированных) отверстий также происходит на этом этапе.

См. также: ГОСТ 23665-79 Платы печатные. Обработка контура. Требования к типовым технологическим процессам.

По типовому техпроцессу отделение плат от заготовки происходит уже после монтажа компонентов.

Монтаж компонентов

Пайка является основным методом монтажа компонентов на печатные платы. Пайка может выполняться как вручную паяльником так и с помощью специально разработанных специфических технологий.

Пайка волной

Основной метод автоматизированной групповой пайки для выводных компонентов. С помощью механических активаторов создается длинная волна расплавленного припоя. Плату проводят над волной так чтобы волна едва коснулась нижней поверхности платы. При этом выводы заранее установленных выводных компонентов смачиваются волной и припаиваются к плате. Флюс наносится на плату губчатым штемпелем.

Пайка в печах

Основной метод групповой пайки планарных компонентов. На контактные площадки печатной платы через трафарет наносится специальная паяльная паста (порошок припоя в пастообразном флюсе). Затем устанавливаются планарные компоненты. Затем плату с установленными компонентами подают в специальную печь, где флюс паяльной пасты активизируется, а порошок припоя плавится, припаивая компонент.

Если такой монтаж компонентов выполняется с двух сторон, то плата подвергается этой процедуре дважды - отдельно для каждой стороны монтажа. Тяжелые планарные компоненты устанавливаются на капельки клея, которые не позволяют им упасть с перевернутой платы во время второй пайки. Легкие компоненты удерживаются на плате за счет поверхностного натяжения припоя.

После пайки плату обрабатывают растворителями с целью удаления остатков флюса и других загрязнений, либо, при использовании безотмывочной паяльной пасты, плата готова сразу для некоторых условий эксплуатации.

Установка компонентов

Установка компонентов может выполняться как вручную так и на специальных автоматах-установщиках. Автоматическая установка уменьшает вероятность ошибки и значительно ускоряет процесс (лучшие автоматы устанавливают несколько компонентов в секунду).

Финишные покрытия

После пайки печатную плату с компонентами покрывают защитными составами: гидрофобизаторами, лаками, средствами защиты открытых контактов.

Сходные технологии

Подложки гибридных микросхем представляют собой нечто похожее на керамическую печатную плату, однако обычно используют другие техпроцессы:

  • шелкографическое нанесение рисунка проводников металлизированной пастой с последующим спеканием пасты в печи. Технология позволяет многослойную разводку проводников благодаря возможности нанесения на слой проводников слоя изолятора теми же шелкографическими методами.
  • Осаждение металла через трафарет.

Электронная печатная плата (русская аббревиатура — ПП, английская — PCB) представляет собой листовую панель, где размещаются взаимосвязанные микроэлектронные компоненты. Печатные платы используются в составе разной электронной техники, начиная от простых квартирных звонков, бытовых радиоприёмников, студийных радиостанций и завершая сложными радиолокационными, компьютерными системами. Технологически изготовление печатных плат электроники предполагает создание связей токопроводящим «плёночным» материалом. Такой материал наносится («печатается») на пластине-изоляторе, получившей наименование — подложка.

Электронные печатные платы отметили начало пути становления и развития системами электрических соединений, разработанных в середине XIX века.

Металлические полосы (стержни) изначально применялись громоздких электрических компонентов, смонтированных на древесном основании.

Постепенно металлические полосы вытеснили проводники с винтовыми клеммными колодками. Деревянную основу тоже модернизировали, отдав предпочтение металлу.

Примерно таким выглядел прототип современного производства ПП. Подобные решения конструирования применялись в середине XIX века

Практика применения компактных, малых по размерам электронных деталей, требовала уникального решения по базовой основе. И вот, в 1925 году некто Чарльз Дюкасс (США) нашёл такое решение.

Американский инженер предложил уникальный способ организации электрических связей на изолированной пластине. Он использовал электропроводящие чернила и трафарет для переноса принципиальной схемы на пластину.

Чуть позже — в 1943 году, англичанин Пол Эйслер также запатентовал изобретение травления токопроводящих контуров на медной фольге. Инженер использовал пластину-изолятор, ламинированную фольгированным материалом.

Однако активное применение технологии Эйслера отметилось лишь в период 1950-60 годов, когда изобрели и освоили производство микроэлектронных компонентов — транзисторов.

Технологию изготовления сквозных отверстий на многослойных печатных платах запатентовала фирма Hazeltyne (США) в 1961 году.

Так, благодаря увеличению плотности электронных деталей и тесному расположению связывающих линий, открылась новая эра дизайна печатных плат.

Электронная печатная плата – изготовление

Обобщённое видение процесса: отдельно взятые электронные детали распределяются по всей площади подложки-изолятора. Затем установленные компоненты связываются пайкой с цепями схемы.

Так называемые контактные «пальцы» (штырьки) располагаются по крайним областям подложки и выступают системными разъемами.


Современный прообраз изделий XIX века. Кардинальные технологические изменения очевидны. Однако это не самый совершенный вариант из ассортимента текущего производства

Через контактные «пальцы» организуется связь с периферийными печатными платами или подключение внешних цепей управления. Электронная печатная плата рассчитана под разводку схемы, поддерживающей одну функцию или одновременно несколько функций.

Изготавливаются три вида электронных печатных плат:

  1. Односторонние.
  2. Двусторонние.
  3. Многослойные.

Односторонние печатные электронные платы отличаются размещением деталей исключительно на одной стороне. Если комплектные детали схемы не вмещаются на односторонней плате, применяется двухсторонний вариант.

Материал изготовления подложки

Подложка, традиционно используемая в составе печатных электронных плат, обычно делается на основе стекловолокна в сочетании с эпоксидной смолой. Подложка покрывается медной фольгой по одной или двум сторонам.

Печатные платы электроники, изготовленные на основе бумаги с фенольной смолой, также покрытые плёночной медью, считаются экономически выгодными для производства. Поэтому чаще других вариаций используются под оснащение бытовой электронной техники.


Материалы печатной платы электроники: 1 — диэлектрический материал; 2 — верхнее покрытие; 3 — материал сквозных отверстий; 4 — маска припоя; 5 — материал кольцевого контура

Разводка связей выполняется методом покрытия, либо методом травления медной поверхности подложки. Медные дорожки покрывают оловянно-свинцовым составом с целью защиты от коррозии. Контактные штыри на печатных платах покрывают слоем олова, затем никеля и под завершение золотят.

Выполнение операций на обвязку


Сверление отверстий на рабочей площади ПП: 1 — отверстия без контактной связи между сторонами (слоями); 2 — отверстия с покрытием для контактной связи; 3 — медная обечайка связывающих отверстий

Технология поверхностного монтажа предполагает использование прямой (J-образная) или угловой (L-образная) ветвей. За счёт таких ветвей каждая электронная деталь напрямую обвязывается с печатной схемой.

Применением комплексной пасты (клей+флюс+припой) электронные детали временно удерживаются в точке контакта. Удержание продолжается до момента, когда печатная электронная плата заводится в печь. Там припой плавится и соединяет схемные детали.

Несмотря на сложности с размещением компонентов, технология поверхностного монтажа обладает другим важным преимуществом.

Эта методика исключает длительный процесс сверления и внедрение связывающих прокладок, как это практикуется для устаревшего метода сквозных отверстий. Однако обе технологии продолжают активно использоваться.

Дизайн электронных печатных плат

Каждая отдельно взятая печатная плата электроники (партия плат) предназначена под уникальный функционал. Разработчики электронных печатных плат обращаются к системам проектирования и специализированному «ПО» для компоновки схемы на печатной плате.


Структура фоторезистивного покрытия: 1 — пластиковая плёнка; 2 — сторона наложения; 3 — чувствительная сторона фоторезистивной панели

Разрыв между токопроводящими дорожками обычно измеряется значениями не более 1 мм. Рассчитываются точки расположения отверстий для компонентных проводников или контактных точек.

Вся эта информация переводится под формат ПО компьютера, управляющего сверлильным станком. Аналогичным образом программируется автоматический для изготовления электронных печатных плат.

Как только схема цепей выложена, негатив изображения схемы (маска) переносится на прозрачный лист пластика. Области негативного изображения, не входящие в образ схемы, отмечены черным цветом, а непосредственно схема остаётся прозрачной.

Промышленное изготовление печатных плат электроники

Технологии изготовления печатных плат электроники предусматривают условия производства с чистой средой. Атмосфера и объекты производственных помещений контролируются автоматикой на присутствие загрязнений.


Структура гибкой ПП: 1, 8 — полиимидная плёнка; 2, 9 — связывающее 1; 3 -связывающее 2; 4 — шаблон; 5 — базовая полиимидная плёнка; 6 — клейкая плёнка; 7 — шаблон

Многие компании-производители электронных печатных плат практикуют уникальные производства. А в стандартном виде изготовление двухсторонней печатной электронной платы традиционно предусматривает следующие шаги:

Изготовление основания

  1. Берётся стекловолокно и пропускается через технологический модуль.
  2. Пропитывается эпоксидной смолой (погружением, распылением).
  3. Стекловолокно прокатывают на станке до желаемой толщины подложки
  4. Сушка подложки в печи и раз на крупные панели.
  5. Панели располагаются стопками, чередуясь с медной фольгой и подложкой, покрытой клеем.

Наконец, стопки помещают под пресс, где при температуре170°C и давлении 700 кг/мм 2 , прессуют 1-2 часа. Эпоксидная смола твердеет, медная фольга связывается под прессом с материалом подложки.

Сверление и лужение отверстий

  1. Берутся несколько панелей подложки, укладываются одна на другую, жёстко закрепляются.
  2. Сложенная стопка помещается в станок с ЧПУ, где высверливаются отверстия по схемному рисунку.
  3. Сделанные отверстия очищаются от излишков материала.
  4. Внутренние поверхности токопроводящих отверстий покрываются медью.
  5. Непроводящие отверстия остаются без покрытия.

Производство рисунка схемы печатной электронной платы

Образец схемы печатной платы создаётся посредством аддитивного либо субтрактивного принципа. В случае аддитивного варианта, подложка покрывается медью по желаемой схеме. При этом необработанной остаётся часть вне схемы.


Технология получения отпечатка схемного рисунка: 1 — фоторезистивная панель; 2 — маска электронной печатной платы; 3 — чувствительная сторона платы

Субтрактивным процессом, прежде всего, покрывается общая поверхность подложки. Затем отдельные участки, не входящие в рисунок схемы, вытравливаются либо вырезаются.

Как проходит аддитивный процесс?

Фольгированная поверхность подложки предварительно обезжиривается. Панели проходят вакуумную камеру. За счёт вакуума слой положительного фоторезистивного материала плотно обжимается по всей фольгированной площади.

Положительным материалом для фоторезиста выступает полимер, обладающий способностью растворимости под излучением ультрафиолета. Условия вакуума исключают возможный остаток воздуха между фольгой и фоторезистом.

Шаблон схемы укладывается поверх фоторезиста, после чего панели подвергаются интенсивному воздействию ультрафиолета. Поскольку маска оставляет прозрачными области схемы, фоторезист в этих точках попадает под УФ излучение и растворяется.

Затем маска снимается, а панели опыляются щелочным раствором. Этот, своего рода проявитель, помогает растворить облучённый фоторезист по границам областей рисунка схемы. Так, медная фольга остаётся открытой на поверхности подложки.

Далее панели гальванируются медью. Медная фольга выступает катодом в процессе гальванизации. Открытые участки гальванируются до толщины 0,02-0,05 мм. Области, остающиеся под фоторезистом, не гальванируются.

Медные разводы покрывают дополнительно оловянно-свинцовым составом или иным защитным покрытием. Этими действиями предотвращается окисление меди и создаётся резист на следующую стадию производства.

Ненужный фоторезист удаляется с подложки с помощью кислотного растворителя. Медная фольга между рисунком схемы и покрытием обнажается. Так как медь схемы печатной платы защищена оловянно-свинцовым составом, здесь проводник не подвержен воздействию кислоты.

Техника промышленного изготовления электронных плат

В качестве основания используют фольгированные и нефольгированные диэлектрики (гетинакс, текстолит, стеклотекстолит, стеклоткань, лавсан, полиамид, фторопласт и др.), керамические материалы, металлические пластины, изоляционный прокладочный материал (препрег).

Фольгированные диэлектрики представляют собой электроизоляционные основания, плакированные обычно электролитической медной фольгой с оксидированным гальваностойким слоем, прилегающим к электроизоляционному основанию. В зависимости от назначения фольгированные диэлектрики могут быть односторонними и двусторонними и иметь толщину от 0,06 до 3,0 мм.

Нефольгированные диэлектрики, предназначенные для полуаддитивного и аддитивного методов производства плат, имеют на поверхности специально нанесенный адгезивный слой, который служит для лучшего сцепления химически осаждаемой меди с диэлектриком.

Основания ПП изготовляются из материала, способного хорошо сцепляться с металлом проводников; иметь диэлектрическую проницаемость не более 7 и малый тангенс угла диэлектрических потерь; обладать достаточно высокой механической и электрической прочностью; допускать возможность обработки резанием, штамповкой и сверлением без образования сколов, трещин и расслоения диэлектрика; сохранять свои свойства при воздействии климатических факторов, обладать негорючестью и огнестойкостью; обладать низким водопоглощением, низким значением теплового коэффициента линейного расширения, плоскостностью, а также устойчивостью к агрессивным средам в процессе создания рисунка схемы и пайки.

Материалы основания - это слоистые прессованные пластины, пропитанные искусственной смолой и возможно облицованные с одной или двух сторон медной электролитической фольгой. Фольгированные диэлектрики применяются в субтрактивных методах изготовления ПП, нефольгированные - в аддитивных и полуаддитивных. Толщина токопроводящего слоя может быть 5, 9, 12, 18, 35, 50, 70 и 100 мкм.

В производстве применяют материалы, например, для ОПП и ДПП - стеклотекстолит фольгированный марок СФ-1-50 и СФ-2-50 с толщиной медной фольги 50 мкм и собственной толщиной от 0,5 до 3.0 мм; для МПП - фольгированный травящийся стеклотекстолит ФТС-1-18А и ФТС-2-18А с толщиной медной фольги 18 мкм и собственной толщиной от 0,1 до 0,5 мм; для ГПП и ГПК - фольгированный лавсан ЛФ-1 с толщиной медной фольги 35 или 50 мкм и собственной толщиной от 0,05 до 0,1 мм.

По сравнению с гетинаксами стеклотекстолиты имеют лучшие механические и электрические характеристики, более высокую нагревостойкость, меньшее влагопоглощение. Однако у них есть ряд недостатков, например, невысокая нагревостойкость по сравнению с полиамидами, что способствует загрязнению смолой торцов внутренних слоев при сверлении отверстий.

Для изготовления ПП, обеспечивающих надежную передачу наносекундных импульсов, необходимо применять материалы с улучшенными диэлектрическими свойствами, к ним относят ПП из органических материалов с относительной диэлектрической проницаемостью ниже 3,5.

Для изготовления ПП, эксплуатируемых в условиях повышенной опасности возгорания, применяют огнестойкие материалы, например, стектотекстолиты марок СОНФ, СТНФ, СФВН, СТФ.

Для изготовления ГПК, выдерживающих многократные изгибы на 90 в обе стороны от исходного положения с радиусом 3 мм, применяют фольгированный лавсан и фторопласт. Материалы с толщиной фольги 5 мкм позволяют изготовить ПП 4-го и 5-го классов точности.

Изоляционный прокладочный материал применяют для склеивания слоев ПП. Их изготавливают из стеклоткани, пропитанной недополимеризированной термореактивной эпоксидной смолой с нанесенным с двух сторон адгезионным покрытием.

Для защиты поверхности ПП и ГПК от внешних воздействий применяют полимерные защитные лаки и покрывные защитные пленки.

Керамические материалы характеризуются стабильностью электрических и геометрических параметров; стабильной высокой механической прочностью в широком диапазоне температур; высокой теплопроводностью; низким влагопоглощением. Недостатками являются длительный цикл изготовления, большая усадка материала, хрупкость, высокая стоимость и др.

Металлические основания применяются в теплонагруженных ПП для улучшения отвода тепла от ИМС и ЭРЭ в ЭА с большой токовой нагрузкой, работающих при высоких температурах, а также для повышения жесткости ПП, выполненных на тонких основаниях; их изготавливают из алюминия, титана, стали и меди.

Для печатных плат с высокой плотностью монтажа и с микропереходами применяют материалы, пригодные для обработки лазером. Эти материалы можно разделить на две группы:

1. Упрочненные нетканые стекломатериалы и преприги (композиционный материал на основе тканей, бумаги, непрерывных волокон, пропитанный смолой в неотвержденном состоянии) с заданной геометрией и распределением нити; органические материалы с неориентированным расположением волокон Преприг для лазерной технологии имеет меньшую толщину стеклоткани по оси Z по сравнению со стандартной стеклотканью.

2. Неупрочненные материалы (медная фольга покрытая смолой, полимеризованная смола), жидкие диэлектрики и диэлектрики с нанесенной сухой пленкой.

Из других материалов, используемых при изготовлении печатных плат, наиболее широко применяют никель и серебро в качестве металлического резиста, для обеспечения пайки, сварки. Кроме того, используется целый ряд других металлов и сплавов (например, олово - висмут, олово - индий, олово - никель и т.д.), назначение которых - обеспечение избирательной защиты или низкого контактного сопротивления, улучшение режимов пайки. Дополнительные покрытия, увеличивающие электропроводность печатных проводников, в большинстве случаев выполняют гальваническим осаждением, реже - способами вакуумной металлизации и горячего лужения.

До недавнего времени фольгированные диэлектрики на основе эпоксидно-фенольных смол, а также применяемые в ряде случаев диэлектрики на основе полиимидных смол удовлетворяли основным требованиям изготовителей печатных плат. Необходимость улучшения теплоотвода от ИМС и БИС, требования низкой диэлектрической проницаемости материала платы для быстродействующих схем, важность согласования коэффициентов термического расширения материала платы, корпусов ИМС и кристаллоносителей, широкое внедрение современных методов монтажа привели к необходимости разработки новых материалов. Широкое применение в современных конструкциях технических средств ЭВМ находят МПП на основе керамики. Применение керамических подложек для изготовления печатных плат обусловлено прежде всего использованием высокотемпературных способов создания проводящего рисунка с минимальной шириной линий, однако используются и другие преимущества керамики (хорошая теплопроводность, согласование по коэффициенту термического расширения с корпусами ИМС и носителями и т.п.). При изготовлении керамических МПП наиболее широко используется толстопленочная технология.

В керамических основаниях в качестве исходных материалов широко применяются оксиды алюминия и бериллия, а также нитрид алюминия и карбид кремния.

Основным недостатком керамических плат является ограниченность их размеров (обычно не более 150x150 мм), что обусловлено в основном хрупкостью керамики, а также сложностью достижения необходимого качества.

Формирование проводящего рисунка (проводников) осуществляется трафаретной печатью. В качестве материалов проводников в керамических платах подложечного вида используются пасты, состоящие из металлических порошков, органического связующего вещества и стекла. Для проводниковых паст, которые должны обладать хорошей адгезией, способностью выдерживать многократную термообработку, низким удельным электрическим сопротивлением, применяются порошки благородных металлов: платины, золота, серебра. Экономические факторы заставляют применять также пасты на основе композиций: палладий - золото, платина - серебро, палладий - серебро и др.

Изоляционные пасты изготавливаются на основе кристаллизующихся стекол, стеклокристаллических цементов, стеклокерамики. В качестве материалов проводников в керамических платах пакетного вида используются пасты, изготовленные на основе порошков тугоплавких металлов: вольфрама, молибдена и др. В качестве основания заготовки и изоляторов применяются ленты из сыров керамики на основе оксидов алюминия и бериллия, карбида кремния, нитрида алюминия.

Металлические жесткие основания, покрытые диэлектриком, характеризуются (как и керамические) высокотемпературным вжиганием в подложку толстопленочных паст на основе стекол и эмалей. Особенности плат на металлическом основании - повышенная теплопроводность, конструкционная прочность и ограничения по быстродействию из-за сильной связи проводников с металлическим основанием.

Широкое применение находят пластины из стали, меди, титана, покрытые смолой или легкоплавким стеклом. Однако наиболее совершенным по комплексу показаний является анодированный алюминий и его сплавы с достаточно толстым слоем оксида. Анодированный алюминий применяется также для тонкопленочной многослойной разводки плат.

Перспективно применение в печатных платах оснований со сложной составной структурой, включая металлические прокладки, а также оснований из термопластиков.

Основания из фторопласта со стекловолокном используются в быстродействующих схемах. Различные композиционные основания из "кевлара и кварца" а также медь - инвар - медь используются в тех случаях, когда необходимо иметь термический коэффициент расширения, близкий к коэффициенту расширения оксида алюминия, например в случае монтажа на плату различных керамических кристаллоносителей (микрокорпусов). Сложные подложки на основе полиимида используются главным образом в мощных схемах или при высокотемпературных применениях печатных плат.



2024 stdpro.ru. Сайт о правильном строительстве.