Как считать и отнимать в уме десятками. Некоторые приёмы быстрого счёта

Знания, полученные на уроках алгебры и геометрии, в жизни люди применяют крайне редко. Наиболее ценное и необходимое умение, связанное с математикой – способность быстро считать в уме, поэтому стоит разобраться, как этому научиться. В обычной жизни это позволяет быстро подсчитывать сдачу, рассчитывать время и т.п.

Лучше всего развивать с самого детства, когда мозг намного быстрее усваивает информацию. Есть несколько эффективных методик, которыми пользуется много людей.

Как научиться очень быстро считать в уме?

Чтобы достичь хороших результатов, необходимо проводить тренировки регулярно. После достижения определенных целей стоит усложнять задание. Большое значение имеют способности человека, то есть умение удерживать в памяти сразу несколько вещей и концентрировать внимание. Наибольший могут достичь люди с математическим складом ума. Чтобы быстро научиться считать, необходимо хорошо знать таблицу умножения.

Наиболее популярные методики подсчета:

  1. Разберемся, как быстро считать двухзначные числа в уме, если нужно умножить на 11. Чтобы разобраться в методике, рассмотрим один пример: 13 умножить на 11. Задача заключается в том, что между цифрами 1 и 3 нужно вставить их сумму, то есть 4. В итоге получается, что 13х11=143. Когда сумма цифр дает двузначное число, к примеру, если на 11 умножать 69, то 6+9=15, тогда вставлять нужно только вторую цифру, то есть 5, а к первой цифре множителя следует добавить 1. В итоге получает 69х11=759. Есть еще один способ умножения числа на 11. Для начала следует произвести умножение на 10, а затем, прибавить к нему исходное число. Например, 14х11=14х10+14=154.
  2. Еще один способ, как быстро считать в уме большие числа, работает для умножения на 5. Это правило подходит для любого числа, которое для начала необходимо разделить на 2. Если в итоге получилось целое число, то нужно приписать в конце ноль. К примеру, чтобы узнать, сколько будет 504 умножить на 5. Для этого 504/2=252 и приписываем в конце 0. В итоге получается 504х5=2520. Если же при делении числа получается не целое число, то нужно просто убрать полученную запятую. К примеру, чтобы узнать, сколько будет 173 умножить на 5, нужно 173/2=86,5, а после просто убрать запятую, и получается, что 173х5=865.
  3. Узнаем, как быстро считать в уме двузначные числа, путем сложения. Сначала необходимо произвести сложение десятков, а затем, единиц. Для получения итогового результата, следует прибавить два первых результата. К примеру, разберемся, сколько будет 13+78. Первое действие: 10+70=80, а второе: 3+8=11. Итоговый результат будет таким: 80+11=91. Этим методом можно пользоваться, когда из одного числа нужно вычесть другое.

Еще одна актуальная тема – как быстро считать проценты в уме. Опять же для лучшего понимания рассмотрим пример, как найти 15% от какого-либо числа. Вначале следует определить 10%, то есть разделить на 10 и прибавить половину от результата –5%. Найдем 15% от 460: чтобы найти 10%, делить число на 10, получается 46. Следующий шаг – находим половину: 46/2=23. В итоге 46+23=69, что и является 15% от 460.

Есть еще один метод, как высчитывать проценты. Например, если нужно определить, сколько будет 6% от 400. Для начала стоит выяснить 6% от 100 и это будет 6. Чтобы узнать 6% от 400, то нужно 6х4=24.

Если нужно найти 6% от 50, то следует пользоваться таким алгоритмом: 6% от 100 это 6, а для 50, это половина, то есть 6/2=3. В итоге получается, что 6% от 50, это 3.

Если число, от которого стоит найти процент меньше 100, то следует просто перенести запятую влево. К примеру, чтобы найти 6% от 35. Для начала найдите 6% от 350 и это будет 21. Значение же 6% для 35, это 2,1.

Одна из главных причин плохих результатов по математике на ОГЭ или ЕГЭ – это неумение считать. Многие школьники затрудняются решить пример даже на листочке, не говоря уже о быстром счете в уме. А ведь некоторые участки мозга атрофируются, если человек не пользуется умственными навыками. Поэтому важно развивать умственные способности в полном объеме.

Основа для развития навыка счета в уме

Некоторые родители считают, что обучать ребенка быстро считать примеры в уме необязательно: в дальнейшем ему это не пригодится, ведь всегда можно воспользоваться калькулятором. Но при этом они забывают о том, что для развития мозга такая тренировка просто необходима: любой изученный метод (прием) счета – это новая нейронная цепочка (связь), чем таких цепочек больше, тем умнее школьник. Поэтому основная польза навыка быстрого счета – это развитие мозга, интеллекта.

Невозможно научиться работать с числами в голове, если иметь слабое представление о них и действиях с ними.

Умение счета развивается постепенно от визуально-наглядного представления чисел и действий с ними до абстрактно-логического:

  1. Сначала ребенок учится считать в прямом и обратном порядке с помощью стишков, потешек, практических упражнений во время прогулки, принятия пищи игры (посчитать, сколько предметов на столе, машинок в гараже, птичек на дереве). Знакомится с цифрами, узнает, что они обозначают, учится соотносить цифру и количество.
  2. Затем осваивает понятия «больше — меньше», «поровну», учится сравнивать количество предметов, размеры.
  3. После этого знакомится со сложением и вычитанием, узнает смысл этих действий. Все примеры носят наглядный характер (к двум яблокам ребенок придвигает еще 2 яблока и считает, сколько получится).
  4. Учится считать предметы глазами, проговаривает сначала вслух действия и результат действий, а потом — шепотом:если добавить к 4 машинкам еще 2, то получится 6.
  5. Многократное повторение действий приведет к тому, что малыш научится распознавать примеры, с которыми уже работал и называть результат вслух, минуя этап проговаривания.

Важно на этапе обучения счету заинтересовать ребенка, поддерживать его в случае неудачи и радоваться вместе с ним победам, пусть даже и маленьким. Когда , навык нужно будет развивать, знакомя школьника с различными приемами и методиками.

Развитие навыка счета в уме

  • Совершенствование умения работать с числами в голове.
  • Знакомство с новыми приемами и методиками.
  • Тренировка умения подбирать оптимальный алгоритм решения в каждом конкретном случае.

Умение работать с числами

Развивать подобный навык позволят упражнения:

  • «Назови числа, в которых …» — указывается диапазон и условие, например «Назови числа от 5 до 50, в которых есть цифра 3» или «Назови все двузначные числа, в которых есть цифра 0». При выполнении данного упражнения важно сразу прорабатывать все ошибки, допущенные учеником. Если он пропустил число или назвал неправильное, то начинает сначала.
  • «Ведение прогрессии» (диапазон и арифметические действия зависят от возраста и развития навыка счета). Например, «Иди от 5 с шагом 3» или «Иди в обратном порядке от 30 с шагом 4» — для детей начальной школы. Для тех, кто уже выучил таблицу умножения, можно давать задания на умножение и деление: «Иди от 2, умножая все числа на 3».
  • «Найди числа от 1 до …» — детям нужно найти и назвать по порядку все числа в таблице.
  • «Сравни числа» — дети определяют, какое из них больше (меньше), на сколько;
  • «Примеры» — школьникам предлагают решить в уме примеры, сначала простейшие (с маленькими числами), после отработки числа постепенно увеличивают. Не стоит знакомить ребенка с двузначными или трехзначными числами, если он не умеет в совершенстве выполнять действия с числами до 5.

Приемы быстрого счета чисел

К сожалению, единого – универсального – способа, позволяющего решать все примеры одинаково быстро, просто не существует. Поэтому важно знать и уметь применять на практике несколько методов, из которых потом выбирать наиболее целесообразный.

Полезные алгоритмы решения некоторых примеров:

  • Чтобы быстро вычесть из числа 7, 8 ил 9, нужно сначала вычесть 10, а затем прибавить 3,2 или 1 соответственно. Например: 45-9=45-10+1=36, или 36-8=36-10+2=28.
  • Быстро умножить на 4, 8 и 16 тоже можно. Для этого нужно сначала вспомнить, что 4=2*2, 8=2*2*2, 16=2*2*2*2. Затем просто умножить число на2 несколько раз: 6*16=6*2*2*2*2=96.
  • Чтобы умножить число на 9, его сначала увеличивают в 10 раз, а затем от полученного отнимают первый множитель: 27*9=27*10-27=243. Этот прием позволит очень быстро найти результат умножения на 9, если не пользоваться калькулятором.
  • Некруглые числа при умножении на 2 удобнее округлить, а затем вычесть или добавить (в зависимости от того, в какую сторону округляли) произведение оставшегося или недостающего числа на 2: 132*2=130*2+2*2=264, или 138*2=140*2-2*2=276.
  • Аналогично числа делят на 2: 156/2=150/2+6/2=78, или 156/2=160/2-4/2=78.
  • Чтобы умножить на 5, число делят на 2, а затем увеличивают в 10 раз (действия можно произвести наоборот): 27*5=27/2*10 или 27*10/2=135.
  • Подобные действия производят при умножении на 25: сначала делят на 4, а потом увеличивают в 100 раз (просто приписывают два нуля): 16*25=16/4*100=400. Конечно, таким способом удобнее пользоваться, когда первый множитель делится без остатка на 4. Определить, делится ли число на 4 без остатка несложно (нетабличные случаи): число, состоящее из двух его последних цифр, должно делиться на 4. Например, число 124 делится на 4 (24/4=6), а 526 – нет (26 не делится на 4 без остатка).

И еще один способ умножения на многозначного числа на однозначное – нужно умножить разрядные слагаемые на второй множитель и результаты сложить. Например, 424*5=400*5+20*5+4*5=2000+100+20=2120.

Чтобы не ошибиться в подсчетах важно уметь прогнозировать будущий результат, и здесь помогут несколько утверждений:

  • При умножении однозначных чисел, результат не превышает 81: 9*9=81.
  • Аналогично, 99*99=9801, поэтому результат умножения двузначных чисел не должен быть больше этого числа, а при увеличении трехзначных чисел максимальное число – 998001.

Отработка навыка счета в уме

Указанные выше алгоритмы – это основа для развития навыка устного счета. Научиться считать сложные примеры можно только при регулярной тренировке, доведении использования навыка до автоматизма.

Эффективность работы в этом направлении можно повысить, если во время занятий:

  1. Создать игровую ситуацию , превращающую обыденный учебный процесс в интересный и необычный процесс.
  2. Поддерживать увлеченность ребенка интересным материалом постоянной сменой деятельности.
  3. Создать дух соперничества – осознание, что кто-то может сделать лучше, заставит стремиться к новым достижениям, такие занятия будут более эффективны, чем заучивание «в одиночку».
  4. Фиксировать личные достижения , ставить новые цели по достижению новых вершин.

Умение концентрироваться на решении задачи в любой ситуации (даже когда мешают другие) также способствует развитию навыка счета (да и не только). Тренировать эту способность можно, решая примеры при включенной музыке или, находясь в шумной компании.

Чтобы ребенку не стало скучно, важно научиться бороться с этим чувством. Психологи рекомендуют использовать для этого любые действия: например, рассматривать, что происходит за окном, или наблюдать за движением часовых стрелок. Если малыш научится справляться со скукой, направлять свою энергию в нужное русло, то на уроках он сможет усвоить больший объем информации, что положительно скажется на его успеваемости .

У детей преобладает наглядно-образное мышление. Проблема в том, что большинство математических понятий абстрактны и плохо воспринимаются или запоминаются младшими школьниками. Поэтому любые математические операции необходимо основывать на практических действиях с предметами.

Педагогами используется три основных способа, как научить ребенка считать в уме:

  • основываясь на знании состава чисел;
  • заучивая таблицы математических действий наизусть;
  • используя особые приемы выполнения математических действий.

Рассмотрим каждый из них.

Подготовка к обучению устному счету

Подготовка к устному счету должна начинаться с первых шагов в изучении математики. Знакомя ребенка с числами, обязательно нужно приучить его к тому, что каждое число обозначает группу с определенным количеством предметов. Недостаточно посчитать, например, до трех и показать ребенку цифру 3. Обязательно предложите ему показать три пальца, положить перед собой три конфеты или нарисовать три кружочка. Если есть возможность, свяжите число с известными ребенку сказочными героями или другими понятиями:

  • 3 — три поросенка;
  • 4 — черепашки - ниндзя;
  • 5 — пальцев на руке;
  • 6 — героев сказки «Репка»;
  • 7 — гномов и т.д.

У ребенка должны сформироваться четкие образы, привязанные к каждому числу. На этом этапе очень полезно играть с детьми в математическое домино. Постепенно у них в памяти запечатлеются картинки с точечками, которые соотносятся с соответствующими числами.

Также можно практиковать изучение чисел с помощью коробки с кубиками. Такая коробка должна быть разделена на 10 ячеек, которые расположены в два ряда. Знакомясь с каждым числом, ребенок будет заполнять нужное количество ячеек и запоминать соответствующие комбинации. Польза от этих игр с кубиками еще и в том, что ребенок будет подсознательно замечать и запоминать, сколько еще нужно кубиков для дополнения числа до 10. Это очень важное умение для устного счета!

Как вариант, можно использовать для такого упражнения детали конструктора Лего или применить принцип пирамидок из методики Зайцева. Главным результатом всех описанных способов знакомства с числами должна стать их узнаваемость. Нужно добиться, чтобы ребенок при взгляде на комбинацию предметов сразу (без пересчета) мог назвать их количество и соответствующее число.

Устный счет с опорой на состав числа

На основе знания состава числа ребенок может выполнять сложение и вычитание. Например, чтобы сказать, сколько будет «пять плюс два», он должен вспомнить, что 5 и 2 — это 7. А «девять минус три» будет шесть, потому что 9 — это 3 и 6.

Без знания соответствующих таблиц у ребенка вряд ли получится научиться делить числа в уме. Постоянные упражнения в применении таблиц значительно улучшают скорость получения результатов при выполнении вычислений в уме.

Использование при устном счете вычислительных приемов

Высшей степенью владения навыками устного счета является умение находить наиболее быстрый и удобный способ подсчета результата. Такие приемы нужно начинать разъяснять детям сразу же после ознакомления их с действиями сложения и вычитания.

Так, например, одним из первых способов, как научить ребенка считать в уме в 1 классе, является методика присчитывания и «перепрыгивания». Дети быстро понимают, что при прибавлении 1 получается последующее число, а при вычитании 1 — предыдущее. Потом нужно предложить познакомиться с лучшей подружкой числа 2 — лягушкой, которая умеет перепрыгивать через число и сразу же называть результат прибавления или вычитания 2.

Аналогично происходит объяснение принципа выполнения этих математических действий с числом 3. В этом поможет пример зайчика, который умеет прыгать подальше — сразу через два числа.

Также детям нужно продемонстрировать приемы:

  • перестановки слагаемых (например, чтобы посчитать 3 + 68, проще поменять числа местами и прибавить);
  • присчитывания частями (28 + 16 = 28 + 2 + 14);
  • приведение к круглому числу (74 - 15 = 74 - 4 - 10 - 1).

Процесс подсчета облегчает умение применять сочетательный и распределительный законы. Например, 11 + 53 + 39 = (11 + 39) + 53. При этом дети должны уметь видеть самый простой способ подсчета.

Как научиться быстро считать в уме взрослому

Взрослый человек может использовать для устного счета более сложные алгоритмы. Самым удобным способом быстро считать в уме является округление чисел с последующим дополнением. Например, пример 456 + 297 можно посчитать так:

  • 456 + 300 = 756
  • 756 - 3 = 753

Аналогично производится и вычитание.

Для выполнения умножения и деления разработаны специальные правила действия с отдельными числами. Например, такие:

  • чтобы умножить число на 5, проще умножить его на 10, а затем разделить пополам;
  • умножение на 6 включает выполнение предыдущих действий и последующее прибавление к результату первого множителя;
  • чтобы умножить двузначное число на 11, нужно записать первую цифру записать на месте сотен, а вторую — на месте единиц. На месте десятков записывается сумма этих двух цифр;
  • разделить на 5 можно умножив делимое на 2, а затем разделить на 10.

Существуют правила для вычислительных действий с десятичными дробями, подсчета процентов, возведения в степень.

Ознакомиться с этими приемами можно в школе или найти материал в интернете, а вот чтобы научиться на их основе быстро считать в уме, необходимо тренироваться и еще раз тренироваться! В процессе тренировок многие результаты запомнятся наизусть, и ребенок будет называть их автоматически. Также он научится оперировать большими числами, раскладывая их на более простые и удобные слагаемые.

В век кассовых аппаратов и калькуляторов люди все реже считают в уме. Они практически полностью перешли на вычислительную технику, но и она частенько дает сбои, или ее просто не будет рядом, когда она нужна. Незаметно мы утрачиваем навыки точного и быстрого счета и иногда с опозданием понимаем, что мы уже не так хороши в этом деле. Но, быстро считать в уме – это неоспоримое достоинство и преимущество. Человек, которые запросто оперирует цифрами, практически никогда не будет обманут при расчетах. Но важно то, что это будут развивать и поддерживать в форме умственные способности, что важно для детей и молодых людей.

Как научиться быстро считать в уме ребенку

Все навыки лучше всего развиваются и закрепляются в детстве. Учиться считать, также, как и читать, можно с 1.5-2 лет. Особенности этого возраста заключаются в том, что у ребенка сначала накопятся пассивные знания – он будет понимать, знать, но из-за малого словарного запаса, будет мало разговаривать. До пяти лет малыш может обучиться в уме производить простые действия – вычитания и сложения в пределах двадцати. Если в два – три с половиной годика вы будете использовать наглядные методы в обучении, то позже малыш сможет оперировать только цифрами, без подкрепления наглядным материалом.

Если вы хотите, чтобы у вашего ребенка было больше шансов, что процесс оперирования крупными значениями и математическими действиями будет даваться легче и пойдет быстрее, тогда нужно как можно раньше научить его считать.

Обучать детей до четырех лет лучше с наглядными материалами. Считать можно все, что хотите. Пожарные машины, которые спешат на пожар, мотоциклисты, которые с грохотом пролетают мимо вас, кошки, которые греются на солнышке, стайки птиц – все, что вокруг вас можно посчитать. С навыками счета одновременно будут развиваться наблюдательность и внимание. Постепенно увеличивайте нагрузку. Утром вы видели 2 кошек, а когда возвращались домой, еще 3. Спросите у ребенка: «Заметил ли он, что сегодня так много кошек! Сколько он заметил?». Похвалите его за точность и наблюдательность, ведь эти качества пригодятся ему в жизни.

В начальной школе малышу необходимо быстро и свободно производить любые вычисления в пределах, определенных школьной программой. Чтобы научиться считать быстро, необходимы постоянные тренировки. Поэтому задачей родителей является побуждение малыша к счету и делать так, чтобы это происходило интересно. Чем чаще ваш ребенок будет тренироваться, тем легче ему будет делать точные и быстрые вычисления в уме.

Как научиться быстро считать взрослому

Если ребенок с детства обучался быстрому счету, то со временем он без особых усилий будет оперировать с большими значениями. Но если человек более зрелого возраста или студент решил овладеть быстрым счетом, то необходимо применить незамысловатую методику, которая несомненно принесет положительные результат.

Любое обучения начинается с малого. Если вы знаете таблицу умножения, это отлично. Если же забыли, или никогда не знали, стоит воспользоваться таким методом счета. К примеру, необходимо узнать, сколько будет 8х6. Записываем пример таким образом:

Что происходит когда собака облизывает лицо

Как вести себя если вас окружают хамы

Десять привычек, которые делают людей хронически несчастливыми

2 4
—-=48
8х6

Ответ 48. Мы его получили, записав пример 8х6, провели над ним прямую линию и над каждой цифрой записали, сколько не хватает до 10. Над 8 пишем 2, на 6 пишем 4. Первая цифра ответа – это разница между числами в нижней и верхней строках по диагонали. 8-4=4, 6-2=4 – для вычисления можете взять любую пару – ответ будет всегда одинаковым. Итак мы поняли, что первая цифра это 4. Теперь найдем вторую. Для этого следует умножить цифры верхней строки 2х4=8. Наш пример решен: 8х6=48.

Немного по-другому считаются более крупные числа. Например, вам необходимо подсчитать 11х13.

1 3
——=140+3=143
11х13

В нижней строчке записываем пример 11х13. В верхней пишем, на сколько эти числа превышают 10. Получаем 1 и 3. Сложим числа по диагонали. Получаем 11+3=14, 13+1=14. Мы получили 14 десятков, поскольку исходные цифры превышают 10. Поэтому 14 умножим на 10. 14х10=140. Осталось лишь умножить верхние числа 1х3=3 и прибавить полученную цифру к ответу.

Такие способы вычисления сложно проводить только сначала. Поэтому начинайте с простых примеров и постепенно усложняйте. Но дабы научиться считать в уме, необходимо полностью избавиться от записей, а делать все в голове.

По таким способам можно учить и детей, однако только тогда, когда они полностью знают школьную программу. В ином случае вы не добьетесь положительных результатов, а лишь навредите усвоению школьных знаний.

Когда освоите манипулирование двузначными числами, можете переходить к вычислению многозначных – сотен и даже тысяч.

Видео уроки

Умение быстро анализировать ситуацию, просчитывать варианты развития и составлять единое изображение реальности - это одно из ключевых умений высокоэффективных людей. Личностное развитие невозможно без интеллектуального, чему способствует быстрый счет в уме. В общем, о технике увеличения скорости мышления мы и поговорим в статье.

Как нас обманывает наш мозг

Исследования в области работы мозга приводят такие данные, в которые сложно поверить. Большая часть населения считает себя куратором мозга. Но это иллюзорное представление. На самом деле мозг уже принял решение за вас и посредством нервных импульсов передал его в сознание.

Мышление человека практически не изучено, составлена лишь малая картина происходящего в мозге. Грубо говоря, наши действия не определяются собственным "Я", хотя и это весьма расплывчатая формулировка. И зная это, можно приступать к изучению техники быстрого счета в уме.

Как эффективнее обучаться

Память дифференцируется на долговременную и краткосрочную, в первом случае знания откладываются в мозг навсегда. А второй вид необходим для зазубривания информации, чтения.

Современный молодой человек - это мультимедийная личность с клиповым мышлением. Отложить данные в долговременной памяти для него крайне сложно, ведь постоянное поступление информации захламляет его "жесткий диск".

Поэтому обучение методике быстрого счета в уме должно происходить в спокойном состоянии, когда человек не отвлекается на внешние раздражители. Иначе через несколько часов он все забудет.

А зачем мне это учить?

Да, в настоящий момент складывать цифры в уме нет надобности. Для этого придуманы специальные технические средства, но неиспользование мозга приводит к деградации личности.

А стремление к знаниям - это вечность. Такие люди уверены в себе, надеются только на собственные силы, а приобретенные навыки используются по назначению, тем самым обогащая индивида духовно и материально. Быстрый счет в уме развивает в человеке чувство контроля, увеличивает концентрацию внимания.

Способ первый. Для ленивых

Обладатели устройств на платформе Andorod и IOS могут скачать развивающие приложения и игры. Нейробиологи советуют комплексно подходить к быстрому счету в уме. Обучение происходит в несколько этапов, описанных ниже:

  1. Загружаются приложения для развития внимания, концентрации т. п.
  2. Затем пользователь скачивает развивалки для памяти.

В первом действии человек подготавливает свой мозг, так сказать, разогревает его для усиленных занятий. После чего приступает к работе над счетом в уме. Обратите внимание, приложения должны легко регулироваться, как снижение или повышение уровня сложности заданий, так и изменение времени на работу над ним.

Способ второй. Базовые знания

Для быстрого старта подобраны задания начального уровня. Сложение и вычитание небольших цифр, например 3 и 10. Техника называется «Опора на десяток».

Порядок действий:

  1. Задавайте вопросы простого характера, типа сколько 3 + 8 или 9 + 1. Ответ: 11 и 10.
  2. Сколько не хватает числу 10, чтобы стать 14? Ответ: 4.
  3. Затем возьмите любое число, к примеру, 9, и узнайте, сколько 2 в этом числе, и при нехватке добавьте недостающие цифры. Ответ: четыре двоек + 1.
  4. Прибавьте число из второго действия (4) к той части, которой недоставало для получения (1) девяти и сложите их. Ответ: 5.

Отточите свой навык до совершенства и только потом приступайте к более сложным тестам.

Способ третий. Многозначные числа

Здесь используются навыки, которые приобретены в школе. Сложение в столбик или в строчку - самое популярное среди школьников и студентов без вычислительных средств. Разберем на примере двух чисел: 1345 и 6789. Для начала дифференцируем их:

  • Число 1234 - состоит из 1000, 200, 30 и 4.
  • А 6789 - из 6000, 700, 80 и 9.

Быстрый счет в уме проходит по следующим действиям:

  1. Изначально складываются однозначные значения, это 4 + 9 = 13.
  2. Складывается 30 + 80 = 110.
  3. Переходим к трехзначным, 700 + 200 = 900.
  4. И затем считаем четырехзначные: 1000 + 6000 = 7000.
  5. Суммируем: 7000 + 900 + 110 + 13 = 8023 и проверяем на калькуляторе.

И более быстрый, но требующий фантазии способ:

  1. Представляем в голове одно число над другим.
  2. Складываем числа, начиная с их конца.
  3. Если 4 + 9 = 13, то откладываем единицу в голове и прибавляем к итоговому значению следующие числа.

На скриншоте этот способ представляется так, в ваших мыслях он должен иметь аналогичную структуру.

Способ четыре. Вычитание

Как и со сложением, вычитание начинается с вводного урока. Внимание человека должно быть сконцентрировано исключительно на подсчете числовых значений. Отвлекаться на посторонние шумы нельзя, иначе ничего не выйдет. На этот раз вычтем из 10 8 и посмотрим, что из этого выйдет:

  1. Для начала узнаем, сколько надо вычесть из десяти, чтобы получить восемь. Ответ: два.
  2. Из десяти вычитаем восемь по частям - для начала эту двойку, а затем остальные числа. И посчитаем, сколько надо раз отнять, чтобы получить ноль. Ответ: пять.
  3. Вычитаем из десяти пятерку. Ответ: пять.
  4. И от восьми отнимаем полученный ответ. Ответ: три.

Способ пять. Комбинированный

Появился в результате взаимодействия сложения и вычитания. Суть простая, необходимо взять число и начать отнимать от него различные числа или прибавлять с некоторыми реформациями. За исходное принимается число 9, начнем:

  1. От девяти отнимается шесть и одновременно прибавляется четыре. Ответ: семь.
  2. Семь разбивается на составные части, к примеру: 2 + 3 + 2.
  3. И к каждому прибавляется рандомное значение, возьмем 2. Получается, 2 + 2 = 4, 3 + 2 = 5 и 2 + 2 = 4.
  4. Суммируем полученные числа: 4 + 5 + 4 = 13.
  5. Вновь располагаем значение по частям и повторяем действия, используя только вычитание.

А с вычитанием больших чисел ситуация аналогична сложению. Все действия проговаривайте вслух, чтобы работало несколько видов памяти и ускорялся быстрый счет в уме.

За какой период времени можно стать сверхчеловеком?

Основных математических действий четыре:

  1. Вычитание.
  2. Сложение.
  3. Умножение.
  4. Деление.

И все будет зависеть от того, насколько часто человек занимается тренировками мозга. При плодотворной работе в течении 15-20 минут в день заметный результат наступит через два или три месяца. Для сохранения эффекта скоростного вычисления сверхчеловеку надо будет уделять всего 2-3 минуты в день на повторение пройденного. А через несколько лет это войдет в привычку, и индивид и замечать не будет, как он считает в уме.



2025 stdpro.ru. Сайт о правильном строительстве.